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Abstract—Organizations face a data discovery problem when
their analysts spend more time looking for relevant data than
analyzing it. This problem has become commonplace in modern
organizations as: i) data is stored across multiple storage systems,
from databases to data lakes, to the cloud; ii) data scientists do
not operate within the limits of well-defined schemas or a small
number of data sources—instead, to answer complex questions
they must access data spread across thousands of data sources. To
address this problem, we capture relationships between datasets
in an enterprise knowledge graph (EKG), which helps users to
navigate among disparate sources. The contribution of this paper
is AURUM, a system to build, maintain and query the EKG. To
build the EKG, we introduce a Two-step process which scales to
large datasets and requires only one-pass over the data, avoiding
overloading the source systems. To maintain the EKG without
re-reading all data every time, we introduce a resource-efficient
sampling signature (RESS) method which works by only using a
small sample of the data. Finally, to query the EKG, we introduce
a collection of composable primitives, thus allowing users to
define many different types of discovery queries. We describe
our experience using AURUM in three corporate scenarios and
do a performance evaluation of each component.

I. INTRODUCTION

With a myriad of data sources spread across multiple
heterogeneous databases, modern organizations face a data
discovery problem. Analysts spend more time finding relevant
data to answer the questions at hand than analyzing it.

For example, consider an analyst at a large drug company
who is assigned the task of predicting the change in stock
price of the company after a presidential election. To build her
model, she decides she needs i) the company stock variations
in recent elections; ii) the mentions of the company in social
media channels; iii) the number of drugs about to be approved
by the FDA; and iv) the current productivity of the research
department. She needs to find tables with all of these attributes,
as well as additional attributes that can be used to link the
different drugs, years, and mentions together. The discovery
challenge is to find data sources containing this information
among the many thousands of tables in RDBMS, data lakes
and warehouses in the organization. Doing this manually is
extremely labor intensive, as the analyst has to browse a large
number of files and tables to find those that might match, and
then try to find key attributes that can be used to join these
tables together. Our work with data analysts at a number of
organizations, including Merck, British Telecom, the City of
New York, and our university suggests that they all struggle
with such problems on a daily basis.

Although some companies have built in-house solutions to
help their analysts find files in their data lakes and databases,
these systems are engineered around a customized index

and search algorithms to solve a predetermined set of use
cases; they do not solve the more general discovery problem
presented here. For example, systems such as Goods [1],
Infogather [2] and Octopus [3] do not provide a flexible way
to support different discovery queries than those they were
designed to solve. Analysts want to find datasets according to
different criteria, e.g., datasets with a specific schema, similar
datasets of one of reference, joinable datasets, etc. To avoid the
productivity bottleneck of discovering new data sources, we
need a more general structure that organizes the data sources,
represents their relationships, and allows flexible querying;
otherwise data discovery becomes a bottleneck that hampers
productivity within organizations.

This paper is concerned with the design and implementation
of a discovery system that permits people to flexibly find
relevant data through properties of the datasets or syntactic
relationships amongst them, such as similarity of content or
schemas, or the existence of primary key/foreign key (PK/FK)
links. The key requirements of such a system are: 1) it
must work with large volumes of heterogeneous data; 2) it
must incrementally adapt to continuously evolving data; and
3) it must provide querying flexibility to support the varied
discovery needs of users.

We represent relationships between the datasets in a data
structure we call the enterprise knowledge graph (EKG),
which analysts use to solve their discovery problems. The
contribution of this paper is AURUM, a system to build,
maintain and query the EKG:
• Build: Building the EKG requires performing an all-pairs

comparison (O(n2) time) between all datasets for each of the
relationships we wish to find. With a large number of sources
this quadratic cost is infeasible because of its time and because
of the need to read external sources multiple times, thus
incurring IO overhead in the external systems. We introduce
a two-step process that consists of a profiler that summarizes
all data from sources into space-efficient signatures by reading
data only once, and a graph builder, which finds syntactic
relationships such as similarities, PK/FK candidates in O(n)
using sketching techniques.
• Maintain: Because data is always changing (req. 2), we

must maintain the EKG in a scalable manner: we introduce
a resource-efficient signature sampling (RESS) method that
avoids repeatedly re-reading source data, while still keeping
the EKG up-to-date.
• Query: Finally, because discovery needs are varied we

cannot pre-define queries (req. 3). Instead, we introduce a
source retrieval query language (SRQL) based on a set of
discovery primitives that compose arbitrarily, allowing users to



express complex discovery queries. We implement SRQL on a
RDBMS-based execution engine, augmenting it with a graph
index, G-Index, which helps speeding up expensive discovery
path queries. In addition, the query engine allows users to
express different ranking criteria for results.

We have used AURUM to solve use cases within companies.
We report the results of surveys conducted by our users, as
well as performance benchmarks.

II. AURUM OVERVIEW

Here we describe the data discovery problem (II-A), our
approach to solve it based on the enterprise knowledge graph
(EKG) (II-B), and finish with an overview of AURUM in II-C.

A. The Data Discovery Problem

Consider the set of structured data sources T within an
organization. A data source is structured when it is comprised
of a set of columns, which may or may not have a label or
attribute name, i.e., tabular data such as CSV files or tables
in databases, file systems, data lakes, and other sources for
which a schema can be obtained. Each data source has a set
of attributes or properties, P , and has different relationships,
R, with other data sources. Note that R may not be explicitly
defined in the data; AURUM discovers these relationships while
building the EKG. The sources, T , have different degrees of
quality, from highly curated and clean to poorly designed
schemas with ambiguous names and many missing values.
Data sources can be human- or machine-generated, and may
be intended for human or machine consumption, with schema
names ranging from highly descriptive to completely obscure.
Finding relevant data. Data discovery is the process of
finding a subset S of relevant data sources among the many
sources in the organization, T , which are relevant to a user-
supplied discovery query. A data source is relevant to a query
when it satisfies a constraint or selection criteria C, of which
we consider two types.

Property constraints select s ∈ S based on P . For example,
selecting columns with unique values, or columns with a string
in the schema name, which are all properties of the data.
For example, the analyst who is building the stock change
prediction model may start with a search for tables that include
metrics of relevance, such as stock prices and mentions in
social media (schema similarity).

Relationship constraint select s based on R and another set
of sources, Sref , which is an input parameter to the selection
criteria. In other words, a source, s, is relevant to the user
because it is related to another source in Sref . For example, the
analyst may be interested in finding similar datasets to the ones
found so far to make sure no information is missing (content
similarity). Or, having already found a handful of relevant
datasets, the analyst may want to find a join path to join them
together (a primary-key/foreign-key (PK/FK) candidate).
The challenge. One key challenge of data discovery is that
users’ needs vary and change over time, meaning that a single
discovery workflow is insufficient to address the breadth of
discovery tasks, i.e., each user defines relevance according to
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Fig. 1. Aurum architecture overview

a very wide set of selection criteria, C. Hence, rather than
trying to prescribe a particular set of discovery or relevance
queries, we aim to make it possible to answer a wide range
of discovery queries by capturing a variety of relationships
between datasets, and allowing users to flexibly query those
relationships, which we represent in the enterprise knowledge
graph (EKG):

B. Enterprise Knowledge Graph (EKG)

The EKG is a hypergraph where nodes represent columns
of the data sources, edges represent relationships between two
nodes, and hyperedges connect any number of nodes that are
hierarchically related, such as columns of the same table, or
tables of the same source (RDBMS, lake, etc.). In addition,
each edge has a weight to indicate the strength of the rela-
tionship, e.g., how similar two nodes are, or how confident we
are of them being a PK/FK. The nodes represent columns and
not individual values because it is more scalable to build and
does not compromise the discovery needs we have identified:
although finer granularity (e.g., columns values) is supported
by AURUM, our experience suggests that the additional storage
costs are not offset by the gain in expressiveness. The edges
connect only two columns to express binary relationships such
as content similarity—the values of the columns are similar—
schema similarity, the attribute names being similar, or the
existence of a PK/FK between them. Hyperedges are necessary
to allow users query at different granularities, e.g., columns
and tables. A discovery query, then, filters the nodes and edges
in the EKG according to property and relation constraints.

