Deep Learning for Entity Matching: A Design Space Exploration

Sidharth Mudgal!, Han Li!, Theodoros Rekatsinas!, AnHai Doan!,
Youngchoon Park?, Ganesh Krishnan®, Rohit Deep?, Esteban Arcaute?, Vijay Raghavendra®

!University of Wisconsin-Madison, 2Johnson Controls, *@WalmartLabs, ‘Facebook

ABSTRACT

Entity matching (EM) finds data instances that refer to the same
real-world entity. In this paper we examine applying deep learn-
ing (DL) to EM, to understand DL’s benefits and limitations. We
review many DL solutions that have been developed for related
matching tasks in text processing (e.g., entity linking, textual en-
tailment, etc.). We categorize these solutions and define a space of
DL solutions for EM, as embodied by four solutions with varying
representational power: SIF, RNN, Attention, and Hybrid. Next, we
investigate the types of EM problems for which DL can be helpful.
We consider three such problem types, which match structured data
instances, textual instances, and dirty instances, respectively. We
empirically compare the above four DL solutions with Magellan,
a state-of-the-art learning-based EM solution. The results show
that DL does not outperform current solutions on structured EM,
but it can significantly outperform them on textual and dirty EM.
For practitioners, this suggests that they should seriously consider
using DL for textual and dirty EM problems. Finally, we analyze
DL’s performance and discuss future research directions.

KEYWORDS

Deep learning; entity matching; entity resolution

ACM Reference Format:

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Young-
choon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay
Raghavendra. 2018. Deep Learning for Entity Matching: A Design Space
Exploration. In SIGMOD’18: 2018 International Conference on Management
of Data, June 10-15, 2018, Houston, TX, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3183713.3196926

1 INTRODUCTION

Entity matching (EM) finds data instances referring to the same
real-world entity, such as (Eric Smith, Johns Hopkins) and (E. Smith,
JHU). This problem is critical in data cleaning and integration. As a
result, it has received significant attention [9]. Tremendous progress
has been made. But no satisfactory solution has yet been found.
In the past few years, deep learning (DL) has become a major
direction in machine learning [28, 46, 63, 83]. DL yields state-of-
the-art results for tasks over data with some hidden structure, e.g.,
text, image, and speech. On such data, using labeled examples, DL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00
https://doi.org/10.1145/3183713.3196926

can automatically construct important features, thereby obviating
the need for manual feature engineering. This has transformed
fields such as image and speech processing, medical diagnosis,
autonomous driving, robotics, NLP, and many others [28, 46]. Re-
cently, DL has also gained the attention of the database research
community [17, 83].

A natural question then is whether deep learning can help entity
matching. Specifically, has DL been applied to EM and other related
matching tasks? If so, what are those tasks, and what kinds of solu-
tions have been proposed? How do we categorize those solutions?
How would those DL solutions compare to existing (non-DL) EM
solutions? On what kinds of EM problems would they help? And
on what kinds of problems would they not? What are the opportu-
nities and challenges in applying DL to EM? As far as we know, no
published work has studied these questions in depth.

In this paper we study the above questions, with the goal of
understanding the benefits and limitations of DL when applied to
EM problems. Clearly, DL and EM can be studied in many different
settings. In this paper, as a first step, we consider the classic setting
in which we can automatically train DL and EM solutions on labeled
training data, then apply them to test data. This setting excludes
unsupervised EM approaches such as clustering, and approaches
that require substantial human effort such as crowdsourced EM or
EM using hand-crafted rules.

Defining a Space of DL Solutions: We begin by defining a space
of DL solutions for EM and related matching tasks. As far as we
can tell, only one work has proposed a DL solution called DeepER
for EM [18]. But numerous DL solutions have been proposed for
related matching tasks in the field of natural language processing
(NLP), such as entity linking, coreference resolution, textual entail-
ment, etc. [46]. We provide a categorization of these solutions that
factors out their commonalities. Building on this categorization,
we describe a DL architecture template for EM, and discuss the
trade-offs of the design choices in this template. We select four DL
solutions as “representative points” in the design space (formed by
the combination of the choices). These solutions include relatively
simple models such as DeepER, the existing DL solution for EM [18],
as well as DL solutions with significantly more representational
power. We refer to these four DL solutions as SIF, RNN, Attention,
and Hybrid (see Section 4).

Defining a Space of EM Problems: Next, we investigate for
which types of EM problems DL can be helpful. The most popular
type of EM problems has been matching structured data instances,
e.g., matching tuples where the attribute values are short and atomic,
such as name, title, age, city, etc. (see Figure 1.a) [9]. Thus, we
examine how DL performs on EM setups over such structured data.

