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ABSTRACT

Database users commonly explore large data sets by running ag-
gregate queries that project the data down to a smaller number of
points and dimensions, and visualizing the results. Often, such vi-
sualizations will reveal outliers that correspond to errors or surpris-
ing features of the input data set. Unfortunately, databases and vi-
sualization systems do not provide a way to work backwards from
an outlier point to the common properties of the (possibly many)
unaggregated input tuples that correspond to that outlier. We pro-
pose Scorpion, a system that takes a set of user-specified outlier
points in an aggregate query result as input and finds predicates
that explain the outliers in terms of properties of the input tuples
that are used to compute the selected outlier results. Specifically,
this explanation identifies predicates that, when applied to the in-
put data, cause the outliers to disappear from the output. To find
such predicates, we develop a notion of influence of a predicate on
a given output, and design several algorithms that efficiently search
for maximum influence predicates over the input data. We show
that these algorithms can quickly find outliers in two real data sets
(from a sensor deployment and a campaign finance data set), and
run orders of magnitude faster than a naive search algorithm while
providing comparable quality on a synthetic data set.

1. INTRODUCTION

Working with data commonly involves exploratory analysis, where

users try to understand trends and general patterns by fitting models
or aggregating data. Such analyses will often reveal outliers — ag-
gregate values, or subgroups of points that behave differently than
others. Although a multitude of tools are effective at highlighting
outliers, they generally lack facilities to explain why a given set of
outputs are outliers.

We believe why-analysis — describing the common properties of
the input data points or tuples that caused the outlier outputs — is es-
sential for problem diagnosis and to improve model quality. For ex-
ample, Figure 1 shows a visualization of data from the Intel Sensor
Data Set'. Here, each point represents an aggregate (either mean or
standard deviation) of data over an hour from 61 sensor motes. Ob-
serve that the standard deviation fluctuates heavily (Region 1) and
that the temperature stops oscillating (Region 2). Our goal is to
describe the properties of the data that generated these highlighted
outputs that “explain” why they are outliers. Specifically, we want
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Figure 1: Mean and standard deviation of temperature read-
ings from Intel sensor dataset.

to find a boolean predicate that when applied to the input data set
(before the aggregation is computed), will cause these outliers to
look normal, while having minimal effect on the points that the
user indicates are normal.

In this case, it turns out that Region 1 is due to sensors near win-
dows that heat up under the sun around noon, and the Region 2 is
by another sensor running out of energy (indicated by low voltage)
that starts producing erroneous readings. However, these facts are
not obvious from the visualization and require manual inspection
of the attributes of the readings that contribute to the outliers to de-
termine what is going on. We need tools that can automate analyses
to determine e.g., that an outlier value is correlated to the location
or voltage of the sensors that contributed to it.

This problem is fundamentally challenging because a given out-

lier aggregate may depend on an arbitrary number and combination
of input data tuples, and requires solving several problems:
Backwards provenance: We need to work backwards from each
aggregate point in the outlier set to the input tuples used to com-
pute it. In this work we assume that input and output data sets are
relations, and that outputs are generated by SQL group-by queries
(possibly involving user-defined aggregates) over the input. In gen-
eral, every output data point may depend on an arbitrary subset of
the inputs, making tracking these relationships very difficult [19].
Responsible subset: For each outlier aggregate point, we need a
way to determine which subset of its input tuples cause the value
to be an outlier. This problem, in particular, is difficult because the
naive approach involves iterating over all possible subsets of the
input tuples used to compute an outlier aggregate value.
Predicate generation: Ultimately, we want to construct a predicate
over the input attributes that filter out the points in the responsible
subset without removing a large number of other, incidental data
points. Thus, the responsible subset must be composed in conjunc-
tion with creating the predicates.

In this paper, we describe Scorpion, a system we have built to
solve these problems. Scorpion uses sensitivity analysis [14] to
identify the groups of input points that most influence the outlier
aggregate outputs and generate a descriptive predicate. Scorpion’s
problem formulation and system is designed to work with arbi-
trary user-defined aggregates, albeit slowly for black-box aggre-
gates. We additionally describe properties common to many com-
mon aggregate functions that enable more efficient algorithms that
extend classical regression tree and subspace clustering algorithms.

In summary, our contributions are as follows:



[ Tupleid | Time [ SensorID [ Voltage | Humidity [ Temp. |
Tl 11TAM 1 2.64 0.4 34
T2 11AM | 2 2.65 0.5 35
T3 1IAM | 3 2.63 0.4 35
T4 12PM 1 2.7 0.3 35
T5 12PM 2 2.7 0.5 35
T6 12PM 3 2.3 0.4 100
T7 1PM 1 2.7 0.3 35
T8 1PM 2 2.7 0.5 35
T9 1PM 3 2.3 0.5 80

Table 1: Example tuples from sensors table

Resultid | Time [ AVG(temp) [[ Label

aq 1AM | 34.6 Hold-out | -
Qg 12PM 56.6 Outlier < —1>
s 1PM 50 Outlier < —1>

Table 2: Query results (left) and user annotations (right)

1. We describe several real applications, such as outlier expla-
nation, cost analysis, enabling end-user analysts.

We formalize a notion of influence over predicates and present
a system that searches for influential predicates.

We present common properties (similar to distributive and
algebraic properties of OLAP aggregates) that enable more
efficient algorithms and develop several such algorithms.
We run experiments on synthetic and real-world problems,
showing that our algorithms are of comparable quality to a
naive exhaustive algorithm while taking orders of magnitude
less time to run.

The rest of the paper is structured as follows: Section 2 describes
several motivating use cases and the running example used through-
out the paper. Section 3 describes the formal problem formulation,
Sections 4-7 present several algorithms and optimizations and ex-
periments are described in Section 8.

2.

2. MOTIVATION AND USE CASE

Scorpion is designed to augment data exploration tools with ex-
planatory facilities that find attributes of an input data set correlated
with parts of the dataset causing user-perceived outliers. In this sec-
tion, we first set up the running example used throughout the paper,
then describe several motivating use cases.

Sensor Data: Our running example is based on the Intel sen-
sor deployment application described in the Introduction. Con-
sider a data analyst that is exploring a sensor dataset shown in Ta-
ble 1. Each tuple corresponds to a sensor reading, and includes the
timestamp, and the values of several sensors. The following query
groups the readings by the hour and computes the mean tempera-
ture. The left-side columns in Table 2 lists the query results.

SELECT avg(temp), time
FROM sensors GROUP BY time

Qb

The analyst thinks that the average temperature at 12PM and 1PM
are unexpectedly high and wants to understand why. There are a
number of questions she may want to ask that are in this vein:

1. Which of the sensors “caused” the anomalies?

2. Which sensor’s values most “caused” the anomalies?

3. Why are these sensors reporting high temperature?

4. This problem didn’t happen yesterday. What has changed?
In each of the questions, the analyst is interested in properties of
the readings (e.g., sensor id) that most influenced the outlier re-
sults. Some of the questions (1 and 2) involve the degree of influ-
ence, while others involve comparisons between outlier results and
normal results (4). Section 3 formalizes these notions.

Medical Cost Analysis: We are currently working with a ma-
jor hospital (details anonymized) to help analyze opportunities for
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[ Notation [ Description |
D The input relational table with attributes attry, - - - , attry
Agp, Aagg | Setof attributes referenced in GROUPBY and aggregation clause
Pi <D Pj Result set of p; is a subset of p; when applied to D
« The set of aggregate result tuples, a;’s
9o, Tuples in D used to compute «; e.g., have same GROUPBY key
O, H Subset of « in outlier and hold-out set, respectively
Vo, Normalized error vector for result a;

Table 3: Notations used

cost savings. They observed that amongst a population of cancer
patients, the top 15% of patients by cost represented more than
50% of the total dollars spent. Surprisingly these patients were not
significantly sicker, and did not have significantly better or worse
outcomes than the median-cost patient. Their dataset consisted of
a table with one row per patient visit, and 45 columns that describe
patient demographics, diagnoses, a break-down of the costs, and
other attributes describing the visit. They manually picked and an-
alyzed a handful of dimensions (e.g., type of treatment, type of
service) and isolated the source of cost overruns to a large num-
ber of additional chemotherapy and radiation treatments given to
the most expensive patients. They later found that a small num-
ber of doctors were over-prescribing these procedures, which were
presumably not necessary because the outcomes didn’t improve.