C. Building, Maintaining, Querying

Our contribution is AURUM, a system to build, maintain
and query the EKG; the three processes are depicted in Fig. 1.
Build the EKG. (Section III-A) A key goal of building the
EKG is to minimize the time-consuming access to underlying
data sources. To build the EKG in as few passes over the
data as possible, we separate its construction into two stages
(the Two-step process), a signature-building stage and a
relationship-building stage. During the first stage, a profiler
(box 3 in the figure) produces signatures that represent the
underlying data and stores them in profiles. These profiles
are built by reading the data only-once—we use sketches
as explained in the next section—and form the nodes of the
EKG. During the relationship-building stage, a graph builder
component (box 2 in the figure) computes the relationships



between the columns of the data by using the signatures in
the profiles, avoiding reading the data again. To avoid the
expensive all-pairs comparison (O(n2)) process, the graph
builder computes the edges of the EKG in linear time by
transforming the problem into one of approximate nearest
neighbors (O(n)).
Maintain the EKG. (Section III-B) When data changes, we
want to keep the EKG up-to-date without recomputing from
scratch and while minimizing the access to the underlying data
sources. Our resource efficient signature sampling (RESS)
determines what data has changed by reading only a sample of
the data. AURUM triggers then a re-indexing of these sources,
computing their new relationships and updating the EKG.
Query the EKG. (Section IV) To query the EKG, users
express property and relation constraints to obtain the data
they need through a set of composable primitives. Although
the primitives can be implemented in any graph language
such as SPARQL, Cypher, etc., we identified a few additional
requirements that justified a separate implementation. Ranking
results, access to provenance, debugging, and human-latency
path query execution all justify the design of an execution
engine for SRQL, which is the name of the data discovery
language we implement in AURUM. SRQL consists of the
discovery primitives, a discovery results set (DRS) to support
the above functionality, as well as an index, G-Index, which
we use to speed up path queries.

III. BUILDING AND MAINTAINING THE EKG
In this section, we explain how to build the EKG (III-A)

and how to maintain it (III-B). Last we discuss how the EKG
evolves in the broader context of an enterprise in III-C.
Why is building the EKG difficult? To build the EKG, a
naive process would need to read a column in a table of a data
source, and then iterate over all the other columns of all the
other tables, each time comparing both the values—to compute
content similarity and PK/FK candidates—as well as the
names, to compute schema similarity. This process is clearly
infeasible because it requires multiple access rounds to the
data (heavy I/O) and a quadratic number of operations in the
number of columns (heavy CPU). So even when the resulting
graph may fit in memory, its construction is expensive because
it involves an all-pairs comparison for each relationship of
interest (we consider here content similarity, schema similarity,
and candidate PK/FK), and because it incurs too much IO
overhead to the external source systems.

The key to building an EKG efficiently and minimizing IO
overhead is to avoid the all-pairs comparison. We achieve this
by using a Two-step process. During the first step the process
uses sketching techniques to summarize the data in one-pass
only, reducing IO overhead. During the second step, it employs
locality-sensitive hashing (LSH) techniques to transform the
all-pairs problem into an approximate nearest neighbor one.

A. Two-Step Process: Building the EKG

Our two-step process divides the EKG building process into
a signature-building stage, and a relationship-building one.

Algorithm 1: Two-Step Process to build the EKG
input : C, collection of columns from all databases and tables,

store, a store to save the profiles,
sim thresholds, a list of similarity thresholds

output: H = (V,E), where V is the nodes of the EKG.
E = (er|r ∈ R), with R the set of syntactic relationships. H is
the EKG

// Step 1: signature-building stage
1 for c ∈ C do
2 profile← compute profile(c);
3 store[c]← profile;
4 add node(H , profile); //A node is represented with its profile

// Step 2: relationship-building stage
5 index name← create indexer(sim thresholds);
6 index content← create indexer(sim thresholds);
7 for p∈ store.profiles do
8 name← p.name;
9 signature← p.signature;

10 uniqueness ratio← p.uniqueness ratio;
11 index name.index(p, name);
12 index content.index(p, signature);
13 for p ∈ store.profiles do
14 attr sim candidates = index name.query(p);
15 add edges(H , attr sim candidates, type=”attr similarity”);
16 content sim candidates = index content.query(p);
17 add edges(H , content sim candidates, ”content similarity”);
18 for candidate ∈ content sim candidates do
19 if pkfk candidate = is pkfk candidate(candidate,

uniqueness ratio) then
20 add edges(H , pkfk candidate, ”pkfk candidate”);

21 return H;

Both are shown in Algorithm 1. The signature-building stage
(step 1) is carried out by a profiler, which summarizes the data
into profiles that contain signatures with enough information to
compute the syntactic relationships. The relationship-building
stage (step 2) is carried out by the graph builder, which uses
the profiles to compute the syntactic relationships that populate
the EKG in O(n) time.

1) Signature-Building Stage: Profiler: The profiler summa-
rizes each data source (column in tables) into a profile, which
maintains information such as content sketches (MinHash),
cardinality, data distributions, types, etc. The profiler must
be: i) scalable, because of the sheer amount of data it must
analyze; and ii) IO-efficient, because it interacts directly with
data sources that may be used by other production systems.
Our profiler builds the profiles by reading data only-once and
scales to large amounts of data by using data parallelism.

The profiler consists of a pipeline of stages which are
wrapped up in a function compute_profile() (see line 2 in
Algorithm 1). Each stage in the pipeline computes a part of the
profile for each column. There are two special stages, source
and sink. The source is used to read data from files, RDBMS,
etc., and provides the input to the compute_profile()

function. The sink stores the computed profiles (line 3), so
that they are accessible to the graph builder during the second
stage of the building process.

Those operations that are shared across profiler stages, such
as hashing, are placed at the beginning of the pipeline to save
computation downstream.

Parallelism. The profiler exploits parallelism at three different
levels. First, multiple profilers can run in a distributed fashion,
each processing a disjoint set of data sources. Second, the
profiler supports inter-task parallelism, assigning an instance



of the processing pipeline to one thread and running multiple
such threads on each machine. It also supports intra-task
parallelism with a single pipeline instance per machine, but
with multiple threads assigned to one pipeline or stage.