In recent years, however, we have also seen an increasing demand
for matching textual data instances, such as matching descriptions

https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926

of products that correspond to long spans of text, matching com-
pany homepages with Wikipedia pages that describe companies,
matching organization descriptions in financial SEC filings, and
matching short blurbs describing Twitter users, among others (see
Figure 1.b). We suspect that traditional learning-based EM solutions
(e.g., those that use random forest, SVM, etc.) may have difficul-
ties matching textual instances, because there are few meaningful
features that we can create (e.g., computing word-level Jaccard or
TF/IDF scores). On the other hand, we believe that DL can perform
well here, due to its ability to learn from raw text, and its current
successes in NLP task [12, 79, 88].

Understanding the advantages that DL has to offer for EM over
textual data instances raises an intriguing possibility. In our exten-
sive work on EM with many companies, we have seen many cases
where the instances to be matched are structured but dirty. Specif-
ically, the value for a particular attribute (e.g., brand) is missing
from the cell for that attribute, but appears in the cell for another
attribute (e.g., name), see for example tuple #; in Figure 1.c. This
commonly arises due to inaccurate extraction of the attributes (e.g.,
extracting “leather red” as a value for attribute color, even though
“leather” is a value for attribute materials). Traditional EM solutions
do not work well for such cases. We suspect, however, that DL can
be a promising solution to such EM problems, because it can simply
ignore the “attribute boundaries” and treat the whole instance as
a piece of text, thus in a sense going back to the case of matching
textual instances.

Empirical Evaluation: To evaluate the above hypotheses, we
assemble a collection of datasets, which includes all publicly avail-
able datasets (with labeled data) for EM that we know of, as well as
several large datasets from companies. We create 11 EM tasks for
structured instances, 6 tasks for textual instances, and 6 tasks for
dirty instances, with the number of labeled instances ranging from
450 to 250K. We compare the four DL solutions described earlier
(SIF, RNN, Attention, and Hybrid) with Magellan, a state-of-the-art
open-source learning-based EM solution [41].

Our results show that DL solutions are competitive with Magel-
lan on structured instances (87.9% vs 88.8% average F1), but require
far longer training time (5.4h vs 1.5m on average). Thus, it is not
clear to what extent DL can help structured EM (compared to just
using today learning-based EM solutions). On the other hand, DL
significantly outperforms Magellan on textual EM, improving ac-
curacy by 3.0-22.0% F;. Our results also show that DL significantly
outperforms Magellan on dirty EM, improving accuracy by 6.2-
32.6% Fi. Thus, DL proves highly promising for textual and dirty
EM, as it provides new automatic solutions that significantly out-
perform current best automatic solutions.

In addition to examining the accuracy of the various DL solutions
(compared to current learning-based EM solutions) as we vary the
type of EM tasks, we also examine how the different design choices
in the space of DL solutions lead to various trade-offs between the
accuracy and efficiency of these solutions. We further perform a
detailed experimental validation of all identified trade-offs.

Finally, we analyze why DL solutions work better than current
EM solutions, and why they do not yet reach 100% accuracy. We
discuss the challenges of applying DL to EM (e.g., the effect of
domain-specific semantics and training data on the performance

of DL solutions, the need for automating the exploration of the
accuracy and scalability trade-off for DL solutions for EM), as well
as future research directions.

Contributions: To summarize, in this paper we make the follow-
ing contributions:

e We provide a categorization of DL solutions for numerous
matching tasks, and define a design space for these solutions,
as embodied by four DL solutions SIF, RNN, Attention, and
Hybrid. To our knowledge, this is the first work that defines a
design space of DL solutions of varying complexity for learn-
ing distributed representations that capture the similarity
between data instances.

e We provide a categorization of EM problems into structured
EM, textual EM, and dirty EM. Structured EM has been stud-
ied extensively, but to our knowledge textual EM and dirty
EM, while pervasive, have received very little or no attention
in the database research community.

e We provide an extensive empirical evaluation that shows that
DL does not outperform current EM solutions on structured
EM, but it can significantly outperform them on textual and
dirty EM. For practitioners, this suggests that they should
consider using DL for textual and dirty EM problems.

e We provide an analysis of DL’s performance and a discussion
of opportunities for future research.

This project is conducted as a part of the larger Magellan project
at UW-Madison [41, 42], which builds Magellan, a novel kind of
EM system. Magellan provides support for the entire EM pipeline,
and is built as a set of interoperable packages in the Python data
science ecosystem (rather than as a single monolithic stand-alone
system, as is commonly done today).