Note that simply finding individually expensive treatments would
be insufficient because those treatments may not be related to each
other. The hospital is interested in descriptions of high cost areas
that can be targeted for cost-cutting and predicates are a form of
such descriptions.

Election Campaign Expenses: In our experiments, we use a
campaign expenses dataset > that contains all campaign expenses
between January 2011 and July 2012 during the 2012 US Pres-
idential Election. In an election that spent an unprecedented $6
billion, many people are interested in where the money was spent.
While technically capable users are able to programmatically an-
alyze the data, end-users are limited to interacting with pre-made
visualizations — a consumer role — despite being able to ask valu-
able domain-specific questions about expense anomalies, simply
due to their lack of technical expertise. Scorpion is a step towards
bridging this gap by automating common analysis procedures and
allowing end-users to perform analyst operations.

Extending Provenance Functionality: A key provenance use
case is to trace an anomalous result backward through a workflow
to the inputs that directly affected that result. A user may want
to perform this action when she sees an anomalous output value.
Unfortunately, when tracing the inputs of an aggregate result, the
existing provenance system will flag a significant portion of the
dataset as the provenance [3]. Although this is technically correct,
the results are not informative. Scorpion can reduce the provenance
of aggregate operators to a small set of influential inputs.

3. PROBLEM STATEMENT

Scorpion seeks to find a predicate over an input dataset that most
influences a user selected set of query outputs. In order to rea-
son about such tuples, we must define influence, and the type of
additional information that the user can specify. Table 3 lists the
notations used.

3.1 Setup

Consider a single relation D, with attributes A = attry, .., attry.
Let @ be a group-by SQL query grouped by attributes Ag, C
A, with a single aggregate function, agg(), that computes a re-
sult using aggregate attributes A,qq C A from each tuple, where

http://www.fec.gov/disclosurep/PDownload.do



Aagg N Agy = 0. Finally, let Arese = A — Agy — Aagg be the
attributes not involved with the aggregate function nor the group by
that are used to construct the explanations. We model join queries
by materializing the join result and assigning it as D. The predi-
cates are then constructed with respect to the join result.

For example, Q1 contains a single group-by attribute, Ay, =
{time}, and an aggregate attribute, A.qq = {temp}. The user
is interested in combinations of A,est = {SensorID,Voltage}
values that are responsible for the anomalous average temperatures.

Scorpion outputs the predicate that most influences a set of out-
put results. A predicate, p, is a conjunction of range clauses over
the continuous attributes and set containment clauses over the dis-
crete attributes, where each attribute is present in at most one clause.
Let p(D) C D be the set of tuples in D that satisfy p. A predicate
p; is contained in p; with respect to a dataset D if the tuples in D
that satisfy p; are a subset of those satisfying p;: p; <p p;
pi(D) C p;(D). Let P4 be the space of all possible predicates
over the attributes in A.

Let the query generate n aggregate result tuples, « = {1, .., an },
and the term input group (9o, C D) be the subset of the input tu-
ples that generate output result «;. The output attribute, a;.res =
ag9(TA,,,9a; ) is the result of the aggregate function computed
over the projected attributes, Aqgg4, Of the tuples in gq, -

Let O = {o1,..,0n,]0i € a}, be a subset of the results that
the user flags as outliers, and H = {hy, -+, hn, |hs € a} be a
hold-out set of the results that the user finds normal. O and H are
typically specified through a visualization interface, and H N O =
0. Let gx = Uzexgz|X C a be shorthand for the union of the
input groups of a subset of the results, X'. For example, go denotes
the union of the outliers’ input sets.

The user can also specify an error vector that describes how an
outlier result looks wrong (e.g., temperature is too high). v,, is a
normalized error vector for the result, o; that points in the direction
of the error. For example, if the user thinks that a;; of Q1 is too low,
she can define the vector vo, =<—1>, whereas she can specify
that o is too high using va,=<1>. Let V = {v,,|0; € O}, be
the set of error vectors of all of the outlier results.

3.2 Predicate Influence

We will first define the influence of a predicate, p, on a single
output result, o, then incorporate a user defined error vector, v,
and finally generalize the definition to outlier and hold-out results.

Basic Definition: Our notion of influence is derived from sen-
sitivity analysis [14], which computes the sensitivity of a model to
its inputs. Given a function, y = f(z1,- - ,Zn), the influence of
z; is defined by the partial derivative, Aji’ which describes how
the output changes given a change in x;.

In our context, the model is an aggregate function, agg, that takes
a set of tuples, g, as input, and outputs a result, o. The influence of
a predicate, p, on o depends on the difference between the original

result o.res and the updated output after deleting p(g,) from g,°.

Aagg(0,p) = agg(go) — agg(go — p(go))

We describe A4 as a scalar, but it can return a vector if the agg
does so. The influence is defined as the ratio between the change in
the output and the number of tuples that satisfy the predicate:

Ao

_ Aagg (0,p)
Ago

infagg(o,p) = T p(90)]

For example, suppose the individual influences of each tuple in
Jas = {T4,75,T6}, from Tables 1 and 2. Based on the above

3 Alternative formulations, e.g., perturbing input tuple values rather than
deleting inputs tuples, are also possible but not explored here.
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definition, removing T4 from the input group increases the output
by 10.8, thus T4 (and T5) have an influence of in fav ¢ (a2, {T4}) =
56.6-67.5 — __1().8. In contrast, T6 has an influence of 21.6. Given
this definition, T6 is the most influential tuple, which makes sense,
because T6.temp increases the average the most, so removing it
would most reduce the output.

The reason Scorpion defines influence in the context of predi-
cates rather than individual or sets of tuples is because individual
tuples only exist within a single input group, whereas predicates
are applicable to multiple input groups. We now augment in f with

additional arguments to support other user inputs.

Error Vector: The previous formulation does not take into ac-
count the error vectors, i.e., whether the outliers are too high or too
low. For example, if the user thinks that the average temperature
was too low, then removing T6 would, contrary to the user’s desire,
further decrease the mean temperature. This intuition suggests that
only the components of the basic definition that align with the error
vector’s direction should be considered. This is computed as the
dot product between the basic definition and the error vector:

infagg(ovpv 'Uo) = infagg (o7p) ® Vo

For example, vo, =< 1 > means that az from QI is too high.
The influence of T6 is < 21.6 > @ < 1 >= 21.6 and T4 is —10.8.
In contrast, if vo, =< —1 >, then T6 and T4’s influences would

be —21.6 and 10.8, respectively, and T4 would be more influential.

Hold-out Result: As mentioned above, the user may select a
hold-out result, h, that the returned predicate should not influence.
Intuitively, p should be penalized if it influences the hold-out results
in any way.

infagg(0, h,p, Vo) = Ainfagg(0,p,v0) — (1 — A)|infagg(h, p)|

Where ) is a parameter that represents the importance of not chang-
ing the value of the hold-out set. We use the absolute value of

in fagg(h,p) to penalize any perturbation of hold-out results.

Multiple Results: The user will often select multiple outlier re-
sults, O, and hold-out results, H. We extend the notion by averag-
ing the influence over the outlier results and penalizing the maxi-
mum influence over the hold-out set:

. 1 )
anagg(o» H,p, V) :)‘@ Z 1nfagg(07p» vo)*

o€0
1-=x ;Lneaglinfagg(h,p)\

We chose to use the maximum in order to provide a hard cap on
the amount that a predicate can influence any hold-out result.

