
Goods: Organizing Google’s Datasets

Alon Halevy2∗, Flip Korn1, Natalya F. Noy1, Christopher Olston1, Neoklis Polyzotis1,
Sudip Roy1, Steven Euijong Whang1

1Google Research 2Recruit Institute of Technology

alon@recruit.ai, {flip, noy, olston, npolyzotis, sudipr, swhang}@google.com

ABSTRACT
Enterprises increasingly rely on structured datasets to run their busi-
nesses. These datasets take a variety of forms, such as structured
files, databases, spreadsheets, or even services that provide access
to the data. The datasets often reside in different storage systems,
may vary in their formats, may change every day. In this paper,
we present Goods, a project to rethink how we organize structured
datasets at scale, in a setting where teams use diverse and often
idiosyncratic ways to produce the datasets and where there is no
centralized system for storing and querying them. Goods extracts
metadata ranging from salient information about each dataset (own-
ers, timestamps, schema) to relationships among datasets, such as
similarity and provenance. It then exposes this metadata through
services that allow engineers to find datasets within the company,
to monitor datasets, to annotate them in order to enable others to
use their datasets, and to analyze relationships between them. We
discuss the technical challenges that we had to overcome in order
to crawl and infer the metadata for billions of datasets, to main-
tain the consistency of our metadata catalog at scale, and to expose
the metadata to users. We believe that many of the lessons that we
learned are applicable to building large-scale enterprise-level data-
management systems in general.

1. INTRODUCTION
Most large enterprises today witness an explosion in the num-

ber of datasets that they generate internally for use in ongoing re-
search and development. The reason behind this explosion is sim-
ple: by allowing engineers and data scientists to consume and gen-
erate datasets in an unfettered manner, enterprises promote fast de-
velopment cycles, experimentation, and ultimately innovation that
drives their competitive edge. As a result, these internally gener-
ated datasets often become a prime asset of the company, on par
with source code and internal infrastructure. However, while enter-
prises have developed a strong culture on how to manage the lat-
ter, with source-code development tools and methodologies that we
now consider “standard” in the industry (e.g., code versioning and
indexing, reviews, or testing), similar approaches do not generally
∗Work done while at Google Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD/PODS’16 June 26 - July 01, 2016, San Francisco, CA, USA

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3531-7/16/06.

DOI: http://dx.doi.org/10.1145/2882903.2903730

exist for managing datasets. We argue that developing principled
and flexible approaches to dataset management has become imper-
ative, lest companies run the risk of internal siloing of datasets,
which, in turn, results in significant losses in productivity and op-
portunities, duplication of work, and mishandling of data.

Enterprise Data Management (EDM) is one common way to or-
ganize datasets in an enterprise setting. However, in the case of
EDM, stakeholders in the company must embrace this approach,
using an EDM system to publish, retrieve, and integrate their datasets.
An alternative approach is to enable complete freedom within the
enterprise to access and generate datasets and to solve the problem
of finding the right data in a post-hoc manner. This approach is
similar in spirit to the concept of data lakes [4, 22], where the lake
comprises and continuously accumulates all the datasets generated
within the enterprise. The goal is then to provide methods to “fish”
the right datasets out of the lake on the as-needed basis.

In this paper, we describe Google Dataset Search (Goods), such
a post-hoc system that we built in order to organize the datasets
that are generated and used within Google. Specifically, Goods
collects and aggregates metadata about datasets after the datasets
were created, accessed, or updated by various pipelines, without
interfering with dataset owners or users. Put differently, teams and
engineers continue to generate and access datasets using the tools
of their choice, and Goods works in the background, in a non-
intrusive manner, to gather the metadata about datasets and their
usage. Goods then uses this metadata to power services that en-
able Google engineers to organize and find their datasets in a more
principled manner.

Figure 1 shows a schematic overview of our system. Goods con-
tinuously crawls different storage systems and the production in-
frastructure (e.g., logs from running pipelines) to discover which
datasets exist and to gather metadata about each one (e.g., owners,
time of access, content features, accesses by production pipelines).
Goods aggregates this metadata in a central catalog and correlates
the metadata about a specific dataset with information about other
datasets.

Goods uses this catalog to provide Google engineers with ser-
vices for dataset management. To illustrate the types of services
powered by Goods, imagine a team that is responsible for devel-
oping natural language understanding (NLU) of text corpora (say,
news articles). The engineers on the team may be distributed across
the globe and they maintain several pipelines that add annotations
to different text corpora. Each pipeline can have multiple stages
that add annotations based on various techniques including phrase
chunking, part-of-speech tagging, and co-reference resolution. Other
teams can consume the datasets that the NLU team generates, and
the NLU team’s pipelines may consume datasets from other teams.

Figure 1: Overview of Google Dataset Search (Goods). The figure shows the Goods dataset catalog that collects metadata about datasets from various
storage systems as well as other sources. We also infer metadata by processing additional sources such as logs and information about dataset owners
and their projects, by analyzing content of the datasets, and by collecting input from the Goods users. We use the information in the catalog to build
tools for search, monitoring, and visualizing flow of data.

Based on the information in its catalog, Goods provides a dash-
board for the NLU team (in this case, dataset producers), which
displays all their datasets and enables browsing them by facets (e.g.,
owner, data center, schema). Even if the team’s datasets are in di-
verse storage systems, the engineers get a unified view of all their
datasets and dependencies among them. Goods can monitor fea-
tures of the dataset, such as its size, distribution of values in its
contents, or its availability, and then alert the owners if the features
change unexpectedly.

Another important piece of information that Goods provides is
the dataset provenance: namely, the information about which datasets
were used to create a given dataset (upstream datasets), and those
that rely on it (downstream datasets). Note that both the upstream
and downstream datasets may be created by other teams. When an
engineer in the NLU team observes a problem with a dataset, she
can examine the provenance visualization to determine whether a
change in some upstream dataset had caused the problem. Simi-
larly, if the team is about to make a significant change to its pipeline
or has discovered a bug in an existing dataset that other teams have
consumed already, they can quickly notify those affected by the
problem.

From the perspective of dataset consumers, such as those not
part of the NLU team in our example, Goods provides a search en-
gine over all the datasets in the company, plus facets for narrowing
search results, to find the most up-to-date or potentially important
datasets. Goods presents a profile page for every dataset, which
helps users unfamiliar with the data to understand its schema and
to create boilerplate code to access and query the data. The profile
page also contains the information on datasets with content simi-

lar to the content of the current dataset. The similarity informa-
tion may enable novel combinations of datasets: for example, if
two datasets share a primary key column, then they may provide
complementary information and are therefore a good candidate for
joining.

Goods allows users to expand the catalog with crowd-sourced
metadata. For instance, dataset owners can annotate datasets with
descriptions, in order to help users figure out which datasets are
appropriate for their use (e.g., which analysis techniques are used
in certain datasets and which pitfalls to watch out for). Dataset au-
ditors can tag datasets that contain sensitive information and alert
dataset owners or prompt a review to ensure that the data is han-
dled appropriately. In this manner, Goods and its catalog become a
hub through which users can share and exchange information about
the generated datasets. Goods also exposes an API through which
teams can contribute metadata to the catalog both for the teams own
restricted use as well as to help other teams and users understand
their datasets easily.

As we discuss in the rest of the paper, we addressed many chal-
lenges in designing and building Goods, arising from the sheer
number of datasets (tens of billions in our case), the high churn in
terms of updates, the sizes of individual datasets (gigabytes or ter-
abytes in many cases), the many different data formats and stores
they reside in, and the varying quality and importance of informa-
tion collected about each dataset. Many of the challenges that we
addressed in Goods were precipitated by the scale and characteris-
tics of the data lake at Google. However, we believe that our expe-
rience and the lessons that we learned will apply to similar systems
in other enterprises.