Magellan has been successfully applied to a range of EM tasks in
domain sciences and at companies, and used in many data science
classes [42]. We have open-sourced the four DL solutions described
here as the deepmatcher Python package, as a part of the open-
source code for Magellan. The code and some data used here are
available at sites.google.com/site/anhaidgroup/projects/magellan,
and more details are available in a technical report [55].

2 PRELIMINARIES AND RELATED WORK
2.1 Entity Matching

Problem Setting: We define an entity to be a distinct real-world
object (e.g., person, organization, etc.). We define an entity mention
to be a reference to a real-world entity, e.g., a data record in a
structured dataset or a span of text in a document.

Let D and D’ be two collections of entity mentions. We assume
that entries in D and D’ follow the same representation (e.g., the
same schema with attributes Ay, ..., Ay in the case of structured
data). The goal of entity matching (EM) is to find all pairs of entity
mentions between D and D’ that refer to the same real-world en-
tity [9]. These pairs are called matches. Typically, EM is done in two
phases: blocking and matching. The goal of blocking is to filter the
cross product D X D’ to a candidate set C that only includes pairs
of entity mentions judged likely to be matches. Typical blocking
mechanisms are assumed to have no false negatives. The candidate
set C often still contains pairs that correspond to non-matching

Name City Age Description Name Brand Price

t, | Dave Smith | New York | 18 t, | Kingston 133x high-speed 4GB compact flash card ts4gcf133, 21.5 MB per t, Adobe 299.99
sec data transfer rate, dual-channel support, multi-platform compatibility. Acrobat 8

Name City Age Description Name Brand Price

t, | David Smith | New York | 18 t, | Kingston ts4gcf133 4GB compactflash memory card (133x). t, | Acrobat 8 Adobe 299.99

(a) structured

(b) textual

(c) dirty

Figure 1: Tuple pair examples for the three EM problem types considered in this paper.

entity mentions. After blocking, a matcher is used to identify the
true matching entity mentions.

We focus on the matching step of EM. We assume as input two
collections D and D’ and a candidate set C containing entity men-
tion pairs (e; € D, e € D’). We further assume access to a set T of

ITl ¢ ¢, and I is a label taking

tuples {(ei, eé, l)}lE| where {(ei, eé)}i:1

values in {“match”, 1“no—match”}.

Given the labeled data T our goal is to design a matcher M that
can accurately distinguish between “match” and “no-match” pairs
(e1, e2) in C. We focus on machine learning (ML) based entity match-
ing, because they obtain state-of-the-art results in benchmark EM
datasets [24, 41, 43] and obviate the need for manually designing
accurate matching functions [5, 24, 41]. Specifically, we use T as
labeled training data to learn a matcher M that classifies pairs of
entity mentions in C as “match” or “no-match”.

Types of EM Problems: Recall that we want to know for which
types of EM problems DL can be helpful. Toward this goal we
consider the following three types:

(1) Structured EM: Entity mentions in D and D’ are structured
records that follow the same schema with attributes Aq, ..., AN.
We classify a dataset as structured when its entries are relatively
clean, i.e., attribute values are properly aligned and cells of each
record contain information that is associated only with the attribute
describing each cell (see Figure 1.a). Further, the data may contain
text-based attributes but of restricted length (e.g., product title,
address).

(2) Textual EM: All attributes for entity mentions in D and D’
correspond to raw text entries (see Figure 1.b).

(3) Dirty EM: Entity mentions in D and D’ are structured records
with the same schema Ay, ..., AN. However, attribute values may
be “injected” under the wrong attribute (i.e., attribute values are
not associated with their appropriate attribute in the schema), see
Figure 1.c.

For the above three EM problem types, we will experimentally
compare state-of-the-art learning-based entity EM solutions that
use traditional classifiers (e.g., logistic regression, SVM, and deci-
sion trees [41]) with classifiers that use state-of-the-art DL models
(described in Section 4).

Related EM Work: EM has received much attention [9, 19, 24, 56,
64]. Most EM approaches in the database literature match structured
records [24], whereas most related works in NLP and similarity
learning match entity mentions that are text spans. We review prior
work on NLP tasks related to EM in Section 2.3.

Work on the matching step of EM typically uses rules, learning, or
crowdsourcing. Rule-based solutions [20, 68] are interpretable but
require the heavy involvement of a domain expert. To address this

problem, some work has focused on learning matching functions [5,
41, 69]. Finally, a different line of work develops methods to leverage
human experts [26, 73, 81] to guide EM and help refine the learned
matching functions.

The blocking step of EM has also received significant attention
[9, 59]. Our solutions in this paper assume as input the output
of a blocking procedure, and thus can work with any blocking
procedure that has been proposed.