The rest of the paper uses the following short-hands when the in-
tent is clear from the context. in f(p) denotes in f.q4(O, H,p,V);
A(p) denotes Aqgg(0,p); inf(t) and inf(T") denote the influence
of a predicate that matches a single tuple, ¢, or a set of tuples, 7'
We also extend A to accept a single or set of tuples as input.

3.3 Influential Predicates Problem

The Influential Predicates (IP) Problem is defined as follows:
Given a select-project-group-by query @, and user inputs O, H, A
and V, find the predicate, p*, from the set of all possible predicates,

Pa, ..., that has the maximum influence:
*=arg max in
P g Jme f(p)

rest

While Section 2 motivated the usefulness of this problem, it is
not immediately obvious why this problem should be difficult. For
example, if the user thinks the average temperature is too high, why
not simply return the readings with the highest temperature? We
now illustrate some reasons that make the /P problem difficult and
describe solutions in the following sections.
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Figure 2: Scorpion architecture

The first reason is because Scorpion needs to consider how com-
binations of input tuples affect the outlier results, which depends
on properties of the aggregate function. In the worst case, Scorpion
cannot predict how combinations of input tuples interact with each
other, and needs to evaluate all possible predicates (exponential in
the number of and cardinalities of attributes).

The second reason is because Scorpion returns predicates, rather
than individual tuples, to provide the user with understandable ex-
planations of anomalies in the data. Scorpion must find tuples
within bounding boxes defined by predicates, rather than arbitrary
combinations of tuples. In the example above, it may be tempting
to find the top-k highest temperature readings and construct a pred-
icate from the minimum bounding box that contains those readings.
However, the number of top readings is unclear, the readings may
have no relation with each other, and the resulting predicate may
be non-influential because the temperatures are normal or low.

The third reason is that the influence of a predicate relies on
statistics of the tuples in addition to their individual influences, and
the specific statistic depends on the particular aggregate function.
For example, AV G depends on both the values and density of tu-
ples, while COUNT only depends on the density.

The final reason is due to the hold-out result. In the presence
of a hold-out set, simple greedy algorithms may not work because
an influential set of tuples in the outlier set may also influence the
hold-out results.

4. BASIC ARCHITECTURE

This section outlines the Scorpion system architecture we have
developed to solve the problem of finding influential predicates de-
fined in the previous section and describes naive implementations
of the main system components. These implementations do not as-
sume anything about the aggregates so can be used on arbitrary user
defined aggregates to find the most influential predicate. We then
describe why these implementations are inefficient.

4.1 Scorpion Architecture

Scorpion is implemented as part of an end-to-end data explo-
ration tool (Figure 2). Users can select databases and execute ag-
gregate queries whose results are visualized as charts (Figure 1
shows a screenshot). Users can select arbitrary results, label them
as outliers or hold-outs, select attributes that are used to construct
the predicates and send the query to the Scorpion backend. Users
can click through the results and plot the updated output with the
outlier input tuples removed from the dataset.

Scorpion first uses the Provenance component to compute the
provenance of the labeled results and returns their corresponding
input groups. In this work, the queries are group-by queries over
a single table, so computing the input groups is straightforward.

More complex relationships can be established using relational prove-

nance techniques [3]. The input groups, along with the original in-
puts, are passed to the Partitioner, which chooses the appropriate
partitioning algorithm based on the properties of the aggregate. The
algorithm generates a ranked list of predicates, where each predi-

() (b) ©

Figure 3: (a) Each point represents a tuple. Darker color means
higher influence. (b) Output of Partitioner. (c) Output of Merger

cate is tagged with a score representing its estimated influence. For
example, consider the 2D dataset illustrated in Figure 3(a), where
each point represents an input tuple and a darker color means higher
influence. Figure 3(b) illustrates a possible set of partitions. The
algorithms often generate predicates at a finer granularity than ideal
(i.e., each predicate contains a subset of the optimal predicate) so
they send their results to the Merger, which greedily merges similar
predicates as long as it increases the influence (Figure 3(b)).

The Partitioner and Merger send candidate predicates to the Scorer,
which computes the influence as defined in the previous section.
The cost is dominated by the cost of computing the A values, which
is computed by removing the tuples that match the predicate from
the original input data set and re-running the aggregate, and needs
to be computed over all input groups. The need to read the entire
dataset to evaluate the influence is overly expensive if the dataset is
large, or the aggregate function needs multiple passes over the data.
Section 5.1 describes an aggregate property that can reduce these
costs. Finally, the top ranking predicate is returned to the visualiza-
tion and shown to the user. We now present basic implementations
of the partitioning and merging components.

4.2 Naive Partitioner (NAIVE)

For an arbitrary aggregate function without nice properties, it is
difficult to improve beyond an exhaustive algorithm that enumer-
ates and evaluates all possible predicates. This is because the influ-
ence of a given tuple may depend on the other tuples in the outlier
set, so a simple greedy algorithm will not work. The NAIVE algo-
rithm first defines all distinct single-attribute clauses, then enumer-
ates all conjunctions of up to one clause from each attribute. The
clauses over a discrete attribute, A;, are of the form, “A; in (---)”
where the - - - is replaced with all possible combinations of the at-
tribute’s distinct values. Clauses over continuous attributes are con-
structed by splitting the attribute’s domain into a fixed number of
equi-sized ranges, and enumerating all combinations of consecu-
tive ranges. NAIVE computes the influence of each predicate by
sending it to the Scorer, and returns the most influential predicate.

This algorithm is inefficient because the number of single-attribute
clauses increases exponentially (quadratically) for a discrete (con-
tinuous) attribute as its cardinality increases. Additionally, the space
of possible conjunctions is exponential with the number of attributes.
The combination of the two issues makes the problem untenable
for even small datasets. While the user can bound this search by
specifying a maximum number of clauses allowed in a predicate,
enumerating all of the predicates is still prohibitive.

4.3 Basic Merger

The Merger takes as input a list of predicates ranked by an inter-
nal score, merges subsets of the predicates, and returns the resulting
list. Two predicates are merged by computing the minimum bound-
ing box of the continuous attributes and the union of the values for
each discrete attribute. The basic implementation repeatedly ex-
pands the existing predicates in decreasing order of their scores.
Each predicate is expanded by greedily merging it with adjacent
predicates until the resulting influence does not increase.



This implementation suffers from multiple performance-related
issues if the aggregate is treated as a black-box. Each iteration calls
the Scorer on the merged result of every pair of adjacent predi-
cates, and may successfully merge only one pair of predicates. Sec-
tion 6.3 explores optimizations that address these issues.

The next section will describe several aggregate operator prop-
erties that enable more efficient algorithm implementations.

5. AGGREGATE PROPERTIES

To compute results in a managable time, algorithms need to ef-
ficiently estimate a predicate’s influence, and prune the space of
predicates. These optimizations depend on the aggregate opera-
tor’s properties. This subsection describes several properties that
Scorpion exploits to develop more efficient algorithms. Aggregate
developers only need to implement these properties once, and they
are transparent to the end-user.

5.1 Incrementally Removable

The Scorer is extensively called from all of our algorithms, so
reducing its cost is imperative. Rather than recomputing the ag-
gregrate function on the input dataset, an incrementally removable
aggregate is able to directly evaluate p’s influence from its tuples.

In general, a computation is incrementally removable if the up-
dated result of removing a subset, s, from the inputs, D, can be
computed by only reading s. For example, SU M is incrementally
removable because SUM (D — s) = SUM (D) — SUM(s), and
the SUM (D) component can be cached. In fact, computing in-
fluence of an aggregate is incrementally removable as long as the
aggregate itself is incrementally removable.