Task grain. A natural choice is to assign one pipeline per data
source (i.e., file or table). This allows for efficient sequential
reads from the data source. In addition, it reduces the com-
plexity of the profiler because a task corresponds directly to
a table. Unfortunately, this design leads to under-utilization
of processing resources, because table sizes in real datasets
are highly skewed. This leads to long-running stragglers that
hamper full utilization of the available hardware.

A more efficient approach can be achieved with finer-
grain tasks, by partitioning data at the column level. With
this approach, the I/O threads that read the data are now
decoupled from the processing stages through a queue. A task
creator component partitions each column into subtasks, that
are processed by the processing stages. Each thread keeps track
of the partial profile computed for each subtask. When the
thread finishes processing a subtask, it sends the partial profile
to a merger component, which is responsible for merging all
the subtasks for each column and creating the final profile.
This design is robust to data skew and achieves full utilization
of the available hardware, so it is our preferred approach.

2) Relationship-building Stage: Graph Builder: The graph
builder computes the syntactic relationships between the
columns in the database using the profiles created in the
signature-building stage. The idea is that a relationship be-
tween two profiles reflects a relationship between the under-
lying data. The main problem the graph builder solves is to
compute such relationships in O(n), with n the number of
columns, avoiding the cost of an all-pairs comparison, for
which it uses locality-sensitive hashing [4].

Building EKG syntactic relationships. We want to create a
relationship between two nodes of the EKG (e.g., columns)
if their signatures are similar when indexed in LSH, i.e.,
they hash into the same bucket. Signatures can be similar
according to two criteria, Jaccard similarity—for which we
use the MinHash signature—or cosine similarity, with a TF-
IDF signature. We can then differentiate both similarity criteria
as two different relationships in the EKG, such as MinHash
and TF-IDF, but we will only talk about one to simplify
the presentation (signature in algorithm 1 see line 9). As
these signatures are computed in the profiling stage, the graph
builder can access them directly from the store; line 7). None
of the relationships computed at this point are binary, they
all have some associated score that indicates how similar two
columns are, how likely two columns are a PK/FK, etc. Such
score, the relationship strength allows users to refine their
queries by, for example, using a threshold that all results must
surpass. We explain next how we compute such score.

Relationship strength score. Each edge in the EKG has a
weight that indicates the strength of the relationship, e.g.,
how much a column is similar to another. LSH, however, will
return elements that are similar based on a pre-determined,

fixed threshold. To obtain an approximation of the relationship
strength when using LSH, we create an indexer structure
that internally indexes the same signature multiple times,
in multiple LSH indexes configured with different similarity
thresholds, and configured to balance the probability of false
positives and negatives. We create such objects in lines 5 and
6 of Algorithm 1 passing as parameters a list of configurable
thresholds. Both name and content signatures are indexed in
lines 11 and 12 respectively. The next step is then to iterate a
second time over the profiles (line 13), querying the indexer
objects (lines 14 and 16) and retrieving candidates. When
querying the indexer objects, they, internally, will iterate over
the multiple LSH indexes, starting with the one configured
with the highest similarity threshold. As the indexer objects
return candidates together with their weights (the similarity
threshold of the LSH index), they keep the candidates in
internal state, so that they can filter them out when they appear
in LSH indexes with smaller thresholds. Thus the indexer
avoids duplicates and obtains an approximate weight for the
relationship, which is then materialized in the EKG (lines 15
and 17).

Alternative LSH techniques: The above description uses a
collection of traditional LSH indexes. Since it must use several
indexes for different thresholds, the storage needs increase
with the number of thresholds desired. Although in our deploy-
ments storage overhead is not a problem, there are alternative
LSH indexes which help with reducing such overhead, such
as LSHForest [5] and MultiProbe-LSH [6]. Integrating these
indexes in AURUM is straightforward.

Approximate PK/FK relationships. To compute PK/FK-
candidate relationships, we first identify whether a column
is an approximate key, which we do by measuring the ratio
of unique values divided by the number of total values.
The profiler computes this uniqueness ratio ratio during the
first stage, and the graph builder retrieves it (line 10 of the
algorithm). A true primary key will have a uniqueness ratio
of 1, but because the profiler uses the Hyperloglog sketch to
compute this, we may have a small error rate, so we simply
check that the value is close to 1. When we retrieve the
content-similar candidates, we iterate over them (line 18) and
check whether they are PK/FK candidates (line 19), in which
case we add the candidate PK/FK relationship to the EKG
(20). This method is similar to PowerPivot’s[7] approach, and
works well in practice, as shown in the evaluation.

B. RESS: Maintaining the EKG

We discuss how to maintain the EKG when data changes
without re-reading all data from scratch:

Incrementally maintaining profiler. Consider a column, c,
for which we compute a MinHash signature, mt at time t. At
time t + 1, we can compute the signature mt+1. If mt+1 is
not identical to mt, i.e., if the Jaccard similarity is not 1, we
know the data has changed, and, by obtaining the magnitude
of the change, i.e., the distance, 1 − JS(mt,mt+1) between
the signatures, we can determine whether it is necessary to



Algorithm 2: Resource-Efficient Signature Sampling
input : C, collection of columns from all databases,

store, a store to retrieve the profiles,
γ, the maximum magnitude of change tolerable before

triggering a request to recompute profile
output: M , where M ∈ C is the set of columns that need a new

profile
1 for c ∈ C do
2 s← random sample(c);
3 x← store[c].num unique values;
4 JSmax = |s|/x;
5 smh ← minhash(s);
6 xmh ← store[c].content signature;
7 JS′ = jaccard sim(smh, xmh);
8 δ = 1− JS′/JSmax;
9 if δ > γ then

10 trigger recompute(M , c);

11 return M ;

recompute the signature and update the EKG, by checking if
this difference is larger than a given threshold. The challenge
of maintaining the EKG is to detect such changes without
computing mt+1, because computing this means we need to
read the entire column again.

Using our Resource Efficient Signature Sampling (RESS)
method, given in Algorithm 2, we compute an estimate of the
magnitude of change by using only a sample, s, of c, instead
of the entire data. To do this, we assume that the data has
not changed, i.e., that MinHashes mt are identical to those
at mt+1, indicating that the Jaccard similarity of the old and
new columns is 1. We then try to reject this assumption. The
Jaccard similarity of two columns, or sets, is expressed as
their intersection divided by their union. We observe that, if
we have the cardinalities of the columns available (we have
the number of unique values at time t and because we assume
the columns has not changed, the number of unique values
remains unchanged at t+1) then we know that the maximum
Jaccard similarity, JSmax, can be expressed as:

JS =
|x ∩ y|
|x ∪ y|

; JSmax =
min(|x|, |y|)
max(|x|, |y|)

Note that when |x| = |y|, then the intersection and the union
are the same, so JSmax = 1. Using this observation, and the
fact that the number of unique values of a sample, s, is always
lower than that of the original data, c, we expect that, after
sampling, JSmax is given by JSmax = |s|/x, where x is the
number of unique values of c, which can be obtained from
the previously computed profile. This expression gives us the
maximum Jaccard similarity based on the sample.