DeepER, a recent pioneering work [18], also focuses on designing
DL solutions to EM. That work proposes two DL models that build
upon neural network (NN) architectures used extensively in the
NLP literature. Those two models correspond to instances of the
design space introduced in this paper and are similar to the two DL
models described in Sections 4.1 and 4.2. Our experimental analysis
(see Section 5) shows that more complex models tend to outperform
these simpler models. In addition, DeepER [18] discusses blocking
and how distributed representations can be used to design efficient
blocking mechanisms. Blocking is out of the scope of our paper.

Both DeepER and our work here formulate EM as a pairwise
binary classification task using logistic loss. But there are other
ways to formulate the same problem. For example, triplet learning
[34] first learns good embeddings for objects using triplet loss,
and then learns an NN classifier. The work in [57] attacks the
problem by learning good entity embeddings in vector space using
contrastive loss. A distance threshold or an NN classifier is used for
classification. Yet another potential approach (used in the Question-
Answering (QA) domain) poses matching as a nearest neighbor
search problem [86] and can be adapted for EM. Finally, Matching
Networks [80], an approach to perform image classification using
labels of related images, may also be adapted for EM.

2.2 Deep Learning

We now review the basic DL concepts that are necessary to describe
the DL-based matchers described in Section 4.

Neural Networks (NNs): The most basic model in deep learning
corresponds to a fully connected layer. This layer takes as input a
vector x, performs an affine transformation of the input wx + b, and
applies a non-linear activation function, e.g., a sigmoid function (o)
to produce the final output o(wx + b). Multi-layer NNs are simply
a generalization of this basic idea where NN layers are stacked in
sequence. For details we refer the reader to recent surveys [28, 63].

Recurrent Neural Networks (RNNs): A model that we build
upon is RNNs [76], which have delivered state-of-the-art results in
many NLP tasks, including speech recognition [3, 30, 32], transla-
tion [50], and information extraction [53, 85]. RNNs are designed to
process data that is sequential in nature, especially when the input
sequences have variable length. Given a sequence of m vectors
as input, an RNN processes one vector at a time, and produces a

sequence of m vectors as output. At time step ¢ an RNN processes
the rth input x; to produce the tth output y;, considering all the
previous inputs it has seen so far. This is done by using a recurrent
unit, which is an NN that is shared between all time steps. The
recurrent unit contains a hidden state vector which is updated at
every time step. At time step ¢, the recurrent unit takes the t™ input
to the RNN x; and the hidden state output of the previous time step
h;_1 to produce the hidden state output of the current time step
h;. Hence, the hidden state vector of the #th time step h; contains
information from inputs xj, - - - , X;. The output of an RNN for each
time step y; is the hidden state output at each time step h;. In many
cases the last output of the RNN yy, is used to encode the input
sequence into a fixed-length vector representation. In the rest of
this paper we refer to this representation as a summarization.

Attention: Traditional RNNs compress the information contained
in the input sequence to a fixed-length vector representation. Dur-
ing this process they consider all parts of the input sequence to be
equally important. This representation technique can make it diffi-
cult for RNNs to learn meaningful representations (summarizations)
from long (and possibly noisy) input sequences. Recent work [8, 77]
has introduced attention mechanisms to overcome this limitation.
An attention model is a method that takes n arguments y1, ..., ypn
and a context c. It returns a vector z which is supposed to be the
“summary” of the y;, focusing on information linked to the context
c. Combining attention mechanisms with RNNs allows the latter
to “attend” to different parts of the input sequence at each step of
the output generation. Importantly, attention mechanisms let the
model learn what to attend to based on the input sentence.

Word Embeddings: Word embeddings are the de-facto standard
in language modeling and feature learning in NLP [51]. A word
embedding maps words or phrases from a vocabulary to vectors
of real numbers [4]. Methods to generate these mappings include
neural networks [52], dimensionality reduction techniques such
as PCA [45] on the word co-occurrence matrix and other proba-
bilistic techniques [25]. Word embeddings, many times pre-trained
ones [36, 61], are combined with RNNs or other neural networks
to boost the performance of NLP tasks [70, 71].

2.3 DL Solutions for Matching Tasks in NLP

We now briefly review DL solutions for matching related tasks in
NLP (e.g., entity linking, coreference resolution, etc.), then provide
a categorization that factors out their commonalities.