Formally, an aggregate function, F, is incrementally removable
if it can be decomposed into functions state, update, remove and
recover, such that:

state(D) — mp

update(mg,,- - ,mg, ) = my,

ic[1,n]Si

remove(mp,mg,) = Mp_g,

)
n )
)
F(D) = recover(mp)

Where D is the original dataset and .Sy - - - S,, are non-overlapping
subsets of D to remove. state computes a constant sized tuple
that summarizes the aggregation operation, update combines n tu-
ples into one, remove computes the tuple of removing S; from
D, and recover recomputes the aggregate result from the tuple.
The Scorer takes advantage of this property to compute and cache
state(D) once. A predicate’s influence is computed by removing
the predicate’s tuple from D’s tuple, and calling recover on the
result. Section 6.3 describes cases where the Merger can use tuples
to avoid calling the Scorer altogether.

This definition is related to the concept of distributive and alge-
braic functions in OLAP cubes [6], which are functions where a
sub-aggregate can be stored in a constant bound, and composed to
compute the complete aggregate. In contrast incrementally remov-
able functions only need a constant bound to store the complete ag-
gregate so that sub-aggregates can be removed. Although similar,
not all distributive or algebraic are incrementally removable. For
example, it is not in general possible to re-compute M AX after
removing an arbitrary subset of inputs without knowledge of the
full dataset. Similarly, MIN, MEDIAN and MODE are not
incrementally-removable. In general, COUNT and SU M based

arithmetic expressions, suchas AVG, STDDEV ,and VARIANCE

are incrementally removable.
An operator developer can define an incrementally removable
operator by implementing the procedures state, update, remove

and recover, which Scorpion uses to efficiently compute the influ-
ence of a predicate. For example, AV G is augmented as:

AV G.state(D) = [SUM (D), |D|]
AV G.update(ma, -+ ,mn) = 3 2;cp1, 0 Mil0], 2oieps,ny malll]
AV G.remove(mi,ma) = [m1[0] — m2[0], m1[1] — m2[0]]
AV G.recover(m) = m[0]/m][1]

5.2 Independent

The IP problem is non-trivial because combinations of input tu-
ples can influence a user-defined aggregate’s result in arbitrary ways.
The independence property allows Scorpion to assume that the in-
put tuples influence the aggregate result independently.

Lett; <---<t, suchthatvie[l,n,l]inff(o, ti) < inf;(o, t¢+1)

be an ordering of tuples in input group, g., by their influence on the
result o, where F is an aggregate computation. Let T" be a set of
tuples, then F is independent if:

1. ta <tp = infr(TU{ta}) <infr(TU{ty}) and

2. tq > t* w infr(TU{ta}) > infr(T)|t* = argminsep infr(t)

The first requirement states that the influence of a set of tuples
strictly depends on the influences of the individual tuples without
regard to the tuples in 7" (they do not interact with ¢, or ¢;). The
second specifies that adding a tuple ¢, more influential than t* € T'
with minimum influence can’t decrease the set’s influence.

Together, these requirements point towards a greedy strategy to
find the most influential set of tuples for independent aggregates.
Assume that the user provided a single suspicious result and no
hold-outs. The algorithm first sorts the tuples by influence and then
incrementally adds the most influential tuple to the candidiate set
until the influence of the set does not increase further. This algo-
rithm is guaranteed to find the optimal set (though not necessarily
the optimal predicate).

While this sounds promising, the above requirements are diffi-
cult to guarantee because they depend on internal details such as
the cardinality of the predicate and the existance of hold-out re-
sults. We instead modify the requirements to depend on A z, which
only depends on the aggregate function, rather than in fr. The de-
veloper specifies that an operator is independent by setting the at-
tribute, ¢s_independent = True. The DT partitioning algorithm
described in Section 6.1 exploits this property for aggregates such
as AVG and STDDEV.

5.3 Anti-monotonic Influence

The anti-monotonic property is used to prune the search space of
predicates. In general, a property is anti-monotone if, whenever a
set of tuples s violates the property, so does any subset of s. In our
context, an operator is anti-monotonic if for a given input group,
Jo, the amount that a predicate, p, influences the aggregate result,
inf(o,p), is greater than or equal to the influence of any predicate
contained within p:

p <p<inf(p’) <inf(p)

In other words, if p is non-influential, then none of the predicates
contained in p can be influential, and p can be pruned. For ex-
ample, if D is a set of non-negative values, then SUM (D) >
SUM (s)¥scp. Note that the property only holds if the data satis-
fies a non-negativity constraint.

Similar to the independence property, determining anti-monotonicity

at the influence level is non-trivial. Thus, developers only spec-
ify if Aygy obeys this property by defining a boolean function
check(D), that returns T'rue if D satisfies any required constraints,
and False otherwise. The function would be defined for anti-
monotonic statistical functions as:



COUNT.check(D) = True
MAX .check(D) = True
SUM.check(D) = |{d € D|d < 0}| ==0

6. IP ALGORITHMS

While the general IP problem is exponential, the properties pre-
sented in the previous section enable several more efficient par-
titioning and merging algorithms. In this section, we describe a
top-down partitioning algorithm that takes advantage of indepen-
dent operators and a bottom-up algorithm for independent, anti-
monotonic aggregates. We then describe optimizations, including
one to the basic Merger for certain independent aggregates.

6.1 Decision Tree (DT) Partitioner

DT is a top-down partitioning algorithm for independent aggre-
gates. It is based on the intuition that the A function of independent
operators cannot decrease when tuples with similar influence are
combined together. DT generates predicates where the tuples of an
input group within a predicate have similar influence. The Merger
then greedily merges adjacent predicates with similar influence to
produce the final predicates.

DT recursively splits the attribute space of an input group to cre-
ate a set of predicates. Because outlier groups are different than
hold-out groups, we partition these groups separately, resulting in
a set of outlier predicates and hold-out predicates. These are com-
bined into a set of predicates that differentiates ones that only influ-
ence outlier results from those that also influence hold-out results.
We first describe the partitioning algorithm for a single input group,
then for a set of outlier input groups (or hold-out input groups), and
finally how to combine outlier and hold-out partitionings.

6.1.1 Recursive Partitioning

The recursive partitioner takes an input group, aggregate, and er-
ror vector (for outliers) as input, and returns a partitioning* such
that the variance of the influence of individual tuples within a parti-
tion is less than a small multiplicative bound, relative to the average
tuple’s influence in the partition. Our algorithm is based on regres-
sion tree algorithms, so we first explain a typical regression tree
algorithm before describing our differences.

Regression trees [2] are the continuous counterpart to decision
trees, used to predict a continuous attribute rather than a categorical
attribute. Initially, the tree begins with all data in a single cell or
node. The algorithm fits a constant or linear formula to the tuples in
the node, and computes an error metric over the tuple values (e.g.,
standard error or sum error). If the error metric or number of tuples
in the node are below their respective thresholds, then the algorithm
stops. Otherwise, the algorithm computes the best (attribute, value)
pair to bisect the node, such that the resulting child nodes minimize
the error metric, and recursively calls the algorithm on the children.

Our approach re-uses the regression tree framework to minimize
the distribution of influence values within a given partition. The
key insight is that it is more important that partitions containing
influential tuples be accurate than non-influential partitions, thus
the error metric threshold can be relaxed for partitions that don’t
contain any influential tuples. Its value is based on the maximum
influence in a partition, in fmq., and the upper, in f,,, and lower,
in fi, bounds of the influence values in the dataset. The threshold
can be computed via any function that decreases from a maximum

“Partitions and predicates are interchangeable, however the term partition is more
natural when discussing space partitioning algorithms.
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to a minimum threshold value as in f,q- approaches in f,. Scor-
pion computes the threshold as:

threshold = w * (infy, —inf;)
w = min(Tmm + s % (lnfu - ’infmaz): Tmaz)
Tmin — Tmaz

(1 —p)*infu —p=*inf;

where w is the multiplicative error as depicted in Figure 4, s is
the slope of the downward curve, p = 0.5 is the inflection point
when the threshold starts to decrease, and Ty,qq and Tpiy, are the
maximum and minimum threshold values.