The RESS algorithm operates as follows. We obtain a sam-
ple of c (line 2), proportional to the percentage of the number
of unique values for this column (line 3). Then we obtain the
JSmax under the assumption the data did not change using the
observation above, see line 4. We now compute the MinHash
signature of s, smh (line 5) and retrieve the MinHash signature
of c (line 6), which is already available because the profiler
computes it to estimate the content-similarity relationship.
The algorithm then computes the new estimate of Jaccard
similarity (line 7), and scales it to a distance between 0 and 1
(line 8) so that it can be compared with the maximum tolerable
magnitude of change, γ and input parameter to the algorithm.

If the estimated change is above γ (line 9) then the algorithm
indicates that it is necessary to recompute c, in line 10.

When sampling, RESS relies on the sampling mechanism
of the underlying source, although when possible, it is easy to
add a connector with sampling features.

C. Additional EKG Features

In addition to changing data, other factors contribute to the
continuous evolution of the EKG. We summarize them next:
•Offline component: Syntactic relationships computed

with approximate methods, such as the ones explained above,
will contain false positives. It is possible to run an offline
component that checks the exact measurements for the re-
lationships existing in the EKG, therefore filtering out the
false positives and increasing the precision of the existing
ones. Because this component must check only a subset of all
pairs of columns, its IO demand is lower. There are two more
scenarios which benefit from the offline component: i) users
require exact relationships, i.e., no loss in recall; ii) users want
a syntactic relationship which is not compatible with LSH, and
therefore must be computed exhaustively.
•User Feedback: Along with the SRQL query language

(presented next) we incorporate a set of metadata utilities that
allow users to annotate existing relationships and nodes in the
EKG, as well as manually creating and removing relationships
from the EKG. In practice, users cannot directly modify the
EKG (unless given specific permissions), but their annotations
are visible to other users. Users with the right permissions can
later materialize users’ feedback, thus modifying the EKG.

IV. QUERYING THE EKG WITH SRQL

In this section we present the SRQL language IV-A and its
implementation in IV-B.

A. The Source Retrieval Query Language

In this section we give a formal definition of the language
primitives of SRQL in IV-A1, followed by a running example
in IV-A2 and concluding with an in-depth discussion of the
Discovery Result Set (DRS) (in IV-A3).

1) SRQL Language: The SRQL language consists of two
concepts: discoverable elements (DE), which are the nodes of
the EKG, and discovery primitives (DP), which are functions
used to find DEs. DPs are divided into two groups: pure
and lookup. Pure DPs are closed on the DE set, that is,
they receive a set of DEs as input and return a set of DEs
as output. Lookup primitives also return a set of DEs, but
receive a string as input. A SRQL query typically consists of a
combination of pure DPs, sometimes preceded by lookup DPs.
To deal with important aspects of the SRQL language such as
result navigation and ranking, as well as debugging, the SRQL
language implementation uses the concept of a discovery result
set (DRS), which wraps up the output DEs with additional
metadata used to support additional functionality.



2) Running Example: Here we show how an analyst can
use SRQL in the different stages of discovery via an example.
Suppose a bonds analyst finds out an inconsistent value for
profits, reported in last quarter’s sales report. The analyst wants
to verify the hypothesis that the error was caused by using two
redundant copies of a table that diverged over time.

1. Broad search of related sources. Retrieve tables with
columns that contain the keywords ”Sales”, ”Profits”:
results = schemaSearch(”Sales”, ”Profits”)

The schemaSearch primitive finds columns across all
databases that contain the input keywords. Other lookup
primitives are available to search, e.g., values. All SRQL
queries return a discovery result set (DRS) object, which
permits inspecting the results as columns, tables, or paths.
When inspecting the tables in the result the analyst sees a
”Profits 3Term 17” and decides to inspect the schema:
results = columns(”Profits_3Term_17”)

columns show the schema of the table, which is Tx ID,
product, qty, profit; it seems relevant. Other primitives would
allow to inspect the tables, instead of the columns. The next
step is to find similar tables to ”Profits 3Term 17”, that may
have caused the error in the report.

2. Searching for similar content. SRQL provides several
primitives to explore the different syntactic relationships:
contentSim(table: str) =

drs = columns(table)
return jaccardContentSim(drs) OR cosineSim(drs)

OR rangeSim(drs)
results = contentSim(”Profits_3Term_17”)

For composability, all SRQL primitives accept columns
unless explicitly changed. The first operation in contentSim

is to apply columns to the input table. Next, each of the
three primitives, jaccardContent, cosineContent, and
rangeSim apply the primitive logic to each input column in-
dividually; the results per column are then combined. Then, an
OR primitive is used to combine the results of the primitives—
the analyst is interested in any relationship that indicates
similarity. SRQL has other primitives to combine results with
other semantics, such as AND and SET-DIFFERENCE. All
primitives operate at the column level. If what is desired is
to obtain intersection or union of tables, then the input DRS
can be configured to provide this, as we show later.

In summary, the query returns columns from the different
sources in the organization that are similar—according to any
of the primitives used—to any column in the input table. To
narrow down the result, the analyst refines the query to find
tables with similar content, and also similar schemas:
match(columns: drs) = contentSim(columns)

AND attributeNameSim(columns)
table = ”Profits3Term2017”
results = match(columns(table))

The primitive attributeNameSim returns columns with
similar names to the input columns. Combining it with the
AND primitive yields the intersection of both queries: i.e., only
columns that are content—and attributeName—similar.

By adding the attributeNameSim primitive, the results
improve, but there are still too many: presumably there are
many sources in the databases with columns that have content

and attribute names similar to Tx ID—which seems to be an
ID—but with different semantics.

3. Incorporating additional intuition. Semantic ambiguity
is a fact of life in data discovery and integration applications.
SRQL users can write queries that limit ambiguity in some
cases. For example, the analyst may know some values in
the original table that should also appear in a potential copy,
such as LIBORAdjustedBond, which is one product the bond
analyst knows about. This value should appear in tables that
refer to products, differentiating them from other tables that
also contain a Tx ID field. This additional intuition can be
used to refine the previous query with the aim of reducing the
ambiguity of the results, as follows:
matchAndDisambig(columns: drs, value: str) =

table(match(columns)) AND table(valueSearch(value))
value = ”LIBORAdjustedBond”
res = matchAndDisambig(columns(”Profits_3Term_17”), value)

The analyst wants tables with similar columns to the input
table and also contain the value ”LIBORAdjustedBond”. To
not require both conditions to apply to a single column, it is
possible to configure AND to take the intersection of the results
at the table label and not at the columns level, by using the
primitive table on the inputs to AND. Unfortunately, many
results match the query, making it difficult to navigate the
results. Fortunately, the analyst can rank the results:

4. Ranking the results. To find candidate copies, the
analyst wants to see the tables that contain the highest number
of columns similar to a column in the input table. Fortunately,
DRS objects (which are explained in the next section) can be
sorted according to a number of ranking options (developers
can add new options), and are ranked by a default policy.
In this case, however, the analyst chooses to rank the results
of the last query according to coverage, i.e., tables having
the largest overlap with the source table. This makes the
cause of the misleading value in profits apparent: a file
named ”ProfitsSecondTerm17.csv”—with the same columns
and very similar content—appears in the output. Maybe a user
copied the table from the database to do some analysis, and
subsequent updates made this copy of the table diverge. The
wrong table was used for the report, leading to the initial error.