Entity Linking: Entity linking aims at linking entity mentions
in an input document (usually a small piece of text) to a canonical
entity in a knowledge base [67]. For example, given the text span
“Apple announced the new generation iPhone” from a document
and access to DBpedia, one needs to link entity mention “Apple”
to entity “Apple Inc” in DBpedia. The key difference between en-
tity linking and EM is that in entity linking the target knowledge
base contains additional information such as the relationships be-
tween entities. Most entity linking solutions use this information to
collectively reason about multiple entities during linking [24]. DL
approaches to entity linking are no exception. For example, recent
DL work [21, 75] proposed the use of hierarchical word embeddings
to obtain representations that capture entity cooccurrences, Ganea
et al. [22] extended attention mechanisms to consider not only the

input text span but also surrounding context windows, and Huang
et al. [35] rely on the knowledge base structure and develop a deep,
semantic entity similarity model using feed-forward NNs.

Coreference Resolution: Coreference resolution takes as input
a document (or collection of documents) and aims to identify and
group text spans that refer to the same real-world entity [37]. For
example, both “N.Y” and “Big Apple” refer to “New York” in an
article introducing the city. While related to EM, coreference reso-
lution is significantly different as it operates on entity mentions that
correspond to (typically short) text spans that commonly appear in
the same document, and thus share similar context. As with most
NLP tasks, recent work has proposed DL solutions to coreference
resolution. For example, Clark et al. [10] used word embeddings
to encode and rank pairs of entity mentions and use a deep neural
network to identify clusters of entity mentions that correspond to
the same entity, and Wiseman et al. [84] proposed using an RNN
to obtain a global representation of entity clusters.

Textual Entailment & Semantic Text Similarity: Textual en-
tailment [14] determines when the meaning of a text excerpt is
contained in the meaning of a second piece of text, i.e., if the two
meanings are semantically independent, contradictory or in an
entailment relationship where one sentence (called the premise)
can induce the meaning of the other one (called the hypothesis).
For example, the sentence “a cat is chasing a mouse” entails an-
other sentence “a cat is moving”, contradicts with “a cat is sleeping”,
while is neutral with “Tom saw a cat with yellow eyes”. A similar
task is semantic text similarity, which decides if two given text
snippets are semantically similar. Many DL solutions have been
proposed for these problems. For example, recent work [7, 49] pro-
posed using Bi-LSTMs—a state-of-the-art RNN—with attention to
learn representation vectors for sentence pairs. A different line of
work [60, 66] suggested that using only attention mechanisms with
simple feed-forward NN suffice to summarize pairs of sentences,
thus avoiding learning complicated representations such as those
obtained by RNNs. Neculoiu et al. [57] proposes using Bi-LSTMs
with a siamese architecture trained using a contrastive loss function.
This is so that matching sentences would be nearby in vector space.
More recently, Nicosia et al. [58] builds upon this architecture and
proposes training the network by also jointly minimizing a logis-
tic loss apart from the contrastive loss to improve classification
accuracy.

Question Answering: In question answering (QA) [31], the task
is to answer natural language questions, using either existing text
passages or a given knowledge base. Here DL solutions include [27,
78, 87]. Golub et al. [27] build upon RNNs to learn representations
that summarize questions and entities. To deal with rare words,
[87] adopt a character-level NN to generate the word embeddings.

Categorization of the DL Solutions: While DL models (i.e., so-
lutions) for NLP seems highly specialized at first glance, they do in
fact share several commonalities. All models that we have discussed
so far take as input a pair of sequences, learn a vectorized repre-
sentation of the input sequence pair, then perform a comparison
between the two sequences. All of these models can be classified
along three dimensions: (1) the language representation used to en-
code the input sequences (e.g., use a pre-trained word or character

Attr 1 Attr 2 Attr 3

— - -

o o o o o o

g g g g 3 g

w) wl w) 1%5] L2

° o [o 3 °

o [° o ° o

s o ° e 2 Sequences of Words
°

-

1. Attribute Embedding

[m

-

Sequences of
Word Embeddings

.. I

+

2. Attribute Similarity 77
Representation

}

|«m«”“:«|]]]]]«

} Attribute Similarity

N

} Entity Similarity

3. Classification

[[] Neural Network (NN)

NNs with the same
pattern share parameters

prediction

=

Figure 2: Our architecture template for DL solutions for EM.

embedding or learn one from scratch), (2) the kind of network used
to summarize the input, i.e., learn a vector representation of the
input sequence pair (e.g., use an RNN or an attention-only mech-
anism or a combination of the two), and (3) the method used to
compare the two input sequences (e.g., a neural network).

3 A DESIGN SPACE OF DL SOLUTIONS

Building on the above categorization of the DL solutions for match-
ing tasks in NLP, we now describe an architecture template for DL
solutions for EM. This template consists of three main modules,
and for each module we provide a set of choices. The combinations
of these choices form a design space of possible DL solutions for
EM. The next section selects four DL solutions for EM (SIF, RNN,
Attention, and Hybrid) as “representative points” in this design
space. Section 5 then evaluates these four DL solutions, as well as
the trade-offs introduced by the different design choices.