2. CHALLENGES
In this section, we describe in more detail the challenges that we

addressed in building Goods. While some of these challenges are
specific to Google’s setup, we believe that most of the following
points carry over to other large enterprises.

2.1 Scale of the number and size of datasets
While we anticipated the existence of a large number of datasets

in the company, the actual count far exceeded our initial calcula-
tions. The current catalog indexes over 26 billion datasets even
though it includes only those datasets whose access permissions
make them readable by all Google engineers. We expect that the
catalog will more than double in the number of datasets when we
index the datasets with restricted access permissions and when we
start supporting other storage systems. It is important to note that
the catalog already excludes many types of uninteresting datasets
(e.g., we discard known “marker” files that are content free) and
normalizes paths to avoid obvious redundancies (e.g., we normal-
ize paths corresponding to different shards of the same dataset to a
common path and do not store them separately in the catalog).

At this scale, gathering metadata for all datasets becomes infea-
sible. Indeed, even if we spend one second per dataset (and many of
the datasets are too large to process in one second), going through a
catalog with 26 billion datasets using a thousand parallel machines
still requires around 300 days. Thus, we must develop strategies
that prioritize and optimize processing of the datasets.

The scale issue is aggravated by “n-square” problems that arise
in metadata inference. For instance, Goods identifies datasets that
contain similar or identical content, both overall as well as for in-
dividual columns. Comparing any two datasets to each other can
already be expensive due to large dataset sizes, but a naïve pairwise
comparison of contents of billions of datasets is infeasible.

2.2 Variety
Datasets are stored in many formats (text files, csv files, Bigta-

bles [13], etc.) and storage systems (GoogleFS, database servers,
etc.), each with its own type of metadata and access characteristics.
This diversity makes it difficult to define a single “dataset” concept
that covers all actual dataset types. Hiding this variety and com-
plexity from the users and presenting a uniform way to access and
query information about all types of datasets is both a goal and a
challenge for Goods.

Even more important is the variety in the cost of metadata ex-
traction, which can change vastly depending on the type and size
of the dataset and the type of metadata. Therefore, our metadata-
extraction process needs to be differential: we must identify which
datasets are important to cover, and then to perform metadata infer-
ence based on the cost and benefit for having the particular type of
metadata.

Variety also manifests in the relationships among datasets, which
in turn affect how we model and store metadata in the catalog. Take
for instance a Bigtable dataset [13]. It comprises several column
families, with each family inheriting metadata from the contain-
ing Bigtable but also having its own metadata and access proper-
ties. As a result, we can view column families both as individual
datasets and as part of the overall Bigtable dataset. Furthermore,
the underlying storage infrastructure for a Bigtable is provided by
a distributed file system, and so we can also view the correspond-
ing files as datasets. In the case of Bigtable, the decision to hide
these underlying files in favor of the Bigtable dataset seems rea-
sonable. However, a similar decision is less clear in other cases.
For instance, we include database tables (specifically, Dremel ta-
bles [19]) in our catalog. These tables were created from other files

Number of datasets 26 billion
Number of paths added per day 1.6 billion

Number of paths deleted per day 1.6 billion
Number of storage systems 6
Number of dataset formats > 20

Table 1: The scale, variety, and churn of the entries in the Goods cata-
log.

(also in our catalog), and in this case it is meaningful to have both
the files and the database tables as separate (but connected) datasets
in the catalog given that their access patterns are sufficiently differ-
ent. Note that this last example illustrates a type of dataset aliasing.
Aliases can arise in several ways in our catalog, and we have dealt
with each alias type separately depending on the corresponding us-
age patterns.

2.3 Churn of the catalog entries
Every day, production jobs generate new datasets, and old datasets

get deleted—either explicitly or because their designated time-to-
live (TTL) has expired. In fact, we found that more than 5% (i.e.,
about 1 billion) of the datasets in the catalog are deleted every day.
Almost an equal number of new entries are added back as well.
This level of churn adds more considerations to how we prioritize
for which datasets we compute the metadata and which datasets we
include in the catalog. For example, many of the datasets that have
a limited Time-To-Live (TTL) from their creation are intermediate
results of a large production pipeline that are garbage collected af-
ter a few days. One possibility is to ignore these transient datasets
for metadata extraction, or even to exclude them from the catalog.
However, there are two considerations. First, some of these datasets
have long TTLs (e.g., measured in weeks) and hence their value to
users can be high when the datasets are just created. Second, as
we discuss later, some of these transient datasets link non-transient
datasets to each other and are thus critical in the computation of
dataset provenance. Hence, entirely blacklisting transient datasets
was not an option for Goods.

2.4 Uncertainty of metadata discovery
Because Goods explicitly identifies and analyzes datasets in a

post-hoc and non-invasive manner, it is often impossible to deter-
mine all types of metadata with complete certainty. For instance,
many datasets consist of records whose schema conforms to a spe-
cific protocol buffer [23] (i.e., a nested-relational schema). How-
ever, the dataset itself does not reference the specific protocol buffer
that describes its content—the association between a protocol buffer
and a dataset is implicit in the source code that accesses the dataset.
Goods tries to uncover this implicit association through several sig-
nals: For instance, we “match” the dataset contents against all reg-
istered types of protocol buffers within Google, or we consult usage
logs that may have recorded the actual protocol buffer. This in-
ference is inherently ambiguous and can result in several possible
matches between a dataset and protocol buffers.

Similarly, Goods analyzes the datasets to determine which fields
could serve as primary keys, but relies on an approximate process
in order to deal with the scale of the problem—another uncertain
inference.

Most of this uncertainty arises because we process the datasets
in a post-hoc fashion: we do not require dataset owners to change
their workflows in order to associate this type of metadata with the
datasets when the owners create the datasets. Instead, we opt to
collect dataset metadata that is already logged in different corners

Metadata Groups Metadata
Basic size, format, aliases, last modified time, access control lists

Content-based schema, number of records, data fingerprint, key field, frequent tokens, similar datasets
Provenance reading jobs, writing jobs, downstream datasets, upstream datasets

User-supplied description, annotations
Team and Project project description, owner team name

Temporal change history
Table 2: Metadata in the Goods catalog.

of the existing infrastructure and then we aggregate and clean the
metadata for further usage.

2.5 Computing dataset importance
After we discover and catalog the datasets, reasoning about their

relative importance to the users presents additional challenges. To
start with, the basic question of what makes a dataset important
is hard to answer. Looking at a dataset in isolation can provide
some hints, but it is often necessary to examine the dataset in a
more global context (e.g., consider how often production pipelines
access the dataset) in order to understand its importance.

Note that the notion of importance—and relative importance—
comes up prominently in the context of Web search. However,
ranking and importance among structured datasets in an enterprise
setting is significantly different from the Web search setting: the
only explicit links that we have are the provenance links, which do
not necessarily signify importance. Furthermore, many of the sig-
nals that we can use for Web search (e.g., anchor text) do not exist
for datasets, whereas datasets can provide structured context that
the Web pages do not have.

In addition to the importance of datasets to the users, a differ-
ent notion of importance comes up when we prioritize the datasets
for which we derive metadata. For example, we would often con-
sider transient datasets to be unimportant. However, if a transient
dataset provides a provenance link between non-transient, impor-
tant datasets, then it is natural to boost its importance accordingly.

2.6 Recovering dataset semantics
Understanding the semantics of dataset contents is extremely

useful in searching, ranking, and describing the datasets. Suppose
that we know the schema of a dataset and that some field in the
schema takes integer values. Now, suppose that through some in-
ference on the dataset contents we are able to identify that these
integer values are IDs of known geographic landmarks. We can
use this type of content semantics to improve search when a user
searches Goods for geographic data. In general, by lifting the level
of abstraction from raw bytes to concepts we can make inferences
that lead to deeper and cleaner dataset metadata. However, identi-
fying the semantics from raw data is a hard problem even for small
datasets [12] because there is rarely enough information in the data
to make this inference. Performing such inference for datasets with
billions of records becomes even harder.