5. Recovering missed information. After more inspection,
the analyst realizes that the file contains values that do not
appear in the original table: removing the copy would poten-
tially delete data from the organization. The analyst thinks
that if the data in the file comes from other sources, it may be
possible to recover that information from the origin sources
that contribute values to these tables. To verify this, the analyst
wants to know whether there is a join path between the table
and the file, with the following SRQL query:
t1 = ”Profits_3Term_17”, t2 = ”ProfitsThirdTerm17.csv”
res = path(table(t1), table(t2), pkfkCandidate(), hops=3)

The path primitive finds paths between the first and second
arguments if they are transitively connected with the relation
represented by the primitive in the third argument. In this
case, if both tables are connected with a candidate PK/FK
relationship—that exposes candidate primary-key/foreign key
relations—in fewer than 3 hops, then the path will appear in



the output DRS. Similar to the OR and AND primitives, path can
interpret the input DRS as columns or tables. In this case both
input DRS objects are configured as tables. To access the paths,
the DRS provides a third convenient view that we mentioned
above, paths, that contains all possible 3-hop paths between
t1 and t2 connected with PK/FK candidates.

Without SRQL, the analyst would have spent large amounts
of time asking other people and manually exploring the myriad
of sources. AURUM simplifies the discovery task and executes
the SRQL queries in human-scale latencies by using the EKG.
We describe in more detail the role of the DRS object next:

3) Discovery Result Set: If we trace the execution of a
SRQL query in the EKG, we obtain a directed graph from
the input DEs of the query to the output DEs. The discovery
result set (DRS) keeps track of this provenance graph, which
we use to answer SRQL queries, navigate the results with
different granularities, and to rank results on-the-fly. Although
in theory the provenance graph could be as large as the EKG,
in practice its size is much smaller. For example, none of the
queries we used in our evaluation section required more than
500MB of memory (section V-B). We explain next how we
build and use the provenance graph:

Recording Provenance. Recording provenance is crucial for
ranking query results. It consists of storing how the SRQL
query traversed the EKG from the input DEs to produce the
output data. The provenance is thus a directed subgraph of the
EKG that indicates a path from input to output DEs.

The provenance graph has source nodes, which are the input
DEs, or virtual nodes to indicate the input parameters of a
lookup primitive, and sink nodes, which correspond to the out-
put. Every discovery primitive modifies this graph determin-
istically. Primitives that query relationships add downstream
DEs to existing nodes in the provenance graph—the neighbors
that satisfy the constraint or the DEs within the same hierarchy.
Path queries add entire chains of nodes, one per DE involved
in the path. Finally, set primitives create joins in the graph:
they take 2 input DEs as input and produce one.

Obtaining SRQL query results. Relationship primitives are
answered by returning the sink nodes of the provenance graph.
Path primitives must return paths that connect a set of source
DEs with target DEs; these can be answered by obtaining
those paths from the DRS. The DRS knows the granularity
at which the DEs it represents must be interpreted; columns
and tables primitives change this granularity.

Explaining SRQL results. The provenance graph is sufficient
to answer why and how provenance questions, as defined in
the literature [8]. It is possible to identify what input DEs
determine the existence of a DE in the output by asking a
why query on the DRS. Asking how will return the entire
path, from source DEs to sink DEs, along with the primitives
that led to its existence. This feature is practically useful for
debugging purposes—when writing a new SRQL query—and
helpful to shed light on the results of complex SRQL queries.

B. SRQL Execution Engine

We have two requirements for our SRQL execution engine.
First, queries must run efficiently. Despite having access to
the EKG—which means relationships are pre-computed and
materialized in the graph—SRQL queries become expensive
when they involve path queries or large combinations of other
primitives. We explain our solution, based on a G-Index in
section IV-B1. Second, the engine must support ranking results
in a flexible manner. For that, we explain our on-the-fly
ranking in section IV-B2.

1) G-Index: Building the SRQL execution engine on top
of a relational database has the benefit of having the indexing
capabilities already available to answer edge primitives, as
well as the chance to store properties on both edges and
nodes by using the relational model. Executing path primitives,
however, can become slow. A path primitive in SRQL returns
all the paths between a source and target DE. The results of the
primitive can be limited to paths with a configurable maximum
number of hops. These kinds of graph traversal queries can be
expressed in a relational database via self-joins on a relation
with source and target node attributes. In practice, however,
even when both attributes have indexes, the query can become
slow, so we have built G-Index to speed up path primitives.

The G-Index is a space-efficient in-memory representation
of the EKG. It is a map, int->(int, bitset), in which
the nodes of the EKG are represented with their id as int,
and map to tuples of (int, bitset), in which the first component
is the id of the target node, and the bitset stores the edge
information. Specifically, each bit with value 1 in the bitset
indicates a different kind of relationship between the nodes—
the EKG presented in this paper requires then only 3 bits for
the 3 relationships we explain.

The G-Index can be constructed incrementally along with
the EKG. In case of a shutdown, it can be efficiently recon-
structed from scratch, as we report in the evaluation section.
Last, no concurrent writes and reads occur in the structure,
which is frozen to reads while being constructed. To support
evolution of EKG, we can answer queries using an old copy
of EKG while building the new one.

2) On-the-Fly Ranking: Every SRQL query returns a set
of DEs, which are wrapped up in a DRS object, as we
have seen above. Before presenting the results to users, the
DRS ranks the results based on a default policy. Despite the
default behavior, we want to allow power users to select the
most appropriate ranking criteria for the discovery problem
they have, and we want to avoid re-running queries when
users change their criteria, making it easy to explore different
ranking strategies. In general, a ranking strategy sorts the
output results by some measure of relevance with respect to
some input query or data. In the context of SRQL, this means
a ranking criteria sorts the output DEs based on the input
DEs. The provenance graph is key to enable this function-
ality. Because it has the results, it enables decoupling query
execution from result ranking. That is, by default any SRQL
query returns an unordered set of DEs, and then a ranking
strategy ranks them according to a policy; this is analogous



Use Case Usefulness Time Savings

Lookup primitives

Combiner primitives

Similarity primitives

Path primitives

Ranking

TABLE I
SURVEY RESULTS. LEFT TO RIGHT: SCORE OF 0 TO 5

to the ORDER BY operator in SQL. The provenance graph is
sufficient to express ranking strategies that we have found in
practice, and it serves as a framework to write new strategies
when necessary. Next, we describe two criteria for ranking
results:
Examples of Ranking Strategies. The EKG edges, and by
extension the provenance graph edges, have a weight that
indicates the strength of each relationship. One useful way
of ranking results is to use these weights, traversing the
provenance graph from sinks to sources, and aggregating the
weights we find; when reaching a join, we select the highest
weight of the upstream connections, and follow that path. We
call this certainty ranking, and we set it up as the default
strategy. It is trivial to aggregate these scores per table to rank
tables instead of columns.

A more sophisticated ranking strategy for SRQL queries
that return tables as output is coverage ranking, where output
tables of a query are ranked with respect to the input DEs. One
example is showing which output table has the highest number
of columns that are similar to columns in an input table. For
example, if we find two tables that are content-similar to a
table of interest, we may be interested in knowing how many
of the columns of the newly found tables are similar to the
input, and rank the results based on that. The provenance graph
keeps the necessary data to allow this.