T

‘max

Tmm

v

infy (p)(inf,-inf)) inf,

N

Figure 4: Threshold function curve as in f,,q, varies

6.1.2 Recursive Partitioning with Sampling

The previous algorithm still needs to compute the influence on
all of the input tuples. To reduce this cost, we exploit the obser-
vation that the influential tuples should be clustered together (since
Scorpion searches for predicates), and sample the data in order to
avoid processing all non-influential tuples. The algorithm uses an
additional parameter, e, that represents the maximum number of
influential tuples in a cluster as a percentage of the dataset. The
system initially estimates a sampling rate, samp_rate, such that a
sample from D of size samp_ratex|D| will contain high influence
tuples with high probability (> 95%):

sample_rate = min({sr|sr € [0,1] A1 — (1 — €)*"*IPl > 0.95})

Scorpion initially uniformly samples the data, however after com-
puting the influences of the tuples in the sample, there is informa-
tion about the distribution of influences. We use this when splitting
a partition to determine the sampling rate for the sub-partitions. In
particular, we use stratified sampling, weighed on the total relative
influences of the samples that fall into each sub-partition.

To illustrate, let D be partitioned by the predicate p into Dy
p(D) and D2 = —p(D), and S C D be the sample with sampling
rate samp-rate. We use the sample to estimate D1 ’s (and similarly
D>’s) total influence:

nfp, = Z inf(t)

tep(S)
The sampling rate for D; (and similarly D2) is computed as:

nfp,

_ nfp, 151
infp, +infp,

samp._ratep, = D1
1

6.1.3  Parallel Partitioning and Synchronization

DT separately partitions outlier from hold-out input groups to
avoid the complexity of computing the combined influence. It is
tempting to compute the union of the input groups and execute the
above recursive partitioner on the resulting set, however, it can re-
sult in over-partitioning. For example, consider a2 and a3 from
Table 2. The outlier temperature readings (T6 and T9) are corre-
lated with low voltage. If g, and g, are combined, then the error



partitions partitionsy partitions

Figure 5: Combined partitions of two simple outlier and hold-
out partitionings

metric of the predicate voltage < 2.4 would still have high vari-
ance, and be falsely split further. In the worst case, the partitioner
will create single-tuple partitions.

Instead, we execute a separate instance of the partitioning algo-
rithm on each input group. Before picking a split attribute for a par-
tition, the algorithms combine the error metrics computed for each
candidate attribute to select a single best split. This ensures that the
algorithms output the same partitioning. The error metrics for at-
tribute attr are combined as metricqrr = max(metricfmrﬁ e
[0, |R|]), where metrichy,, is the error metric of attribute a in the
+’th input group’s algorithm.

6.1.4 Combining Partitionings

The recursive partitioning step generates an outlier partitioning,
partitionso, and hold-out partitioning, partitionsy, for their
respective input groups. The final step is to combine them to-
gether into a single partitioning, partitionsc. The goal is to dis-
tinguish partitions that influence hold-out results from those that
only influence outlier results. We do this by splitting partitions in
partitionso along their intersections with partitions in partitionsgy.

For example, partitionsy in Figure 5 contains a partition that
overlaps with two of the influential partitions in partitionso. The
splitting process distinguishes partitions that influence hold-out re-
sults (contains a red *X’) from those that only influence outlier re-
sults (contains a greed check mark).

6.2 Bottom-Up (McC) Partitioner

The MC algorithm is a bottom-up approach for independent,
anti-monotonic aggregates, such as COUNT and SUM. It can
be much more efficient than DT for these aggregates. The idea is to
first search for influential single-attribute predicates, then intersect
them to construct multi-attribute predicates. Our technique is sim-
ilar to algorithms used for subspace clustering [1], so we will first
sketch a classic subspace clustering algorithm, and then describe
our modifications. The output is then sent to the Merger.

The subspace clustering problem searches for all subspaces (hyper-
rectangles) that are denser than a user defined threshold. The orig-
inal algorithm, CLIQUE [1], and subsequent improvements, em-
ploys a bottom-up iterative approach that initially splits each con-
tinuous attribute into fixed size units, and every discrete attribute by
the number of distinct attribute values. Each iteration computes the
intersection of all units kept from the previous iteration whose di-
mensionality differ by exactly one attribute. Thus, the dimensional-
ity of the units increase by one after each iteration. Non-dense units
are pruned, and the remaining units are kept for the next iteration.
The algorithm continues until no dense units are left. Finally, ad-
jacent units with the same dimensionality are merged. The pruning
step is possible because density (i.e. COUNT) is anti-monotonic
because non-dense regions cannot contain dense sub-regions.

The intuition is to start with coarse-grained predicates (single
dimensional), and improve the influence by adding additional di-
mensions that refine the predicates. We have two major modifica-
tions to the subspace clustering algorithm. First, we merge adjacent
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Figure 6: A predicate is not influential if it (a) influences a hold-
out result or (b) doesn’t influence outlier result.

units after each iteration to find the most influential predicate. If the
merged predicate is not more influential than the optimal predicate
so far, then the algorithm terminates.

Second, we modify the pruning procedure to account for two
ways in which the influence metric is not anti-monotonic. The first
case is when the user specifies a hold-out set. Consider the prob-
lem with a single outlier result, o, and a single hold-out result, h
(Figure 6). A predicate, p, may be non-influential because it also
influences a hold-out result (Figure 6.a), or because it doesn’t influ-
ence the outlier result (Figure 6.b). In the former case, there may
exist a predicate, p’ <4, ug, P that only influences the outlier re-
sults. Pruning p would mistakenly also prune p’. In the latter case,
p can be safely pruned. We distinguish these cases by pruning p
based on its influence over only the outlier results, which is a con-
servative estimate of p’s true influence.

1: function MC(O, H, V)
2: predicates < Null

3: best «+— Null

4: while |predicates| > 0 do

5: if predicates = Null then

6: predicates < initialize_predicates(O, H)
7: else

8: predicates < intersect(predicates)

9: best < arg maxpemerged inf(p)

10: predicates < prune(predicates, O, V, best)
11: merged < Merger(predicates)

12: merged < {p|p € merged A inf(p) > inf(best)}
13: if merged.length = 0 then
14: break

15: predicates < {p|3p,, cmergedP <D Pm}
16: best < arg maxpemerged inf(p)
17: return best

18:

19: function PRUNE(predicates, O, V, best)
20: ret = {p € predicates|inf(O, D, p, V) < inf(best)}
21: ret = {p € ret| arg max;« (o) inf(t*) < inf(best)}
22: return ret
The second case is because anti-monotonicity is defined for A(p),

however influence is proportional to |<T"’), which is not anti-monotonic.

For example, consider three tuples with influences, {1, 50,100}
and the operator SU M. The set’s influence is w = 50.3,

whereas the subset {50, 100} has a higher influence of 75. It turns

out that the anti-monotonicity property holds if, for a set of tuples,

s, the tuple with the maximum influence, t* = arg maxies inf(t)

is less than the influence of s: inf(t*) < inf(s).

The MC algorithm is shown above. The first iteration of the
W HILE loop initializes predicates to the set of single attribute
predicates and subsequent iterations intersect all pairs in predicates
(Lines 5-8). The best predicate so far, best, is updated, and then
used to prune predicates (Lines 9,10). The resulting predicates
are merged, and filtered for ones that are more influential than best



(Lines 11-12). If none of the merged predicates are more influential
than best, then the algorithm terminates. Otherwise predicates
and best are updated, and the next iteration proceeds.