3. THE GOODS CATALOG
Having described the challenges that we addressed in building

Goods, we now turn our attention to the details of the system. We
begin by taking a closer look at the Goods catalog, which lies in
the core of our system. At a high level, the catalog contains an
entry for each dataset that Goods discovers by crawling different
storage systems within Google. While each independent storage
system within the company may maintain a catalog over datasets
that it serves, each such catalog has different types of metadata and
data often flows from one system to another in an unfettered fash-

ion. This freedom makes it difficult to obtain a global and unified
view of the datasets available throughout the company. The Goods
catalog fills this gap and is thus an important contribution in itself,
even if we do not consider the services at the top of Figure 1.

The Goods catalog not only contains the individual datasets that
we collect by crawling the different storage systems, but also groups
related datasets into clusters, which become first-class entries in the
catalog. Consider for example a dataset where a new version is pro-
duced daily, or even hourly. Our catalog will contain an entry for
each version of such a dataset. However, users would often want
to think of these versions as a single logical dataset. Furthermore,
all these versions are likely to have some common metadata (e.g.,
owners or schema) and thus collecting metadata separately for each
version is wasteful—and often prohibitive—in terms of resources.
For these two reasons, we organize these related datasets in a clus-
ter, which becomes a separate entry in the catalog. Goods surfaces
this cluster to users as a logical dataset that represents all the gen-
erated versions. Goods also uses the cluster to optimize the com-
putation of metadata under the assumption that all datasets in the
cluster have similar properties.

In this section, we first describe the types of metadata that we
associate with each dataset (Section 3.1) and then describe our
mechanism for metadata extraction based on dataset clusters (Sec-
tion 3.2).

3.1 Metadata
Goods bootstraps its catalog by crawling Google’s storage sys-

tems (e.g., GoogleFS, Bigtable, database servers) in order to dis-
cover what datasets exist and to obtain some basic metadata such
as size, owners, readers, and access permissions of datasets. How-
ever, most storage systems do not keep track of other important
metadata, such as jobs that produced a dataset, teams and users
that access it, its schema, and others (Table 2). This information is
spread across logs written by processes that access these datasets,
is encoded within the datasets themselves, or can be deduced by
analyzing the content of the datasets. Thus, in addition to crawling,
we perform metadata inference. In what follows, we describe in
more detail the different types of metadata (collected and inferred)
in the Goods catalog.

Basic metadata - The basic metadata for each dataset includes its
timestamp, file format, owners, and access permissions. We obtain
this basic metadata by crawling the storage systems and this process
usually does not necessitate any inference. Other Goods modules
often depend on this basic information to determine their behavior.
For example, some of the modules bypass catalog entries that have
restricted access or the entries that have not been modified recently.

Provenance - Datasets are produced and consumed by code. This
code may include analysis tools that are used to query datasets,
serving infrastructures that provide access to datasets through APIs,
or ETL pipelines that transform it into other datasets. Often, we
can understand a dataset better through these surrounding pieces of
software that produce and use it. Moreover, this information helps
in tracking how data flows through the enterprise as well as across

Figure 2: An example of abstraction semi-lattice

boundaries of teams and organizations within the company. There-
fore, for each dataset, the Goods catalog maintains the provenance
of how the dataset is produced, how it is consumed, what datasets
this dataset depends on, and what other datasets depend on this
dataset. We identify and populate the provenance metadata through
an analysis of production logs, which provide information on which
jobs read and write each dataset. We then create a transitive closure
of this graph connecting datasets and jobs, in order to determine
how the datasets themselves are linked to one another. For instance
if a job J reads dataset D1 and produces dataset D2, then the meta-
data for D1 contains D2 as one of its downstream datasets and vice
versa. We also take into account timing information in order to
determine the earliest and latest points in time when these depen-
dencies existed. However, the number of data-access events in the
logs can be extremely high and so can be the size of the transitive
closure. Therefore, we trade off the completeness of the prove-
nance associations for efficiency by processing only a sample of
data-access events from the logs and also by materializing only the
downstream and upstream relations within a few hops as opposed
to computing the true transitive closure.

Schema - Schema is another core type of metadata that helps us
understand a dataset. The most commonly used dataset formats
in Google are not self-describing, and we must infer the schema.
Nearly all records within structured datasets at Google are encoded
as serialized protocol buffers [23]. The difficulty lies in determin-
ing which protocol buffer was used to encode records in a given
dataset. Protocol buffers that the majority of Google’s datasets use
are nearly always checked into Google’s central code repository.
Thus, we have a full list of them available to match against datasets
that we have crawled. We perform this matching by scanning a few
records from the file, and going through each protocol message def-
inition to determine whether it could conceivably have generated
the bytes we see in those records. Protocol buffers encode mul-
tiple logical types as the same physical type, notably string and
nested messages are both encoded as variable-length byte strings.
Consequently, the matching procedure is speculative and can pro-
duce multiple candidate protocol buffers. All the candidate proto-
col buffers, along with heuristic scores for each candidate, become
part of the metadata.

Content summary - For each dataset that we are able to open
and scan, we also collect metadata that summarizes the content of
the dataset. We record frequent tokens that we find by sampling
the content. We analyze some of the fields to determine if they
contain keys for the data, individually or in combination. To find
potential keys, we use the HyperLogLog algorithm [15] to estimate
cardinality of values in individual fields and combinations of fields
and we compare this cardinality with the number of records to find
potential keys. We also collect fingerprints that have checksums for

the individual fields and locality-sensitive hash (LSH) values for
the content. We use these fingerprints to find datasets with content
that is similar or identical to the given dataset, or columns from
other datasets that are similar or identical to columns in the current
dataset. We also use the checksums to identify which fields are
populated in the records of the dataset.

User-provided annotations - We enable dataset owners to pro-
vide text descriptions of their datasets. These descriptions are crit-
ical to our ranking, and also help us filter out datasets that are ex-
perimental or that we should not show to the users.

Semantics - Goods combines several noisy signals in order to de-
rive metadata about dataset semantics. For datasets whose schema
conforms to a protocol buffer, Goods can examine the source code
that defines the protocol buffer and extract any of the attached com-
ments. These comments are often of high quality and their lexical
analysis can provide short phrases that capture the semantics of the
schema. As an actual example, some of the datasets in the Goods
catalog conform to a protocol buffer with a field cryptically named
mpn. However, the source code contains the comment “//Model
Product Number” above the field, which disambiguates its se-
mantics. Goods can also examine the dataset content and match it
against Google’s Knowledge Graph [11], to identify entities (e.g.,
locations, businesses) that appear in different fields.

In addition to the metadata listed above, we collect identifiers for
teams that own the dataset, a description of the project to which a
dataset belongs, and the history of the changes to the metadata of
the dataset.

Finally, our infrastructure (Section 4) allows other teams to add
their own types of metadata. For instance, a team may rely on
different types of content summaries, or provide additional prove-
nance information. The Goods catalog is becoming the unifying
place for teams to collect their metadata and to access it.