V. EVALUATION

To evaluate the value of AURUM for data discovery, we
deployed the system with three collaborators with real data
discovery problems and surveyed their experience as reported
in section V-A. We then discuss the performance of AURUM at
querying (section V-B), building (section V-C) and maintaining
(section V-D) the EKG.

A. Aurum: Data Discovery in Context

We deployed AURUM in 3 corporate scenarios. In each
scenario we had to find an aligned interest with the company,
develop a use case scenario based on the companies’ dis-
covery needs and then perform the actual deployment, fixing
the problems that each new environment brings. Finally, we
conducted a survey with the help of a few of the users who had
used the system consistently and who had suffered directly the
discovery problems of the company before. First we describe

the discovery use cases that AURUM helped to solve (V-A1)
and then we report the results of the survey in which we asked
them to evaluate the value of AURUM (V-A3).

1) Real Use Cases: University DWH. DWH analysts solve
customers’ questions by finding relevant data and manually
creating views. We used AURUM to automate this process. We
deployed AURUM on an Amazon EC2 instance from which the
analysts had access to the system.

The analysts highlighted the benefits of AURUM to quickly
navigate data and inspect schemas. The analysts noted a novel
use case of detecting copied tables in the DWH. Copies occur
because the DWH is built through several ETL processes that
integrate data from various places in the university, leading to
duplication, which in turn may lead to errors. By writing a
SRQL query that finds tables with high content and schema
similarity, we found four tables that were candidate copies.

Pharma company. Our pharmaceutical user ran AURUM on 6
different public chemical databases (ChEMBL [9], DrugBank
[10], BindingDB [11], Chebi [12], KiDatabase) and an internal
database accessed by over 1000 analysts. These databases con-
tain domain-specific information on diverse chemical entities.
The users remarked that AURUM helped them identify known
entities in unknown databases, by using the relationships in the
EKG. Although initially only interested in finding join paths,
they became later interested in writing variations of schema
complement in SRQL, again, with the aim of learning about
the schema of other unfamiliar databases.

Sustainability. The sustainability team of our university
wanted to enrich their own datasets. They used AURUM to
navigate a 250GB repository of CSV files from data.gov.
They were interested in finding data about building energy
consumption, water use intensity, density of LEED buildings,
power plant CO2 emissions, and waste diversion rates—what
is diverted from landfill and incinerators. In a 1.5h hands-on
session during which we assisted them to use AURUM, they
found 2 relevant sources for each of the use cases. When they
found semantic ambiguity—data.gov is full of information
about diverse appliances efficiency—they refined their SRQL
queries to avoid such ambiguities, e.g., instead of looking for
energy efficiency, combine the query with a requirement for
KwH in the schema name, avoiding spurious results. As they
explored the datasets and learned about how different agencies
referred to certain efficiency metrics, they refined their SRQL
queries, leading to more accurate datasets. They complemented
the handful of relevant datasets they had found with similar
content, which they found using AURUM. They highlighted
the benefits of quickly exploring and refining SRQL queries.

2) Survey Results: We surveyed 4 users (2 from pharma
and 1 from each of the other deployments) that used AURUM.
We asked them to rate: i) the usefulness of AURUM’s discovery
primitives from 0 (not useful) to 5 (very useful); and, ii)
time savings—how much time they saved with AURUM in
comparison with the manual approach from 0 (no savings) to
5 (very significant savings).

The results are in table I. All users found the different



EKG
nodes/edges

Neo4J
(avg/95/99)

Janusgraph
(avg/95/99)

Virtuoso
(avg/95/99)

PostgreSQL
(avg/95/99)

SRQL G-Index
(avg/95/99)

Query Edge 2-hop 5-hop Edge 2-hop 5-hop Edge 2-hop 5-hop Edge 2-hop 5-hop Edge 2-hop 5-hop

1M/20M
8.1

10.5
22.7

4.4
7.8
8.7

9,600
13,200
14,200

2.3.
4.0
8.0

97.4
194.0
228.4

7
4.2
2.3
8.4

221.3
1,100
1,700

3,900
5600
6000

0.8
1.1
1.5

33
45
48

18,300
19,700
19,900

0.7
1.1
1.5

2.1
2.1
2.1

10,900
11,300
11,300

100K/20M
8.1

10.4
23.5

99
128
145

7
4.2
7.0
9.0

1,500
1,900
2,100

7
1.0
1.8
2.7

179.5
714.0
1,100

7
0.3
1.4
1.9

108
127
130

7
0.3
1.4
1.8

112
113
113

18,100
18,400
18,400

100K/80M
9.4

13.3
23

1,400
3,100
4,400

7
3.6
6.0
10.0

8,500
9,800

10,400
7

2.5
5.2
9.7

753.9
778.4
778.7

7
0.4
2.5
3

3,200
3,800
3,900

7
0.4
2.4
3

1,000
1,100
1,100

64,400
66,100
66,300

10K/20M
8.3

10.2
23.7

7,000
10,900
11,600

7
6.1
10.0
28.0

7 7
1.6
2.5
8.0

4,800
5,300
5,600

7
0.2
0.2
0.9

12,300
13,000
13,300

7
0.1
0.2
0.9

3,300
3,400
3,400

13,800
13,900
13,900

DWH
8.7

15.4
32.9

32.9
41.4
42.0

42.2
138.1
206.9

1.6
3.0
5.0

129.4
299.8
399.2

7
0.7
1.1
1.4

6.7
7.8
8.1

18.5
62.6
85.1

0.4
0.9
1.2

11.6
13.6
14.1

73,500
92,500
95,400

.02

.03

.04

.02

.06

.08

.01

.01

.01

ChEMBL
8.3

11.0
17.5

10.8
14.5
14.8

1,500
3,000
3,100

0.7
2.0
3.0

23.4
62.4
80

340
860

1,000

0.5
0.9
1.1

3.7
5.2
5.8

25.6
43.8
45.0

0.2
0.4
0.4

2.4
4.0
4.7

72.2
144.7
148.8

0.2
0.4
0.4

.02

.05

.07

.02

.04

.04

MassData
12.0
14.0
20.1

64
85
90

7
1.6
3.0
6.0

330.7
802.5
947.6

7
1.0
2.4
3.4

25.7
49.6
65.6

7
1.8
2.2
2.5

199.2
251.1
279.7

7
0.7
1.5
2

.02

.06

.08

.01

.01

.01

TABLE II
EDGE AND PATH PRIMITIVE PROCESSING TIMES OF DIFFERENT SYSTEMS ON DIFFERENT GRAPHS. TIMES IN MILLISECONDS.

primitives useful to express their discovery queries. Not all
users used all of them, though. For example, in the case of
sustainability, no path primitives were necessary. In that case,
however, ranking was crucial, as the number of sources was
larger than in other use cases. In general, we had very positive
experience working with the users and AURUM.
How do they solve discovery today? We asked them
to describe how they solve data discovery problems today,
choosing from 6 options (they could select more than one
choice). The options were asking other people or more senior
employees where is the data (3 votes), writing SQL queries and
use database metadata to understand the content (3 votes),
Manual work: writing scripts, visual inspection (3 votes), Use
some commercial tool to navigate the sources (1 vote), use
some open source tool to navigate the sources (2 votes), and
other (0 votes).