The pruning step first removes predicates whose influence, ig-
noring the hold-out sets, is less than the influence of best. It then
removes those that don’t contain a tuple whose individual influence
is greater than best’s influence.

6.3 Merger Optimizations

We now present optimizations to the Merger when its inputs are
generated by the DT algorithm. As described in Section 4.3, the
Merger scans its list of predicates and expands each one by repeat-
edly merging it with its adjacent predicates. The first optimization
reduces the number of predicates that need to be merged by only
expanding the predicates whose influences are within the top quar-
tile. This is based on the intuition that the final predicate is most
likely to influence predicates in the top quartile, so it is inefficient
to expand less influential predicates.

The second optimization seeks to completely avoid calling the
Scorer when the operator is also incrementally removable (e.g.,
AV G, STDDEYV). Although the incrementally removable prop-
erty already avoids recomputing the aggregate over the entire dataset,
computing a predicate’s influence still requires executing the predi-
cate on the underlying dataset. Doing this repeatedly for every pair
of merged predicates is slow.

Recall that DT generates partitions where the tuples in a parti-
tion have similar influence. We modify DT to additionally record
each partition’s cardinality, and the tuple whose influence is closest
to the mean influence of the partition. The Merger can then use
the aggregate’s state, update, remove and recover functions to
directly approximate the influence of a partition from the cached
tuple. Concretely, suppose a partition, p, has cardinality N and
cached tuple, t. Let m; = state(t) and mp = state(D) be the
states of {t} and the dataset, then

inf(p) = recover(remove(mp, update(ms, -+ ,m¢)))

where update combines N copies of m;. In other words, p’s influ-
ence can be approximated by combining N copies of m;, removing
them from mp, and calling recover. Now consider merging parti-

p*

Pi %]

P2

Figure 7: Merging partitions p; and p»

tions p; and ps into p* as shown in Figure 7 and approximating its
influence. This scenario is typically difficult because its not clear
how the tuples in p3 and p1 N p2 affect p*’s influence. Similar to
replicating the cached tuple multiple times to approximate a sin-
gle partition, we estimate the number of cached tuples that p1,p2,
and p3 contribute. We assume that tuples are distributed uniformly
within the partitions. Let V}, and N, be the volume and cardinal-
ity of partition p and let p12 be a shorthand for p; N p2. Then the
number of cached tuples from each partition, n, is computed as

follows:
ne — N Vo, — 0.5V,
P1 p1 Vp*
Vy, — 0.5V,
pr2 — Npg P2 V P12
-
Vpanp*
Npz = Npy p‘j *p
P
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The Merger approximates a partition’s influence from the input
partitions by estimating the number of cached-tuples that each input
partition contributes. Thus, the cost only depends on the number of
intersecting partitions, rather than the size of the dataset.

6.4 Dimensionality Reduction

An additional optimization that is orthogonal to the particular al-
gorithm that is used is to reduce the number of attributes that Scor-
pion needs to consider. This can be done by applying filter based
feature selection techniques [13] to the dataset. These techniques
identify non-informative features by computing correlation or mu-
tual information scores between pairs of attributes. Alternatively,
users can manually order the attributes by importance. This often
makes sense because the user can distinguish informative or ac-
tionable attributes (e.g., sensor id) from non-informative ones (e.g.,
epoch, which is redundant with the timestamp). Scorpion currently
relies on users to specify attributes that can be ignored, and defers
incorporating automatic attribute selection to future work.

7. AN ADDITIONAL KNOB

We have not yet addressed what to do if the user specifies that
an outlier result is “too high”. Specifically, how low should the
updated result go? Throughout this paper, we have defined the ba-
sic definition of influence as in fq44 (0, p) = AAg" where the amount
that the outlier changes is penalized by the number of tuples that are
used. However the user may not care about the number of tuples,
or be willing to accept a predicate that matches more tuples if it in-
creases the influence. We modify the basic definition of influence
as follows:

Ao
(Ago)©

infagg (07 D, C) =

The exponent, ¢ > 0, is a user-controlled parameter that trades
off the importance of keeping the size of s small and maximizing
the change in the aggregate result. In effect, when a user speci-
fies that an outlier result is too high, ¢ controls how aggressively
Scorpion should reduce the result. For example, when ¢ = 0, Scor-
pion will reduce the aggregate result without regard to the number
of tuples that are used, producing predicates that select many tu-
ples. Increasing ¢ places more emphasis on finding a smaller set of
tuples, producing much more selective predicates.

Although c s a crucial parameter, none of the algorithms need to
be modified to support its addition. In fact, we will show in the ex-
periments that M C benefits from low c values because it decreases
the denominator in the basic influence definition, and thus increases
the pruning threshold in the algorithm. We study the effects of c ex-
tensively in the experiments.

8. EXPERIMENTS

The goal of these experiments is to gain an understanding of how
the NAIVE, DT and MC algorithms compare in terms of perfor-
mance and answer quality. Furthermore, we want to understand
how the ¢ parameter impacts the types of predicates that the al-
gorithms generate. We first use a synthetic dataset with varying
dimensionality and task difficulty to analyze the algorithms, then,
due to space constraints, anecdotally comment on the result quali-
ties on 4 and 12 dimensional real-world datasets.

8.1 Datasets

This subsection describes each dataset in terms of the schemas,
attributes, user queries, and properties of the outlier tuples.



SYNTH: The synthetic dataset is used to generate ground truth data
to compare our various algorithms. The SQL query contains an
independent anti-monotonic aggregate and is of the form:

SELECT SUM(A,) FROM synthetic GROUP BY A4

The data consists of a single group-by attribute, A4, one value
attribute, A,, that is used to compute the aggregate result, and n
dimension attributes, A1, --- , A, that are used to generate the ex-
planatory predicates. The value and dimension attributes have a
domain of [0, 100]. We generate 10 distinct A4 values (to create 10
groups), and each group contains 2,000 tuples randomly distributed
in the n dimensions. The A, values are drawn from one of three
gaussian distributions, depending on if the tuple is a normal or out-
lier tuple, and the type of outlier. Normal tuples are drawn from
N (10, 10). To illustrate the effects of the ¢ parameter we generate
high-valued outliers, drawn from N (u, 10), and medium valued
outliers, drawn from N/ ( ‘”210, 10). o > 10 is a parameter to vary
the difficulty of distinguishing normal and outlier tuples. The prob-
lem is harder the closer y is to 10. Half of the groups (the hold-out
groups) exclusively sample from the normal distribution, while the
rest (the outlier groups) sample from all three distributions.

We generate the outlier groups by creating two random 7 di-
mensional hyper-cubes over the n attributes where one is nested
inside the other. The outer cube contains 25% of the tuples in
the group, and the inner cube contains 25% of the tuples in the
outer cube. The A, values of tuples in the inner cube are high
valued outliers, while those of the outer cube are medium val-
ued. The rest of the tuples in the group are normal. For exam-
ple, Figure 8 visualizes a synthetic 2D dataset with © = 90, the
outer cube as A; € [20,80], A2 € [20, 80] and the inner cube as
A1 € [40,60], A2 € [40,60]. The top is a graph of the aggregate
results the that user would see, and bottom shows input tuples of
one outlier result and one hold-out result.

Outlier results Hold-out results
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Figure 8: Visualization of outlier and hold-out results and tu-
ples in their input groups from a 2-D synthetic dataset. The
colors represent normal tuples (light grey), medium valued out-
liers (grey), and high valued outliers (black).

We flag the 5 outlier aggregate results, and use the other 5 as
hold-outs. We also vary the dimensionality from 2 to 4, and the
difficulty between Easy (i = 80) and Hard (i = 30), e.g., SYNTH-
2D-Easy generates a 2-dimensional dataset where p = 80.