3.2 Organizing datasets into clusters
The 26B datasets in the Goods catalog are not completely in-

dependent from one another. We often see different versions of a
dataset that are being generated on a regular basis, datasets that are
replicated across different data centers, datasets that are sharded
into smaller datasets for faster loading, and so on. If we can iden-
tify natural clusters to which datasets belong, then not only we can
provide the users with a useful logical-level abstraction that groups
together these different versions but we can also save on metadata
extraction, albeit potentially at the cost of precision. That is, in-
stead of collecting expensive metadata for each individual dataset,
we can collect metadata only for a few datasets in a cluster. We can
then propagate the metadata across the other datasets in the cluster.
For instance, if the same job generates versions of a dataset daily,
these datasets are likely to have the same schema. Thus, we do not

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

1-10 10-100 100-1K 1K-10K 10K-100K 100K-1M 1M-10M >10M

Fr
eq

ue
nc

y

Cluster Size

Figure 3: Distribution of cluster sizes. The X axis is the number of
datasets in a cluster (cluster size). The Y axis is the number of clusters
of the corresponding cluster size.

need to infer the schema for each version. Similarly, if a user pro-
vides a description for a dataset, it usually applies to all members
of the cluster and not just the one version. When the clusters are
large, the computational savings that we obtain by avoiding analy-
sis of each member of the cluster can be significant.

For clustering to reduce the computational overhead, the clus-
tering itself should be cheap. Clustering techniques that require
investigating the contents of a dataset can overshadow the com-
putational savings that we obtain by avoiding repetitive metadata
extraction. Fortunately, the paths of the datasets often give hints
on how to cluster them via embedded identifiers for timestamps,
versions, and so on. For example, consider a dataset that is pro-
duced daily and let /dataset/2015-10-10/daily_scan be the
path for one of its instances. We can abstract out the day portion of
the date to get a generic representation of all datasets produced in a
month: /dataset /2015-10-<day>/daily_scan, representing
all instances from October 2015. By abstracting out the month as
well, we can go up the hierarchy to create abstract paths that repre-
sent all datasets produced in the same year:
/dataset/2015-<month>-<day>/daily_scan.

By composing hierarchies along different dimensions, we can
construct a granularity semi-lattice structure where each node cor-
responds to a different granularity of viewing the datasets. Figure
2 shows an example of such a semi-lattice obtained by composing
two hierarchies—one along date and the other along version num-
ber.

Table 3 lists the abstraction dimensions that we currently use to
construct the granularity semi-lattice for each dataset. By abstract-
ing out the various dimensions from all dataset paths, we eventually
obtain a set of semi-lattices whose non-leaf nodes represent differ-
ent choices for grouping datasets into clusters. We can optimize the
selection of clusters with a suitable objective function over the cur-
rent state of the catalog, but the daily catalog churn can cause a fre-
quent recomputation of clusters. Therefore, users may see different
clusters (representing logical datasets) from day to day, which can
be confusing. We adopted a simple solution that works well in prac-
tice: we create an entry only for the top-most element of each semi-
lattice. Going back to the example of Figure 2, the catalog would
have an entry for the cluster /dataset/<date>/<version>, rep-
resenting the three datasets at the bottom of the lattice. This ap-
proach keeps the number of cluster entries low, guarantees that each
dataset maps to exactly one cluster, and maintains a stable set of
clusters over time.

Figure 4: An example of propagating the owners metadata to an unan-
alyzed dataset through the cluster’s representative element.

After we compute the clusters, we obtain the metadata for each
cluster by aggregating the metadata for individual members. For
instance, if we know the schema for several members of the cluster,
and it is the same for all of them, we can propagate this schema
for the cluster as a whole (Figure 4). Whether to materialize this
propagated information or simply to compute it on-demand is an
application-specific design decision. In our case, we compute it
on demand to differentiate explicitly between propagated metadata
and metadata that we obtained through real analysis.

Figure 3 shows a distribution of the number of datasets within
each cluster in our catalog. The figure shows that clustering can
compress dramatically the set of “physical” datasets into a much
smaller set of “logical” datasets, thus making it easier for users
to inspect the catalog. Moreover, the computational savings from
metadata smearing are significant, particularly for the extremely
large clusters.

4. BACKEND IMPLEMENTATION
In this section, we focus on the implementation details of build-

ing and maintaining the catalog that we described in Section 3. We
discuss the physical structure of the catalog, our approach to scaling
up the modules that populate the catalog, consistency and garbage
collection, and finally, fault tolerance.

4.1 Catalog storage
We use Bigtable [13], a scalable, temporal key–value store, as the

storage medium for our catalog. Each row represents one dataset
or a dataset cluster (Section 3.2), with the dataset path or cluster
path as the key. Bigtable offers per-row transactional consistency,
which is a good fit as most (although, not all) of the processing in
our system is per dataset. For instance, we can infer a schema for a
dataset without looking at entries for other datasets; we can analyze
the content of a dataset by examining a single row.

There are some aspects of our system that deviate from this per-
dataset processing. For example, we aggregate information from
multiple rows into logical datasets in our abstraction lattice (Sec-
tion 3.2). Propagating metadata across datasets in the same cluster
also does not conform to the model of processing each dataset in-
dependently. However, this metadata propagation is best effort and
does not require strong consistency.

At the physical level, a Bigtable comprises several independent
column families. We keep data that is accessed only by batch jobs
(vs. served to a frontend tool) in separate column families that we
tuned for batch processing (highly compressed, and not memory-
resident). For instance, our largest column family contains raw
provenance data that we use to compute the provenance graph but
that we do not directly serve at the front end (Section 5): There,
we serve the provenance information only at the level of abstracted

Abstraction Dimension Description Examples of paths with instances
Timestamps All specifications of dates and times /gfs/generated_at_20150505T20:21:56

Data-center Names Specification of data center names /gfs/oregon/dataset
Machine Names Hostnames of machines (either user’s or

one in the data center)
/gfs/dataset/foo.corp.google.com

Version Numeric and hexa-numeric version
specifications

/gfs/dataset/0x12ab12c/bar

Universally Unique Identifier UUIDs as specified in RFC4122[6] /gfs/dataset/30201010-5041-7061-9081-F0E0D0C0B0AA/foo

Table 3: The dimensions that Goods uses to abstract dataset paths. The examples illustrate portions of the paths that correspond to the abstraction
dimensions.

dataset clusters. Thus, we can aggressively compress this large col-
umn family.

We store two kinds of metadata for each row in our Bigtable-
backed catalog: (a) metadata for the datasets (Section 3); (b) meta-
data about the outcome of the modules that processed a given dataset,
status metadata. The status metadata lists each module that pro-
cessed a particular entry, with timestamp, success status, and error
message, if any. We use the status metadata to coordinate exe-
cution of modules (Section 4.2), and for our own inspection of the
system (What fraction of datasets has module X processed success-
fully? What is the most common error code?). In conjunction with
Bigtable’s temporal data model, the status metadata was also ex-
tremely useful for debugging. We configure the Bigtable to retain
multiple generations of the status metadata, allowing us to see what
our modules have been doing over time (e.g., on a given problem-
atic dataset, when did the module start emitting an error? is the
error deterministic?).

4.2 Batch job performance and scheduling
Our system is comprised of two types of jobs: (1) a large num-

ber of diverse batch-processing jobs; and (2) a small number of
jobs that serve our front end and the API. In addition, we designed
the system to be extensible and to accommodate crawlers for new
sources of datasets and provenance and other metadata, and new
analysis modules. Some of our batch jobs are fairly quick and typi-
cally finish a full pass over our catalog in a few hours; others, such
as the ones that analyze the content of the datasets, take many days
to catch up with a fresh crawl that added new datasets to the cata-
log. We schedule such jobs to run in geographical proximity to the
datasets that they analyze, which are distributed worldwide.

We allow all the jobs to run independently from one another: we
do not restrict the order in which jobs run, or constrain whether
or not they run concurrently. Some of the jobs may be broken at
any given time and we can take them offline temporarily. Each job
includes one or more modules, such as crawlers or analyzers.