3.1 Architecture Template & Design Space

Figure 2 shows our architecture template for DL solutions for EM.
This template is for the matching phase of EM only (the focus of
this paper). It uses the categorization of DL models for matching
related tasks discussed in Section 2.3, and is built around the same
categorization dimensions: (1) the language representation, (2) the
summarization technique, and (3) the comparison method used
to analyze an input pair of sequences. The template consists of
three main modules each of which is associated with one of these
dimensions.

Before discussing the modules, we discuss assumptions regarding
the input. We assume that each input point corresponds to a pair
of entity mentions (e1, e2), which follow the same schema with
attributes Aj,...,AN. Textual data can be represented using a
schema with a single attribute. We further assume that the value of
attribute A; for each entity mention e corresponds to a sequence of
words we, ;. We allow the length of these sequences to be different
across different entity mentions. Given this setup, each input point
corresponds to a vector of N entries (one for each attribute A; €

{A1,...,AN}) where each entry j corresponds to a pair of word
sequences W, j and we, ;.

The Attribute Embedding Module: For all attributes A; €
Aq -+ A, this module takes sequences of words we,,j and we,, ;
and converts them to two sequences of word embedding vectors
Ue,,j and u, j whose elements correspond to d-dimensional em-
beddings of the corresponding words. More precisely, if for e1, word
sequence W, ; contains m elements then we have ue, ; € R&*™,
The same holds for ez. The overall output of the attribute embed-
ding module of our template is a pair of embeddings ue,,;j and ue, ;
for the values of attribute A; for entity mentions e; and ez. We

denote the final output of this module as {(ue,, j, ue,, ;) }jl\i 1

The Attribute Similarity Representation Module: The goal of
this module is to automatically learn a representation that captures
the similarity of two entity mentions given as input. This module
takes as input the attribute value embeddings {(ue,, j, Ue,, j)} J]\i ,and
encodes this input to a representation that captures the attribute
value similarities of e; and e;. For each attribute A; and pair of
attribute embeddings (ue,, j, ue,, ;) the operations performed by
this module are split into two major parts:

(1) Attribute summarization. This module takes as input the two
sequences (Ue,, j,Ue, j) and applies an operation H that summa-
rizes the information in the input sequences. More precisely, let
sequences Ue, j and U, ; contain m and k elements respectively.
An h dimensional summarization model H takes as input sequences
Ue,,j € R¥™ and Ue,,j € Rk and outputs two summary vectors
Se,,j € R" and s, j€ R”. The role of attribute summarization is
to aggregate information across all tokens in the attribute value
sequence of an entity mention. This summarization process may
consider the pair of sequences (ue,, j, Ue,, j) jointly to perform more

sophisticated operations such as soft alignment [2].

(2) Attribute comparison. This part takes as input the summary
vectors se, j € R" and s,,, j€ R" and applies a comparison function
D over those summaries to obtain the final similarity representation
of the attribute values for e; and e;. We denote that similarity
representation by s; € R with sj = D(se,, j»Ses, j)-

The output of the similarity representation module is a collec-
tion of similarity representation vectors {s,. .., sy}, one for each
attribute A, ..., AN. There are various design choices for the two
parts of this module. We discuss those in detail in Section 3.3.

The Classifier Module: This module takes as input the similarity
representations {si, ..., sy} and uses those as features for a classi-
fier M that determines if the input entity mentions e; and ey refer
to the same real-world entity.

A Design Space of DL Solutions for EM: Our architecture tem-
plate provides a set of choices for each of the above three modules.
Figure 3 describes these choices (under “Options” on the right side
of the figure). Note that we provide only one choice for the classifier
module, namely a multi-layer NN, because this is the most common
choice today in DL models for classification. For other modules we
provide multiple choices. In what follows we discuss the choices for
attribute embedding, summarization, and comparison. The number-
ing of the choices that we will discuss correspond to the numbering
used in Figure 3.

Architecture module Options

Granularity:
(1) Word-based
(2) Character-based

Training:
(3) Pre-trained
(4) Learned

Attribute embedding

(1) Attribute (1) Heuristic-based (2) RNN-based
. summarization | (3) Attention-based (4) Hybrid
Attribute - - - -
similarity (1) Fixed distance (cosine, Euclidean)
representation (2) Attribute (2) Learnable distance (concatenation,
comparison element-wise absolute difference,
element-wise multiplication)
Classifier NN (multi-layer perceptron)

Figure 3: The design space of DL solutions for EM.
3.2 Attribute Embedding Choices

Possible embedding choices for this module can be characterized
along two axes: (1) the granularity of the embedding and (2) whether
a pre-trained embedding is used or a domain specific embedding is
learned. We now discuss these two axes.