INTEL: The Intel dataset contains 2.3 million rows, and 6 attributes.

Four of the attributes, sensorid, humidity, light, and voltage are
used to construct explanations. All of the attributes are continuous,

except for sensorid, which contains ids of the 61 sensors.
We use two queries for this experiment, both related to the im-
pact of sensor failures on the standard deviation of the temperature.

561

The following is the general query template, and contains an inde-
pendent aggregate:

SELECT truncate('hour’, time) as hour, STDDEV (temp)
FROM readings
WHERE STARTDATE < time < ENDDATE GROUP BY hour

The first query occurs when a single sensor (sensorid = 15) starts
dying and generating temperatures above 100°c. The user selects
20 outliers and 13 hold-out results, and specifies that the outliers
are too high.

The second query is when a sensor starts to lose battery power,
indicated by low voltage readings, which causes above 100°c tem-
perature readings. The user selects 138 outliers and 21 hold-out
results, and indicates that the outliers are too high.

EXPENSE: The expenses dataset > contains all campaign expenses
between January 2011 and July 2012 from the 2012 US Presiden-
tial Election. The dataset contains 116448 rows and 14 attributes
(e.g., recipient name, dollar amount, state, zip code, organization
type), of which 12 are used to create explanations. The attributes
are nearly all discrete, and vary in cardinality from 2 to 18 thousand
(recipient names). Two of the attributes contain 100 distinct values,
and another contains 2000.

The SQL query uses an independent, anti-monotonic aggregate
and sums the total expenses per day in the Obama campaign. It
shows that although the typical spending is around $5,000 per day,
campaign spent up to $13 million per day on media-related pur-
chases (TV ads) in June.

SELECT sum(disb_amt)

FROM expenses WHERE candidate = 'Obama’
GROUP BY date

We flag 7 outlier days where the expenditures are over $10M, and
27 hold-out results from typical days.

8.2 Experimental Setup and Methodology

Our experiments compare Scorpion using the three partitioning
algorithms along metrics of precision, recall, F-score and runtime.
We compute precision and recall of a predicate, p, by comparing
the set of tuples in p(go) to a ground truth set. The F-score is
defined as the harmonic mean of the precision and recall:

y precision X recall
precision + recall

F=2

The NAIVE algorithm described in Section 4.2 is clearly expo-
nential and is unacceptably slow for any non-trivial dataset. We
modified the exhaustive algorithm to generate predicates in order
of increasing complexity, where complexity is terms of the number
and size of values in a discrete clause, and the number of clauses
in the predicate. The modified algorithm uses two outer loops that
increases the maximum allowed complexity of the discrete clauses
and the maximum number of attributes in a predicate, respectively,
and an inner loop that iterates through all combinations of attributes
and their clauses. When the algorithm has executed for a user spec-
ified period of time, it terminates and returns the most influential
predicate generated so far. In our experiments, we ran the exhaus-
tive algorithm for up to 40 minutes, and also logged the best predi-
cate at every 10 second interval.

The current Scorpion prototype is implemented in Python 2.7 as
part of an end-to-end data exploration tool. The experiments are
run single threaded on a Macbook Pro (OS-X Lion, 8GB RAM).
The Naive and MC partitioner algorithms were configured to split
each continuous attribute’s domain into 15 equi-sized ranges.

*http://www.fec.gov/disclosurep/PDownload.do
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8.3 Synthetic Dataset

Our first set of experiments use the 2D synthetic datasets to high-
light how the ¢ parameter impacts the quality of the optimal predi-
cate. We execute the NAIVE algorithm until completion and show
how the predicates and accuracy statistics vary with different c
values. The second set of experiments compare the DT, MC and
NAIVE algorithms by varying the dimensionality of the dataset and
the ¢ parameter. The final experiment introduces a caching based
optimization for the DT algorithm and the Merger.

8.3.1 Naive Algorithm
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Figure 9: Optimal NAIVE predicates for SYNTH-2D-Hard

Figure 9 plots the optimal predicate that N aive finds for differ-
ent ¢ values on the SYNTH-2D-Hard dataset. When ¢ = 0, the
predicate encloses all of the outer cube, at the expense of includ-
ing many normal points. When ¢ = 0.05, the predicate contains
most of the outer cube, but avoids regions that also contain normal
points. Increasing c further reduces the predicate and exclusively
selects portions of the inner cube.

It is important to note that all of these predicates are correct and
influence the outlier results to a different degree because of the ¢
parameter. This highlights the fact that a single ground truth doesn’t
exist. For this reason, we simply use the tuples in the inner and
outer cubes of the synthetic datasets as surrogates for ground truth.

Figure 10 plots the accuracy statistics as c increases. Each col-
umn of figures plots the results of a dataset, and each curve uses
the outer or inner cube as the ground truth when computing the ac-
curacy statistics. Note that for each dataset, the points for the same
c value represent the same predicate. As expected, the F-score of
the outer curve peaks at a lower c value than the inner curve. This
is because the precision of the outer curve quickly approaches 1.0,
and further increasing c simply reduces the recall. In contrast, the
recall of the inner curve is maximized at lower values of ¢ and re-
duces at a slower pace. The precision statistics of the inner curve on
the Easy dataset increases at a slower rate because the value of the
outliers are much higher than the normal tuples, which increases
the predicate’s A values.

Figure 11 depicts the amount of time it takes for Naive to con-
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Figure 10: Accuracy statistics of NAIVE as c varies using two
sets of ground truth data.
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Figure 11: Accuracy statistics as execution time increases for
NAIVE on SYNTH-2D-Hard

verge when executing on SYNTH-2D-Hard. The left column com-
putes the accuracy statistics using the inner cube as ground truth,
and the right column uses the outer cube. Each point plots the ac-
curacy score of the most influential predicate so far, and each curve
is for a different ¢ value. NAIVE tends to converge faster when c
is close to zero, because the optimal predicate involves fewer at-
tributes. The curves are not monotonically increasing because the
the optimal predicate as computed by influence does not perfectly
correlate with the ground truth that we selected.

Takeaway: Although the F-score is a good proxy for result qual-
ity, it can be artificially low depending on the value of c. Although
NAIVE converges (relatively) quickly when c is very low, it is very
slow at high c values.

8.3.2 Comparing Algorithms
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Figure 12: Accuracy measures as c varies
The following experiments compare the accuracy and runtime

of the DT, MC and NAIVE algorithms. Figure 12 varies the ¢ pa-
rameter and computes the accuracy statistics using the outer cube
as the ground truth. Both DT and MC generate results comparable
with those from the NAIVE algorithm. In particular, the maximum
F-scores are similar.

Figure 13 compares the F-scores of the algorithms as the di-
mensionality varies from 2 to 4. Each row and column of plots
corresponds to the dimensionality and difficulty of the dataset, re-
spectively. As the dimensionality increases, DT and MC remain
competitive with NAIVE. In fact, in some cases DT produces bet-
ter results than NAIVE. Partly because because NAIVE splits each
attribute into a pre-defined number of intervals, whereas DT can
split the predicates into any granularity, and partly because NAIVE
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Figure 14: Cost as dimensionality of dataset increases
doesn’t terminate within the 40 minutes at higher dimensions — run-

ning it to completion would generate the optimal predicate.

Figure 14 compares the algorithm runtimes while varying the
dimensionality of the Easy synthetic datasets. The NAIVE curve
reports the earliest time that NAIVE converges on the predicate re-
turned when the algorithm terminates. We can see that DT and MC
are up to two orders of magnitude faster than Naive. We can also
see how MC’s runtime increases as c increases because there are
less opportunities to prune candidate predicates.