Individual modules often depend on other modules and cannot
process a given dataset until some other modules processed it. For
example, the module that computes fingerprints for columns needs
to know a dataset’s schema, and hence has a dependency on the
module that determines the schema of a dataset—a so-called Schema
Analyzer module. The modules coordinate their execution with one
another at the granularity of individual Bigtable rows, using the sta-
tus metadata that we mentioned earlier. If a module A must (suc-
cessfully) process a row before module B, then when module B
examines a row, it checks for a status metadata entry indicating a
successful visit by module A. If no such status entry is present, then
module B bypasses that row; it will try again next time it runs. If
module A re-processes a row, then upon its next visit to the row,
module B will also re-process it, to propagate the freshest meta-
data (e.g. re-fingerprint based on the updated schema). Modules

also use their own status metadata to avoid re-processing rows they
have already processed within a configurable freshness window.

Most jobs are configured to run daily, and finish comfortably in
24 hours. When jobs overrun their daily cycle, we optimize and/or
add parallelism. These jobs use each 24-hour cycle to process new
catalog rows and/or refresh already-processed ones that have fallen
outside the freshness window.

After a large influx of new datasets (e.g. incorporating a new
source of dataset paths), our most heavyweight job, the Schema
Analyzer, takes days, or sometimes weeks, to catch up. We use
a simple prioritization mechanism to ensure that our most impor-
tant datasets do not get neglected by the Schema Analyzer dur-
ing this “catch-up” scenario: We heuristically designate datasets
having user-supplied annotations or high provenance centrality as
“important,” and schedule two instances of the job: one instance
processes only the important datasets and can get through them
quickly, and another instance aims to process all datasets but may
get only to a fraction of them by day’s end. In practice, as with Web
crawling, ensuring good coverage and freshness for the “head” of
the importance distribution is enough for most user scenarios.

Our large crawler jobs perform “blind writes” to the catalog:
They read data from a source and write all of the data to our Bigtable.
Bigtable does not distinguish between insertions and updates, so
this approach yields a combination of no-op updates and insertions.
This approach is more efficient than doing a read of our catalog to
anti-join it with the new source crawl. However, we must take care
to avoid no-op writes in certain cases, because it can cause depen-
dent modules to re-run needlessly, or block garbage collection (see
Section 4.4).

4.3 Fault tolerance
With such a large number and variety of datasets being analyzed,

we encounter many different kinds of problems. For modules that
process individual datasets, we record per-dataset errors in the sta-
tus metadata of the dataset’s entry in the catalog. Status meta-
data that indicates that a module finished with an error, triggers
(a bounded number of) retries. The modules that do not process
each dataset in isolation (e.g. provenance linking), rely on a job-
wide status metadata entry that indicates the start time of a job and
whether the job succeeded. For example, the provenance-linking
module incorporates a dataset–job link into the transitive prove-
nance graph only if the link’s timestamp is more recent than the
last successful execution of the module (as recorded in the module-
wide status metadata). This approach is conservative: we may redo
some Bigtable writes if the previous execution of the module failed
part-way. However, this approach ensures that the resulting prove-
nance graph is correct because Bigtable writes are idempotent. Fur-
thermore, it enables us to mark the recorded job-provenance infor-
mation as “consumed,” a feature that becomes critical for garbage
collection, as we discuss later.

Several of our modules that examine content of datasets use a
variety of libraries specific to different file formats. At times, these
libraries crash or go into infinite loops. (While we work to track
down and eliminate these cases, it is not feasible to eradicate them
entirely, especially given the evolving nature of files and file for-
mats in our environments.) Because we cannot have long-running
analysis jobs crashing or hanging, we sandbox such potentially
dangerous jobs in a separate process. We then use a watchdog
thread to convert long stalls into crashes while allowing the rest
of the pipeline to proceed.

We replicate our catalog at multiple geographical locations. Writes
go to a master and get replicated asynchronously in the background
elsewhere.

4.4 Garbage collection of metadata
We ingest and create a huge volume of data daily. A nontrivial

fraction of this data is transient. After we consume such transient
data to build the provenance graph, we can remove the entries that
correspond to the deleted datasets, as long as our modules have
consumed the associated metadata to update the catalog. We ini-
tially favored a simple, conservative approach to garbage collec-
tion. For instance, we would delete a row if it had not been updated
for one week. However, a few incidents in which our catalog be-
came badly bloated taught us that aggressive garbage collection is
necessary. Early in our project, on two occasions we had to disable
all crawlers and non-garbage-collection-related analysis modules
for several days to recover from this situation.

The garbage-collection mechanism that we have implemented
currently addresses several constraints that we discovered along the
way:

1. Conditions for removing rows are best expressed as declarative
predicates that use both metadata and statuses of other modules
that may have accessed or updated the row. For example, we
have the following condition on when we can remove a dataset
from the Goods catalog: “the dataset has been deleted from the
storage system, and its most recently updated provenance in-
formation has been processed by a transitive provenance linker
module that finished successfully.”

2. When we delete an entry from a catalog, we must ensure that we
do not create so-called “dangling rows”: Recall that Bigtable
does not differentiate between insertions and updates. Thus,
when we remove a row, we must ensure that no other concur-
rently running module will add that row back with only partial
information (specifically, only the information that the specific
module is responsible for). For example, assume that there is
a race condition between the garbage collector and a metadata-
inference module that is examining the same row. The garbage
collector removes the row and then the metadata-inference mod-
ule inserts the row back; this row will contain only the informa-
tion that this module infers. This sequence results in loss of in-
formation about where the corresponding dataset was crawled,
possibly compromising the integrity of other modules.

3. All other module must be able to run independently of and si-
multaneously with the garbage collection.

Bigtable supports conditional mutations, which are stylized trans-
actions that update or delete a Bigtable row if a given predicate
yields true, in a transactional fashion. Having Bigtable updates
from all modules to be conditioned on the row not having been
deleted, proved to be too expensive: Conditional mutations incur
substantial log-structured read overhead.

Our ultimate design permits all modules other than the garbage
collector to perform non-transactional updates. To enable this flex-
ibility, the garbage collection occurs in two phases: (a) In the first
phase, we use declarative predicates that approve removing a cata-
log row (see the first condition above). However, in this first phase
our garbage collector does not actually delete the Bigtable entry,
but puts a special tombstone marker on it. (b) 24 hours later (see
below for more on this threshold), if the row still meets the deletion
criteria, we delete it; otherwise, we remove the tombstone.

At the same time, all other modules conform to the following
constraints: (a) they can perform non-transactional updates; (b)
they ignore the rows with the tombstone marker to avoid updat-
ing the rows that are slated for deletion; (c) a single iteration of
a module cannot remain live for more than 24 hours (our module
scheduling mechanism enforces this).

This design satisfies the three conditions above while preserving
the efficiency of the entire system.

5. FRONT END: SERVING THE CATALOG
We have so far focused on the process for building and main-

taining the Goods catalog. In this section, we describe the main
services enabled by the metadata that we collect in Goods (cf. the
top part of Figure 1).

5.1 Dataset profile pages
The first service is to export the metadata for a specific dataset

in an easy-to-view profile page for the dataset. Specifically, the
profile-page service accepts as input the path of a dataset or a dataset
cluster and generates an HTML page from the metadata stored in
the catalog. The service also provides methods to edit specific parts
of the metadata, to allow users either to augment or to correct the
information stored in the catalog.

The profile page renders most of the dataset metadata that we de-
scribed in Section 3. When presenting the profile page to the users,
we must balance the need to present the metadata in a comprehen-
sive way with the desire to keep the amount of information on the
page manageable. The manageable size is important both not to
overwhelm the users with too much information and to avoid trans-
ferring large amounts of information. Consider provenance infor-
mation, for example: Popular datasets may be read by tens of thou-
sands of jobs and have tens of thousands of datasets downstream
from them. Incidentally, jobs such as Goods modules, which need
to access every dataset in the company, have potentially billions
of datasets upstream from them. To avoid transferring and trying
to present such overwhelming amounts of information to the users
(which would be futile to do anyway), we compress provenance
metadata offline, whenever it becomes too large, using the same
abstraction mechanism that we introduced in Section 3.2. We then
use this compressed provenance to render the profile page. If the
compressed version is still too large, then our last resort is to retain
only a number of most recent entries.