(1) Word-level vs. (2) Character-level Embeddings: Given a
sequence of words, a word-level embedding encodes each word in
the sequence as a fixed d-dimensional vector. Procedurally, word
level embeddings use a lookup table to convert a word into an
embedding [52, 61]. To learn this lookup table word embeddings
are trained either on large external corpora, such as Wikipedia,
or on the corpus of the task in hand. An important design choice
for word-level embeddings is handling out-of-vocabulary (OOV)
tokens at test time [16]. A common approach is to replace infrequent
words with a special token UNK, and use this to model OOV words.

Another option is that of character-level embeddings. This type
of embedding takes as input the characters present in a word and use
a neural network to produce a d-dimensional vector representation
for the word. Unlike world-level embeddings where the end result of
training is a lookup table, the end result here is a trained model that
can produce word embeddings for any word containing characters
in its known character vocabulary [6, 39]. The core idea behind
these models is that words are made of morphemes, or meaningful
sequences of characters, of varying lengths. For example, the word
“kindness” is made of two morphemes, “kind” and “ness”.

Character-level embeddings can offer significant performance
improvements in domains with infrequent words (see Section 5.4)
as they take into account the fact that many words can be morpho-
logically related (e.g., “available”, “availability” and “unavailable”).
Character-level embeddings are more robust to out-of-vocabulary
(OOV) words—OOV words may occur due to misspellings—as they
leverage possible substrings of the word to approximate its embed-
ding. This leads to better performance in scenarios such as entity
matching where long-tail vocabularies are common and typograph-
ical errors are widespread (see Section 5.4).

(3) Pre-trained vs. (4) Learned Embeddings: A different choice
in our template is to decide between using pre-trained word em-
beddings, such as word-level embeddings (e.g., word2vec [52] and
GloVe [61]) or character-level embeddings (e.g., fastText [6]), or
train embeddings from scratch. Pre-trained embeddings offer two
distinctive advantages: (1) they lead to significantly smaller end-
to-end training times, and (2) they have been trained over large
corpora, such as Wikipedia, GoogleNews, and Gigaword, and thus,
are more robust to linguistic variations. Pre-trained embeddings
may not be suitable for domains where the vocabulary contains

tokens with highly specialized semantics (e.g., product barcodes
for retail applications). In this case, training a domain-specific em-
bedding can offer improved performance (see Section 5.4).

3.3 Attribute Summarization Choices

Recall that the role of attribute summarization is to aggregate in-
formation across all tokens in the attribute value sequence of an
entity mention. Given the attribute embeddings u.,,; € RIX™ and
Ue,,j € RO¥¥ for attribute A j, @ summarization process H outputs
two summary vectors se, j € R" and s,,, j€ R". We identify four
major options for attribute summarization.

(1) Aggregate Function: The summarization process H corre-
sponds to a simple aggregate function over each embedding se-
quence ug, ; and ue, j, e.g., average or weighted average. More
precisely, function H : R¥%" — R¥ s applied to each input inde-
pendently and produces a d-dimensional summarization. Here, the
output dimension h is equal to d. The biggest advantage of this
type of summarization is training efficiency since there is usually no
learning involved. However, models that rely on this kind of sum-
marization cannot learn complex interactions between words in the
input sequence. The performance of this summarization method
depends strongly on the quality of the embedding vectors [1].

(2) Sequence-aware Summarization: Here the summarization
process H aims to learn complex interactions across the tokens
in the input sequences ue, ; and ue, ;. Specifically, function H :
R RP s applied to each input and produces a h-dimensional
summarization. To this end, process H can be built around an RNN
(see Section 2) so that it takes into account the order and the seman-
tics of the tokens in the input sequence. There are many variations
of RNN models [46], including long short-term memory (LSTM)
networks [33], gated recurrent unit (GRU) [8] networks, and bi-
directional networks [29, 49]. Given an RNN we implement process
H as follows. We pass an input sequence u.,; through the RNN to
obtain a sequence h, ; of hidden states. These hidden states are
then aggregated into a single h-dimensional vector s, ;. Typical
operations for this aggregation correspond to taking the last hidden
state of the RNN to be s, ; or taking an average across all hidden
states s j [76]. The basic advantage of this summarization method
allows us to reason about the context encoded in the entire input se-
quence. The limitations of this method are that (1) it does not learn
meaningful representations in the presence of very long sequences
(see Section 2), and (2) it does not analyze the inputs pairs ue,, ;
and ue,,j jointly to identify common contexts across sequences.
The latter can lead to significant performance loss when the input
sequences vary significantly in length [7].