Figure 15 uses the Easy datasets and varies the number of tuples
per group from 500 (5k total tuples) to 10k (100k total tuples) for
a fixed ¢ = 0.1. The runtime is linear with the dataset size, but the
slope increases super-linearly with the dimensionality because the
number of possible splits and and merges increases similarly. We
found that DT spends significant time splitting non-influential par-
titions because the standard deviation of the tuple samples are too
high. When we re-ran the experiment by reducing the variability
by drawing normal tuples from N'(10, 0) reduces the runtime by
up to 2x. We leave more advanced optimization techniques, e.g.,
early pruning, parallelism to future work.

Takeaway: DT and MC generate results competitive with the
exhaustive NAIVE algorithm and reduces runtime costs by up to
150x. Algorithm performance relies on data properties, and scales
exponentially with the dimensionality in the worst case. DT’s re-
sults may have higher F-scores than NAIVE because it can pro-
gressively refine the predicate granularity.

8.3.3 Caching Optimization
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Figure 15: Cost as size of Easy dataset increases (c=0.1)

The previous experiments showed that the result predicates are
sensitive to ¢, thus the user or system may want to try different
values of ¢ (e.g., via a slider in the UI or automatically). DT can
cache and re-use its results because the partitioning algorithm is
agnostic to the ¢ parameter. Thus, the DT partitioner only needs to
execute once for Scorpion queries that only change c.

The Merger can similarly cache its previous results because ex-
ecutes iteratively in a deterministic fashion — increasing the c pa-
rameter simply reduces the number of iterations that are executed.
Thus Scorpion can initialize the merging process to the results of
any prior execution with a higher c value. For example, if the user
first ran a Scorpion query with ¢ = 1, then those results can be
re-used when the user reduces c to 0.5.
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Figure 16: Cost with and without caching enabled

Figure 16 executes Scorpion using the DT partitioner on the syn-
thetic datasets. We execute on each dataset with decreasing values
of ¢ (from 0.5 to 0), and cache the results so that each execution can
benefit from the previous one. Each sub-figure compares Scorpion
with and without caching. It is most beneficial to cache Merger re-
sults at lower ¢ values because more predicates are merged so there
are less predicates to consider merging. When c is high, most pred-
icates are not expanded, so the cache doesn’t reduce the amount of
work that needs to be done.

Takeaway: Caching DT and Merger results for low c values re-
duces execution cost by up to 25X.

8.4 Real-World Datasets

To understand how Scorpion performs on real-world datasets, we
applied Scorpion to the INTEL and EXPENSES workloads. Since
there is no ground truth, we present the predicates that are gen-
erated and comment on the predicate quality with respect to our
expectations and further analyses. The algorithms all completed
within a few seconds, so we focus on result quality rather than run-
time. In each of the workloads, we vary ¢ from 1 to 0, and record
the resulting predicates.

For the first INTEL workload, the outliers are generated by Sen-
sor 15, so Scorpion consistently returns the predicate sensorid =
15. However, when c approaches 1, Scorpion generates the predi-
cate, light € [0,923] & voltage € [2.307,2.33] & sensorid = 15. It
turns out that although Sensor 15 generates all of the high tempera-
ture readings, the temperatures vary between are 20°c higher when
its voltage, and surprisingly, light readings are lower.

In the second INTEL workload, Sensor 18 generates the anoma-
lous readings. Scorpion returned light € [283, 354] & sensorid = 18
when ¢ = 1. Sensor 18’s voltage is abnormally low, which causes
it to generate high temperature readings (90°c — 122°¢). The read-
ings are particularly high (122°c) when the light levels are between
283 and 354. Scorpion returns sensorid = 18.0 at lower ¢ values.

In both workloads, Scorpion identified the problematic sensors
and distingushed between extreme and normal outlier readings.

In the EXPENSES workload, we defined the ground truth as
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all tuples where the expense was greater than $1.5M. The aggre-
gate was SUM and all of the expenses were positive so we exe-
cuted the MC algorithm. For c values between 1 and 0.2, Scorpion
generated the predicate recipient_st =’ DC’ & recipient.nm =’
GMMB INC.” & file_num = 800316 & disb_desc =" MEDIA BUY’
Although the F-score is 0.6 due to low recall, this predicate best
describes Obama’s highest expenses. The campaign submitted two
“GMMB INC.” related expense reports. The report with file_num
= 800316 spend an average of $2.7M. When c is reduced below
0.1, the file_num clause is removed, and the predicate matches all
$1 + M expenditures for an average expenditure of $2.6M.

9. RELATED WORK

Scorpion is most closely related to notions of influence intro-
duced in the context of data provenance [10, 12, 7] that define
how the probability of a result tuple is influenced by an input tu-
ple. For example, Meliou et al. [11] define influence in the context
of boolean expressions, where an input tuple’s influence over a re-
sult tuple is relative to the minimum number of additional tuples
(a contingency set) that must also be added to or removed from the
database to toggle the result tuple’s existence.

In the context of probabilistic provenance [12, 7], where every
tuple is associated with a probability of existence, a tuple’s influ-
ence is defined as the ratio of the change in the result’s probability
over the change in the input tuple’s probability. Thus all of these
works are able to rank individual tuples by influence, but do not
consider constructing predicates for explanatory purposes.

Sunita el al. apply statistical approaches to similar applications
that explore and explain values in an OLAP data cube. iDiff [15]
uses an information-theoretic approach to generate summary tuples
that explain why two subcubes’ values differ (e.g., higher or lower).
Their cube exploration work [16] uses the user’s previously seen
subcubes during a drill-down session to estimate the expected val-
ues of further drill-down operations. The system recommends the
subcube most differing from expectation, which can be viewed as
an “explanation”. RELAX [17] lets users specify subcube trends
(e.g., drop in US sales from 1993 to 1994) and finds the coarsest
context that exhibits the similar trend. Scorpion differs by explicitly
using influence as the optimization metric, and supports additional
information such as hold-out results and error vectors.

MRI [4] searches for a predicate over the user attributes (e.g.,
age, state, sex) that most explains average rating of a movie or prod-
uct (e.g., IMDB ratings). Their work is optimized for the AV G()
operator and uses a randomized hill climbing algorithm to find the
most influential cuboid in the rating’s OLAP lattice.

PerfXplain [9] explains why some MapReduce [5] jobs ran faster
or slower than others. The authors provide a query language that
lets users easily label pairs of jobs as normal or outliers, and uses a
decision tree to construct a predicate that best describes the outlier
pairs. In contrast, Scorpion users label aggregate results as outliers
or normal, and the system must infer the label of the input tuples.

Several projects approach the anomaly explanation problem from
an HCI perspective. Profiler [8] is a data exploration tool that mines
for anomalies and generates visualizations that exposes those out-
liers. Willett et al [18] use crowd workers to explain outlier trends
in visualization in human understandable terms, and present seven
strategies to improve worker-generated explanations.

10. CONCLUSION

As data becomes increasingly accessible, data analysis capabil-
ities will shift from specialists into the hands of end-users. These
users not only want to navigate and explore their data, but also
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probe and understand why outliers in their datasets exist. Scor-
pion helps users understand the origins of outliers in aggregate re-
sults computed over their data. In particular, we generate human-
readable predicates to help explain outlier aggregate groups based
on the attributes of tuples that contribute to the value of those groups,
and introduced a notion influence for computing the effect of a tu-
ple on an output value. Identifying tuples of maximum influence
is difficult because the influence of a given tuple depends on the
other tuples in the group, and so a naive algorithm requires iterating
through all possible inputs to identify the set of tuples of maximum
influence. We then described three aggregate operator properties
that can be leveraged to develop efficient algorithms that construct
influential predicates of nearly equal quality to the exhaustive al-
gorithm using orders of magnitude less time. Our experiments on
two real-world datasets show promising results, accurately finding
predicates that “explain” the source of outliers in a sensor network-
ing and campaign finance data set.
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