The profile page of a dataset cross-links some of the metadata
with other, more specialized, tools. For example, the profile page
links the provenance metadata, such as jobs that generated the dataset,
to the pages with details for those jobs in job-centric tools. Simi-
larly, we link schema metadata to code-management tools, which
provide the definition of this schema. Correspondingly, these tools
link back to Goods to help users get more information about datasets.

The profile page also provides access snippets in different lan-
guages (e.g., C++, Java, SQL) to access the contents of the dataset.
We custom-tailor the generated snippets for the specific dataset:
For example, the snippets use the path and schema of the dataset
(when known), and users can copy-paste the snippets in their re-

spective programming environment. The goal behind these snip-
pets is to complement the content metadata in the profile page:
the latter provide schema-level information about the contents of
the dataset, whereas the snippets provide a handy way to inspect
quickly the actual contents or to analyze the contents through code.

Overall the intent of a profile page is to provide a one-stop shop
where a user can inspect the information about a dataset and under-
stand the context in which the dataset can be used in production.
This feature makes the profile page a natural handle for sharing a
dataset among users or linking to dataset information from other
tools. As an example of the latter, Google’s filesystem browser
provides direct links to Goods dataset-profile pages when users ex-
amine the contents of a directory.

5.2 Dataset search
Profile pages allow users to view information about specific datasets,

but how can a user find datasets of interest? This task is where our
dataset-search service comes in.

Dataset search allows Googlers to find datasets using simple key-
word queries. The service is backed by a conventional inverted
index for document retrieval, where each dataset becomes a “docu-
ment” and we derive the indexing tokens for each document from a
subset of the dataset’s metadata. As is common in this context, each
token can be associated with a specific section of the index. For ex-
ample, a token derived from the path of the dataset is associated
with the “path” section of the index. Accordingly, the search atom
“path:x” will match keyword “x” on dataset paths only, whereas
the unqualified atom “x” will match the keyword in any part of a
dataset’s metadata. Table 4 summarizes the main sections in the
dataset-search index and their meaning in queries.

The extraction of indexing tokens follows from the type of queries
that the index must cover. As an example, we want to support par-
tial matches on the dataset path, where a user may search for “x/y”
to match a dataset with path “a/x/y/b” (but not one with “a/y/x/b”).
One approach is to index every sub-sequence of the path along
common separators (e.g., for path “a/x/y/b” extract the indexing
tokens “a/x”,“x/y”, ..., “a/x/y”, “x/y/b”, and so on). However, this
approach results in a blow-up in index size. Instead, we break up
the dataset’s path along common separators and then associate each
resulting token with its position in the path. Going back to our ex-
ample, the path “a/x/y/b” gets mapped to the indexing tokens “a”,
“x”, “y”, and “b”, in that sequence. When the user issues a search
query with a partial path, our service parses the partial path the
same way and matches the query’s tokens against consecutive to-
kens in the index. We followed a similar scheme when indexing the
names of protocol buffers, which can be qualified with a namespace
(e.g., “foo.bar.X”). In this fashion, a user can search for all datasets
whose schema matches any protocol buffer under a specific names-
pace.

Matching search keywords to datasets is only the first part of the
search task. The second part is deriving a scoring function to rank
the matching datasets, so that the top results are relevant for the
user’s search. Scoring is generally a hard problem and part of our
ongoing work involves tuning the scoring function based on our
users’ experience. In what follows, we describe some heuristics
that informed the design of the scoring function thus far.

• The importance of a dataset depends on its type. For instance,
our scoring function favors a Dremel table [19] over a file dataset,
all else being equal. The intuition is that a dataset owner has
to register a dataset as a Dremel table explicitly, which in turn
makes the dataset visible to more users. We interpret this action
as a signal that the dataset is important and reflect it in our final
scoring.

Qualified token Where token matches
path:a Path of the dataset
proto:a Name of protocol buffer

read_by:a Names of jobs reading/writing
the datasetwritten_by:a

downstream_of:a Paths of datasets
downstream/upstream of the

dataset
upstream_of:a

kind:a Type of the dataset
owner:a Owners of the dataset

Table 4: Examples of qualifying a search token a so that it matches
different sections of the index. A search query may comprise several
qualified and unqualified tokens.

• The importance of a keyword match depends on the index sec-
tion. For instance, a keyword match on the path of the dataset
is more important than a match on jobs that read or write the
dataset, all else being equal. This heuristic reflects the types of
searches that we observe in practice.

• Lineage fan-out is a good indicator of dataset importance. Specif-
ically, this heuristic favors datasets with many reading jobs and
many downstream datasets. The intuition is that if many pro-
duction pipelines access the dataset, then most likely the dataset
is important. One can view this heuristic as an approximation
of PageRank in a graph where datasets and production jobs are
vertices and edges denote dataset accesses from jobs. An in-
teresting artifact of this heuristic and the nature of Google’s
production pipelines (and potentially pipelines in other enter-
prises as well) is assignment of inordinately high scores to cer-
tain datasets simply because they are consumed indirectly by
many internal pipelines—even if they may not be useful to most
users. One such example is Google’s Web crawl, which nu-
merous pipelines consume (often indirectly) in order to extract
different types of information. Hence, it becomes important to
tune and control the contribution of this heuristic to the over-
all ranking function, otherwise these datasets tend to get ranked
high even for vaguely related searches.

• A dataset that carries an owner-sourced description is likely to
be important. Our user interface enables dataset owners to pro-
vide descriptions for datasets that they want other teams to con-
sume. We treat the presence of such a description as a signal of
dataset importance. If a keyword match occurs in the descrip-
tion of a dataset then this dataset should be weighted higher as
well.

Our scoring function incorporates these heuristics as well as other
signals, and as with any similar setting, tuning the contribution of
different signals has been an ongoing effort in our team. Note that
we do not claim that the heuristics that we mentioned are complete.
In fact, an interesting research problem is understanding the factors
that influence dataset importance at search time (when the search
keywords provide some indication of the user’s intent) but also in
a static, more global context that considers the usage of a dataset
in relation to other datasets, jobs, and teams in the enterprise. This
static context is relevant for our backend, as an additional signal on
what datasets we should prioritize for metadata extraction.

In addition to the keyword search, Goods presents metadata facets
for some of the categorical metadata in the catalog, such as dataset
owners and dataset file formats. These facets give users an overview
of the matching datasets, and help them formulate subsequent drill
down queries significantly easier.

5.3 Team dashboards
The Goods dashboard is a configurable one-stop shop for dis-

playing all the datasets generated by a team along with interesting
metadata per dataset, such as various health metrics, other dash-
boards, and whether or not the storage system in which the dataset
resides is online. Goods updates the content of a dashboard au-
tomatically as it updates the metadata of the datasets in the dash-
board. Users can easily embed the dashboard page within other
documents and share the dashboard with others.

The Goods dashboard also provides the means to monitor datasets
and fire alerts if certain expected properties fail to hold (e.g., a
dataset should have a certain number of shards or should have a
certain distribution of values). Users can set up this type of mon-
itoring with a few clicks and Goods is then responsible for check-
ing the monitored properties for the corresponding datasets and to
propagate any alerts to an in-house monitoring UI. In addition to
performing fixed validation checks, Goods can generate checks by
learning trends for a few common properties of interest. For exam-
ple, if the size of a dataset historically increases by 10% for each
version, then Goods can recommend a corresponding check that the
next dataset size should be within some range around the projected
size.