3) End-to-end deployment: In the next section, we evaluate
the performance of each of Aurum’s stages in isolation. In all
the deployments we have described here, most time is spent
during the profiling stage, i.e., the first step of our Two-step
process. In addition to being the most computationally expen-
sive process, reading from source systems is often limited to
avoid cluttering other workloads.

Conclusion. Finally, when asked how likely they are to use
AURUM in their organization, three users gave a 4 and one
of gave a 5. We are currently working with them to achieve
a deeper integration in their environments, with the hope of
discover more details and related problems. The experiments
so far with AURUM helped us to confirm that AURUM is
useful for varied discovery needs.

B. Query: SRQL Execution Engine Performance

Next we analyze how the G-Index speeds up discovery
path primitives. Our goal is to show that G-Index on top of
a relational database is sufficient to cope with the discovery
needs of querying the EKG, and that specialized graph systems
that run general graph workloads are not needed. We compare

with other specialized graph systems to support this claim.
Also note that specialized graph systems do not support
some of our requirements, e.g., provenance. We evaluate the
performance of G-Index with 3 queries: a 2-hop and 5-hop
path query, and an edge primitive. We compare the runtime
with other 4 state-of-the-art systems.
Datasets. We use 7 different EKGs, three of them (DWH,
CHEMBL and MASSDATA) are built on real datasets, and
the other 4 are generated following the Erdos-Renyi model
for random graphs, which we use to expose the limits of the
systems. DWH is a public subset of the data warehouse of
our university with around 200 tables. CHEMBL is a well
known public chemical database [9] with around 70 tables.
MASSDATA is a repository of open governmental data for the
state of Massachusetts, with around 300 tables.
Setup. We compare 5 systems in total, including ours. Before
running a system, we spent time tuning it until we achieved
the best results. Neo4J [13] is a state-of-the-art single-node
graph processing system. We configured the database with
indexes to speed up the different queries. All the queries are
written in Cypher, Neo4J’s language. JanusGraph [14] is an
open source version of Titan, a distributed graph database
system. We configured it to run on top of Cassandra, because
it was the storage backend that yielded the best results. For
JanusGraph, we used Gremlin as the query language. Virtuoso
is a well-known database for processing RDF data. In the
case of Virtuoso, we serialized the EKG as a repository of
triples in RDF format, as this was the format in which we
found Virtuoso to perform the best. We query the system using
SPARQL. Last, we run the queries on standalone PostgreSQL
configured with indexes. All systems run on a MacBook Pro
with 8GB of memory.

Note that, SPARQL in Virtuoso uses an abstraction called
property graph—not to be confused with the property graph
model [15]—to express path queries. This abstraction does not
support path primitives defined on more than one edge type:
this means the system is not suitable for SRQL. We included
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the results for completeness.
Results. We report average, 95, and 99 percentile runtime over
10 runs for each query in Table II. A cross ( 7 ) indicates a
system run out of memory or 2 min were elapsed.

Edge primitives SRQL G-Index is 2 orders of magnitude
faster than Neo4J, and 1 order of magnitude faster than
Virtuoso—edge queries are efficient in the underlying Post-
greSQL. Although the absolute runtime is low (10ms), the
runtime will multiply with the total number of input DEs, so
it is important to execute these efficiently.

The EKG structure has limited impact on the performance
of the edge primitives, but significantly impacts the runtime
of path primitives: we ran two discovery path queries, with a
maximum of 2 and 5 hops and present the results next.

2-Hop Path primitives On the real data EKGs, G-Index is
20x faster than Virtuoso, which is the second fastest system.
On the synthetic EKGs, G-Index performs better, but on-par
with Virtuoso and Neo4J. G-Index speeds up short path queries
over PostgreSQL (by several orders of magnitude on real
EKGs), while PostgreSQL is competitive with Neo4J and even
with Virtuoso in the case of the real EKGs.

5-Hop Path primitives The biggest impact of G-Index is
shown with the more complex 5-hop path queries. None
of the other systems completed all the queries over all the
EKGs, while G-Index finished them successfully. When the
other systems finished the queries, the G-Index performed
significantly better. For example, for the real data EKGs, G-
Index is 2 orders of magnitude faster. For the synthetic ones the
time is similar to Virtuoso and Neo4J for the least connected
EKG, but these systems did not finish the query for any of the
other synthetic EKGs.

Loading time and memory consumption We measured
the loading times for the different systems. This times include
creating the necessary indexes, for example, creating the G-
Index in the case of our solution. PostgresSQL achieves
the fastest loading times, and G-Index adds negligible over-
head on top when created incrementally—note we do not
need transactional writes to G-Index because the EKG is
written first and read later, so the process is very efficient.
Including the incremental creation of G-Index, PostgreSQL
takes 42s to load the smallest EKG and 160s to load the
largest one. The second fastest system, Neo4J, took 134s and
669s, respectively. Virtuoso, which creates many indexes to
speed up query execution took 162s and 2234s, which is
14x more time than PostgreSQL. G-Index is an in-memory
structure so after a shutdown, the index must be recomputed.
The time to recompute G-Index from scratch—as opposed to

incrementally—was of 20s for the largest EKG. Finally, G-
Index’s memory footprint is on the order of 200MB in the
case of the smallest EKG and below 2GB in the case of the
largest. This makes sense, the index, written in C++, must only
keep an efficient bitmap to represent the connections between
nodes, which are itself represented with integers.

Conclusion. With G-Index, discovery primitives, including
path queries, execute within human-scale latencies.

C. Build: Two-step Process

We measure the performance of the profiler and graph
builder to build the EKG (V-C1) as well as the quality of
the links produced (V-C2).

1) Profiler and Graph Builder efficiency: To evaluate the
profiler, we measure the time it takes to index varying amounts
of data. We ran 3 configurations of the profiler. Using the
Index configuration, we ran the profiler and also indexed the
data into elasticsearch—necessary to answer lookup primi-
tives. With NoIndex, we only measure profiling time; we ran
this configuration with a MinHash signature of 512 (NoIndex-
512) and 128 permutations (NoIndex-128). We used the
DWH dataset, which we replicated to achieve the target
input data size, while keeping data skewness. We ran these
experiments on a machine with 32 cores and SSD disk.

The results in Fig. 2 show that all modes scale linearly
with the input data size. The Index mode takes the longest
time because the indexing speed of elasticsearch becomes
the processing bottleneck. To factor out this bottleneck and
evaluate the performance of the profiler we built, we run the
two NoIndex configurations. In the case of NoIndex-512,
the limiting factor is computing the signature; when we run
NoIndex-128, which is 4x cheaper to compute than NoIndex-
512 due to the reduced number of hashing operations, we
become limited by the data deserialization routines we use.
Nevertheless, these results are very positive. For example, the
profiler took only slightly above 1.5 hours to build signatures
for the 250GB of data.gov that we used in our deployment
with the sustainability team.

What about task granularity? We want to evaluate the bene-
fits of using finer-grain tasks (Fine-Grain) in comparison with
creating a task per table (Coarse-Grain). Fig. 3 shows how,
for the same dataset used above, Fine-Grain achieves better
performance than Coarse-Grain; real datasets are skewed and
this justifies the design of our profiler.

Graph Builder. To evaluate the performance of the graph
builder, we measure the runtime as a function of the number



of input profiles with the content-similarity relationship (DEs
in the x axis).