6. LESSONS LEARNED
In our efforts to build Goods we encountered many pitfalls—

some that were avoidable and some that were hard to anticipate.
In this section, we summarize some of the lessons that we have
learned along the way.

Evolve as you go — We started building the catalog with dataset
discovery as the target use case. Soon we realized that engineers
were using Goods in a variety of ways, some of which deviated
from or refined the initial use case. Here are the main trends that
we observed in our usage logs or learned from our users:

• Audit protocol buffers Certain protocol buffers may contain per-
sonally identifiable information and so any datasets using these
protocol buffers must adhere to strict usage and access policies.
Using Goods, engineers can easily find all datasets conforming
to a sensitive protocol buffer and alert the dataset owners in case
of policy violations.

• Re-find datasets Engineers generate many “experimental” datasets
as part of their work, but often forget the paths when they want
to share these datasets or continue working on them. Usually
these datasets can be easily re-found with a simple keyword
search.

• Understand legacy code Up-to-date documentation for legacy
code can be hard to find. Goods exposes a provenance graph
that engineers can use to track previous executions of legacy
code along with input and output datasets, which in turn can
provide useful clues for the underlying logic.

• Bookmark datasets A dataset’s profile page is a natural one-
stop-shop for information about the dataset. Users bookmark
these pages for easy access and also to share datasets with other
users.

• Annotate datasets The Goods catalog serves as a hub for dataset
annotations that can be shared across teams. For example, teams
can tag their datasets with different levels of privacy in order to
warn engineers about the intended usage of the datasets and also
to facilitate policy checks.

It is noteworthy that the last feature was built by a different team
within Google, one who piggybacked on the infrastructure that we
developed. This outside contribution validated our goal to help cre-
ate a company-wide ecosystem of tools around dataset manage-
ment.

As we were developing Goods, we had several meetings with
teams inside Google to discuss their pain points in dataset manage-
ment. We realized very quickly the need for a holistic suite of data-
management tools beyond search, including dashboards to monitor
dataset health, automated dataset testing, and tools to understand
differences among datasets. Our extensible design enabled us to
support some of these use cases with a relatively small incremen-
tal effort. Moreover, some of these tools can enhance the catalog
with additional metadata that apply in other use cases. For exam-
ple, datasets that users explicitly included in data dashboards for
monitoring were clearly important datasets and therefore we could
boost their ranking.

Use domain-specific signals for ranking — As mentioned in
Section 2, the problem of ranking datasets has unique character-
istics when compared to ranking problems in other domains (e.g.,
Web ranking). Our experience with Goods confirmed this obser-
vation. For example, we have found that provenance relationships
among datasets provide a strong domain-specific ranking signal.
Specifically, it is common for teams to generate denormalized ver-
sions of some “master” dataset in order to facilitate different types
of analysis of the master data. These denormalized datasets can
match the same search keywords as the master dataset, yet it is clear
that the master dataset should be ranked higher for general-purpose
queries or for metadata-extraction. Another example comes from
provenance relationships that cross team boundaries, when the dataset
from one team is processed to create a dataset in the scope of an-
other team or project. In this case, we can boost the importance of
the input dataset as evidenced by its usage by an external team. The
output dataset is also important, since we can view it as an origin
of other datasets within the external project.

Identifying the type of provenance relationships is an interest-
ing research problem, especially in the context of post-hoc meta-
data inference. There are several signals that we can leverage in
this direction, including content similarity among datasets, known
provenance relationships, and crowdsourced information such as
the owner-provided descriptions. Once we categorize these rela-
tionships we then have to reason about them in the context of rank-
ing, a problem that itself involves a different set of challenges.

Expect and handle unusual datasets — Given the large number
of datasets in the catalog, we ran into many unexpected scenarios in
our early days. We solved some of them as one-off cases with ded-
icated code while others required a system-level redesign. For ex-
ample, the abstraction mechanism described in Section 3.2 employs
special logic to extract out unconventionally specified dates (for
example, “05Jan2015”) and versions. Handling of certain datasets
that caused our analyzers to crash due to issues in third party li-
braries outside our codebase required the sandboxing mechanism
described in Section 4.3. We adopted the strategy of going with the
simplest albeit adhoc solution first and generalized it as and when
required.

Export data as required — The storage medium for the Goods
catalog is a key-value store and the search service is backed by a
conventional inverted index. However, neither of these structures
are suitable for visualizing or performing complex path queries
over the provenance graph. To support such use cases, we set up a
daily export of the catalog data as subject–predicate–object triples.
We then import these triples into a graph-based system that sup-
ports path queries and exposes an API that is more amenable for

visualization. For use cases that require more powerful query pro-
cessing capabilities that our storage medium does not support na-
tively, the easiest strategy is to export the catalog data to a suitably
specialized engine.

Ensure recoverability — Extracting the metadata of billions of
datasets is expensive. In stable state, we process one day’s worth
of new datasets in a single day. Losing or corrupting a significant
chunk of the catalog can take weeks to recover unless we dedicate
significant additional computational resources to recovery. More-
over, we may not even be able to recompute some of the metadata
after significant data loss. For example, some transient files link
input and output datasets in the provenance graph. If we loose the
provenance data that we inferred from these transient files, we will
not be able to recover it.

To ensure recoverability we have configured Bigtable to retain
a rolling window of snapshots over several days, but we have also
built custom-tailored recovery schemes specifically for Goods. Specif-
ically, we have added a dedicated process to snapshot high-value
datasets (those in which users have explicitly expressed interest
through annotations) in a separate catalog in order to guard against
data loss. Another process replicates the subset of the catalog that
powers the profile pages so that the service remains available even
if the main catalog goes offline. Furthermore, we use the Goods
dataset-monitoring service for the catalog itself (which is another
structured dataset!) to ensure early detection of data corruption and
deletion. We arrived at this combined approach based on our expe-
rience of repairing the catalog on several occasions, some of which
caused major outages to the user-facing services.

7. RELATED WORK
We can characterize Goods as a data lake, an approach to store

massive amounts of data in easy-to-access repositories, without
having to pre-categorize them when they are created. Specifically,
Goods is a system to organize and index the data lake of all Google
datasets. Similar efforts are underway in other companies, such as
the data-lake management system developed in IBM Research [22]
or data-lake offerings in cloud services [1]. We do not have the
complete details for these systems, but the distinguishing features
of Goods seem to be the scale of the lake and the post-hoc approach
to metadata inference. Goods also shares the goals and ideas of
Dataspaces [16], and we can view it as a concrete implementation
of that idea.

DataHub [8, 9, 10] is a collaborative version-management sys-
tem for datasets that is similar in spirit to software version control
systems like Git and SVN. DataHub enables many users to ana-
lyze, collaborate, modify, and share datasets in a centralized repos-
itory. Data-management systems such as CKAN [3], Quandl [5],
and Microsoft Azure Marketplace [2] are repositories of data from
multiple sources, organized for distribution and sharing. In all these
systems, dataset owners actively choose to contribute their datasets
to the system or to annotate the datasets with metadata. The main
focus of Goods is to create a catalog in a post-hoc manner, while
the engineers continue to create and maintain the datasets in their
current environment. The engineers do not need to change any of
their practices in order for Goods to provide access to their datasets.

Researchers have proposed several systems [12, 26, 7] to extract
HTML tables from the Web, to annotate their schema, and to imple-
ment a search service for this type of Webtables. However, much
of the machinery in Webtable systems is devoted to the identifica-
tion of HTML tables that hold data (and are not merely used for
layouts), something that is not necessary for the kind of structured
datasets that Goods handles. Furthermore, metadata such as prove-

nance, owners, or project affiliation are absent for Webtables but
are very important for datasets.