The results in Fig. 4 show linear growth of the graph builder
when using both MinHash and TF-IDF—as expected. To
obtain the TF-IDF signature, the graph builder must read data
from disk, so as to calculate the IDF across the profiles—
which explains its higher runtime. MinHash signatures are
created as a part of profiling process, hence its lower runtime.

2) Accuracy Microbenchmarks: Approximate PK/FK re-
lationship. We measure the precision and recall of candidate
PK/FK generated by AURUM in 4 different datasets for which
we had ground truth. The results are in Fig. 7.

For TPC-H, our approach achieved similar quality as re-
ported by PowerPivot [7] and better than reported by Random-
ness [16]. Similarly, our approach achieved good results for the
FDB dataset, which consists of financial information from our
university. Chembl [9] contains a larger number of declared
PK/FKs in their schema. In this case, we used the technique
presented by PowerPivot [7] of filtering PK/FKs by those
fields with similar attribute names, which was straightforward
to express in a simple SRQL query with 2 primitives. After
further inspection of the results, we found that some of the
candidate PK/FKs found by AURUM are in fact semantically
reasonable joins, even though they are not included in the
official PK/FK constraints defined by the schema (confirmed
by an expert). When they were false positives, users found it
easy to ignore. Finally, we evaluated our method on a dataset
used by one of our collaborators, and accessed by hundreds of
analysts daily (Pharma). In this case both the precision and
recall of the relationships we found was above 90%, despite
the large number of relationships available.

Content similarity relationship. We compare the quality of
the content similarity relationships generated with MinHash
and LSH with ground truth obtained by running an exact all-
pairs similarity method. We use 3 datasets (we did not use
Pharma because we could not run the expensive all-pairs
method in the production environment). The results are in
table III. We do not show the results for for TPC-H and FDB,
for which our approach achieved 100% precision and recall.
Instead, we add the MASSDATA dataset and show results
for MinHash with 512 and 128 permutations. For all three
datasets we achieve a high recall, with 100% in the case of
ChEMBL and 88% in the case of MASSDATA. The precision
for MASSDATA is also high, while for DWH and CHEMBL
we achieved a precision of around 50%—note that we are
measuring exactly those relationships above the configured
0.7 similarity threshold—we verified that many of the false
positives actually have a high similarity score.

Even when we use the cheaper-to-compute MinHash sig-
nature with 128 permutations, we still achieve high quality
results. This is important, because computing the MinHash
signature takes a considerable time during the profiling stage
as we have seen in the previous section.

In conclusion, our two-step process to build the EKG scales
linearly with the input data by means of the profiler and graph

Dataset #Sim. Pairs
actual (δ = 0.7)

Precision/
Recall
K=512

Precision/
Recall
K=128

DWH 8872 56%/92% 66%/71%
Chembl 11 57%/100% 42%/100%

MassData 28297 90%/88% 89%/91%

TABLE III
ACCURACY RESULTS FOR CONTENT SIMILARITY

builder, which computes signatures and relationships in linear
time. Despite using approximate methods, the quality of the
relationships in the EKG suggests a reasonable approximation
trade-off against the expensive exact method.

D. Maintain: RESS

In our final experiment, we evaluate the efficiency of our
resource-efficient signature sampling (RESS) method. Our
goal is to understand whether we can efficiently detect data
changes, so that we can keep the EKG up-to-date at low cost.
Synthetic experiment: In the first experiment (Fig. 5), we
created 100 columns with 1K values drawn from a uniform
distribution. We then change 50 of the columns by uniformly
altering in a varying degree the size of the changes (shown in
the X axis). We then run RESS and report the precision and
recall of the method when compared with the real changes.
Both metrics are higher when the data has changed more often.
Even when the data does not change much, the recall is very
high, and the precision means that only a few additional data
must be re-read to verify. To further evaluate RESS, we run a
second experiment with real data.
Real data: We obtained two versions of the CHEMBL
database. We used version 21 (which we have used in the
rest of this evaluation) and version 22. ChEMBL updates
their database version every few months, adding and removing
new data to the existing relations, so we built an EKG
using ChEMBL21 and then changed the underlying data to
ChEMBL22, therefore simulating data evolution. At this point,
we run EKG to identify the magnitude of change for the
columns in the dataset. We then run RESS with different
sample sizes and compute the absolute error between the
estimated magnitude of change and the true change—which
we compute and use as ground truth (420 of the underlying
columns changed). The results in Fig. 6 show the error in the
x axis and the percentage of columns in the y axis.

RESS identifies 90% of the modified datasets by reading
only 10% of the original data, with a maximum error of less
than 15%. When using 25% of the data the error reduces to
10%. The baseline error is of 5%. For the rest of sample sizes
shown in the figure, RESS behaves as expected: the bigger the
sample size the lower the error.

VI. RELATED WORK

Enterprise search systems. LinkedIn has open sourced
WhereHows [17]. The Apache foundation offers Atlas [18]
and Google has Goods [1]. All these systems have a strong
emphasis on recording the lifecycle of datasets through lineage
information, which is orthogonal to the problem we solve
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Dataset #FKs
actual Precision/Recall

TPC-H 11 100%/81%
FDB 7 100%/100%

Chembl 85 35%/67%
Pharma 431 100%/91%

Fig. 7. Effectiveness of the PK/FK discovery

in this paper. These systems provide some subset of search
or discovery features, such as finding similar datasets, or
inspecting existing ones, but none of them permit users to
change the discovery query on-demand.

Exploratory systems. Octopus [3] and Infogather [2] solve
the problem of schema complement. Finding related tables [19]
focuses on finding tables that are candidates for joins, similar
to schema complement, or candidates for union. Finally,
in [20] the authors build a system with a particular set of
operations that solve use cases in the context of oceanographic
data. All the above systems rely on custom indexes, specific
to each use case. In contrast, we take a more general approach
to the data discovery problem, building an EKG that we use
to flexibly answer varied discovery needs, and that can then
be used as the basis for new, more complex relationships.

IR and databases. There is a plethora of systems to perform
keyword search in RDBMS [21], [22], [23], [24], [25], [26].
Most of these systems can be seen as a constrained imple-
mentation of our discovery primitives, on an EKG with DE
granularity of values. Then, most of these systems propose to
connect the results through a Steiner tree, so that they can rank
them appropriately. Since we maintain a provenance graph of
the execution of SRQL queries, we could find a Steiner tree in
such graph, therefore offering similar functionality. We have
built AURUM for more general discovery cases that cannot be
solved with keyword search alone.

Other links for the EKG. We designed Aurum to support
relationships useful to discover and connect datasets within
organizations. We discussed some syntactic relationships but
left many others out. For example, work on finding functional
dependencies [27], as well as correlation among columns [28],
[29] is complementary to our work.

VII. CONCLUSION

We presented AURUM1, a data discovery system that builds,
maintains and allows users to query an enterprise knowledge
graph to solve diverse discovery needs. We have used AURUM
with several companies. Many others are in the process of
onboarding the technology, and we have already identified
some lines of future work, such as the inclusion of other kinds
of non data-driven relations. We see AURUM as a stepping
stone towards addressing the substantial challenges that the
modern flood of data present in large organizations.

1https://github.com/mitdbg/aurum-datadiscovery
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