Fast and efficient file search has become necessary for storage
systems. Spyglass [18] is a metadata-search system that improves
file management by allowing complex, ad hoc queries over file
metadata. Propeller [25] also provides fast file-search services and
updates its file indices in a real-time and scalable fashion. In com-
parison, the datasets in Goods are not in a single storage system
and therefore do not have as much readily available metadata, mak-
ing search a significantly more challenging problem. In addition,
Goods aims to provide a suite of tools for dataset management that
go beyond search.

Previous studies have looked into the problem of indexing and
searching a large corpus of structured datasets [21, 17]. The de-
veloped techniques could be used to power the search service of
Goods, but they would not solve the main challenges that we out-
lined in Section 2. However, these techniques may become more
relevant if Goods needs to index the actual content of datasets, in
which case the catalog will increase significantly in size.

Provenance management has been studied extensively in the lit-
erature [14]. Some examples are the PASS [20] and Trio [24] sys-
tems to maintain the provenance of files and database records, re-
spectively, and Datahub [10] as a system to maintain versions of
datasets. These systems assume that provenance information is ei-
ther given or can be retrieved reliably through special instrumenta-
tion of the processes that access the data. By contrast, Goods has to
rely on much weaker signals for provenance inference while also
relying on provenance as a strong signal for dataset ranking.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a system that provides access to

metadata about billions of datasets within an enterprise. As might
be expected with a system of this scale, we had to solve many
challenges—some that we expected and some that we had not. The
resulting system provides real value for engineers at Google and
already supports many data-management use cases—again, some
that we had anticipated and some that grew out of feedback from
users who were using the system.

Many significant challenges remain, however. First, we are still
far from fully understanding how to rank datasets, how to iden-
tify important datasets, and whether or not approaches are similar
to ranking of web pages. We discussed some of the signals that
we use for ranking in Section 5.2, but we know from the users’
feedback that we must improve ranking significantly. We need
to be able to distinguish between production and test or develop-
ment datasets, between datasets that provide input for many other
datasets, datasets that users care about, and so on.

Second, because the teams generate their datasets independently
and some provide a lot more metadata about the data than others,
we need to rely on other, weaker, signals in order to fill the miss-
ing metadata about a dataset. We plan to integrate the data with a
larger knowledge graph that links together many of the Google’s
resources, such as datasets, code, and teams. For instance, know-
ing which code generated a dataset can provide clues to its content.
Knowing what are the projects that the team that is responsible for a
dataset works on can fill out some of the missing metadata. We be-
lieve that there are multiple connections like these ones that would
allow us to propagate some of the missing metadata between re-
lated entities.

Third, understanding the semantics of the data inside the datasets
is another source of information that would make our services—
search, in particular—more useful to the users. Again, we can rely
on other knowledge structures at Google, such as the Knowledge

Graph (which other companies also have) to gain some understand-
ing of these semantics.

Fourth, modifying existing storage systems to register their datasets
with Goods at the time when the datasets are created can improve
the freshness of the catalog. This approach, however, is contrary to
the non-invasive post-hoc approach that we have described in this
paper. Exploring a combination of the two approaches is future
work.

Finally, we hope that systems such as Goods will provide an im-
petus to instilling a “data culture” at data-driven companies today
in general, and at Google in particular. As we develop systems
that enable enterprises to treat datasets as core assets that they are,
through dashboards, monitoring, and so on, it will hopefully be-
come as natural to have as much “data discipline” as we have “code
discipline.”

9. ACKNOWLEDGMENTS
We would like to thank John Wilkes for his insightful comments

which helped us improve the paper. We would also like to thank
Lorenzo Martignoni and Andi Vajda who helped us in collecting
and visualizing provenance metadata, respectively. Finally, we would
like to thank our interns, Dominik Moritz, Arun Iyer, Xiao Cheng,
Hui Miao, Subhabrata Mukherjee and Jaeho Shin, who have con-
tributed to the features of our system.

10. REFERENCES
[1] Azure data lake.

https://azure.microsoft.com/en-us/solutions/data-lake/.
[2] Azure marketplace.

http://datamarket.azure.com/browse/data.
[3] CKAN. http://ckan.org.
[4] Data lakes and the promise of unsiloed data.

http://www.pwc.com/us/en/technology-forecast/2014/

cloud-computing/features/data-lakes.html.
[5] Quandl. https://www.quandl.com.
[6] A universally unique identifier (uuid) urn namespace.

https://www.ietf.org/rfc/rfc4122.txt.
[7] S. Balakrishnan, A. Y. Halevy, B. Harb, H. Lee,

J. Madhavan, A. Rostamizadeh, W. Shen, K. Wilder, F. Wu,
and C. Yu. Applying webtables in practice. In CIDR 2015,
Seventh Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, 2015.

[8] A. P. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande,
A. J. Elmore, S. Madden, and A. G. Parameswaran.
DataHub: Collaborative data science & dataset version
management at scale. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, 2015.

[9] A. P. Bhardwaj, A. Deshpande, A. J. Elmore, D. R. Karger,
S. Madden, A. G. Parameswaran, H. Subramanyam, E. Wu,
and R. Zhang. Collaborative data analytics with DataHub.
PVLDB, 8(12):1916–1927, 2015.

[10] S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and
A. G. Parameswaran. Principles of dataset versioning:
Exploring the recreation/storage tradeoff. PVLDB,
8(12):1346–1357, 2015.

[11] A. Brown. Get smarter answers from the knowledge graph.
http://insidesearch.blogspot.com/2012/12/

get-smarter-answers-from-knowledge_4.html, 2012.
[12] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and

Y. Zhang. Webtables: exploring the power of tables on the
web. PVLDB, 1(1):538–549, 2008.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[14] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in
databases: Why, how, and where. Found. Trends databases,
1(4):379–474, Apr. 2009.

[15] P. Flajolet, E. Fusy, G. O., and F. Meunier. Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm.
Analysis of Algorithms (AOFA), 2007.

[16] M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: A new abstraction for information management.
SIGMOD Rec., 34(4):27–33, Dec. 2005.

[17] I. Konstantinou, E. Angelou, D. Tsoumakos, and N. Koziris.
Distributed indexing of web scale datasets for the cloud. In
Proceedings of the 2010 Workshop on Massive Data
Analytics on the Cloud, MDAC ’10, pages 1:1–1:6, 2010.

[18] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L.
Miller. Spyglass: Fast, scalable metadata search for
large-scale storage systems. In M. I. Seltzer and R. Wheeler,
editors, FAST, pages 153–166. USENIX, 2009.

[19] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: interactive analysis of
web-scale datasets. Commun. ACM, 54(6):114–123, 2011.

[20] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systems. In
Proceedings of the Annual Conference on USENIX ’06
Annual Technical Conference, pages 43–56, 2006.

[21] P. Rao and B. Moon. An internet-scale service for publishing
and locating xml documents. In Proceedings of the 2009 Int’l
Conference on Data Engineering (ICDE), pages 1459–1462,
2009.

[22] I. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino. Data
wrangling: The challenging journey from the wild to the
lake. In CIDR 2015, Seventh Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA,
2015.

[23] K. Varda. Protocol buffers: Google’s data interchange
format. Google Open Source Blog, Accessed July, 2008.

[24] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, pages 262–276, 2005.

[25] L. Xu, H. Jiang, X. Liu, L. Tian, Y. Hua, and J. Hu.
Propeller: A scalable metadata organization for a versatile
searchable file system. Technical Report 119, Department of
Computer Science and Engineering, University of
Nebraska-Lincoln, 2011.

[26] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
InfoGather: entity augmentation and attribute discovery by
holistic matching with web tables. In K. S. Candan, Y. Chen,
R. T. Snodgrass, L. Gravano, and A. Fuxman, editors,
SIGMOD Conference, pages 97–108. ACM, 2012.