(3) Sequence Alignment: Here, process H takes as input both
sequences U, j and ue, j and uses one as context when summariz-
ing the other. To this end, process H can be built around attention
mechanisms (see Section 2) that first learn to compute a soft align-
ment between two given sequences of words and then perform
a word by word comparison [23]. Attention mechanisms are also
very expressive [79] and have a significant drawback: they only
leverage the context given to them as input and ignore any context
present in the raw input sequence. For example, given a sequence,
attention-based summarization cannot take the position of input
tokens into account. As such, attention methods can perform poorly

in scenarios where the most informative token for matching two
entity mentions is the first one. This problem can be addressed by
combining them with sequence-based summarization methods.

(4) Hybrid: These attribute summarization methods are a com-
bination of the sequence-aware and sequence alignment methods
described above (see Section 4). Using these methods leads to very
expressive models that are expensive to train. Section 5 empirically
shows that DL models for EM that use hybrid attribute summariza-
tion methods can be up to 3X slower to train than other DL models.
However, hybrid methods obtain more accurate results—up to 4.5%
F;—than other methods.

3.4 Attribute Comparison Choices

Recall that attribute comparison identifies the distance between
the summary vectors se, j € R" and Se,,j € R" for attribute Aj.
We use D to denote this comparison operation. We assume that the
output of this operation is a fixed-dimension vector s; € R, We
identify two main options for the comparison operation D: (1) fixed
and (2) learnable distance functions.

(1) Fixed Distance Functions: The first option is to use a pre-
defined distance metric such as the cosine or Euclidean distance.
Here, the output is a scalar capturing how similar the values of the
two input entity mentions are for the attribute under consideration.
Using fixed distance functions leads to lower training times but
enforces strong priors over the similarity of attribute values.

(2) Learnable Distance Functions: To allow for more expres-
sivity we can rely on the classification module of our template to
learn a similarity function. In this case, the output vector s; € R!
of function D forms the input (features) to the matching classifier.
Different operations such as concatenation, element-wise absolute
difference, element-wise multiplication or hybrids of these are vi-
able options for D. We experimentally evaluate different operations
in Section 5. We find that using element-wise comparison to obtain
the input for the matching classifier is beneficial if an aggregate
function or sequence-aware summarization method was used for
attribute summarization. This is because these two methods do not
perform any cross sequence comparison during summarization.

4 REPRESENTATIVE DL SOLUTIONS FOR EM

The previous section describes a space of DL solutions for EM. We
now select four DL solutions as “representative points” in this space.
These solutions correspond to DL models of varying representa-
tional power and complexity—the more complex a model, the more
parameters it has, thus learning requires more resources.

All four solutions use fastText [6]—a pre-trained character-level
embedding—to implement the attribute embedding module of our
architecture template. (Section 5.4 provides a detailed evaluation of
the other design choices for this module.) Further, all four solutions
use a two layer fully-connected ReLU HighwayNet [72] followed by
a softmax layer to implement the classifier module. HighwayNets
were used since they sped up convergence and produced better em-
pirical results than traditional fully connected networks across EM
tasks, especially in the case of small datasets. The four solutions use
different choices for the attribute summarization process, however.
They are named SIF, RNN, Attention, and Hybrid, respectively, after

the choice for the attribute summarization part of the similarity
representation module of our architecture.

4.1 SIF: An Aggregate Function Model

We first consider a model (i.e., a DL solution, we use “model” and
“solution” interchangeably) that uses an aggregate function, specifi-
cally a weighted average for attribute summarization and an element-
wise absolute difference comparison operation to form the input to
the classifier module. Specifically, the weights used to compute the
average over the word embeddings for an input sequence are as
follows: given a word w the corresponding embedding is weighted
by a weight f(w) = a/(a + p(w)) where a is a hyperparameter and
p(w) the normalized unigram frequency of w in the input corpus.
This model was chosen since it is a simple but effective baseline
deep learning model. Its performance relies mostly on the expres-
sive power of the attribute embedding and the classifier used. The
weighting scheme used during averaging follows the Smooth In-
verse Frequency (SIF) sentence embedding model introduced by
Arora et al. [1]. This model was shown to perform comparably
to complex—and much harder to train—models for text similarity,
sentence entailment and other NLP tasks. This model is similar
to the Tuple2vec-Averaging model by Ebraheem et al. [18], but is
more expressive since it takes word frequencies into account.

4.2 RNN: A Sequence-aware Model

This second model uses a bidirectional RNN (i.e., a sequence-aware
method) for attribute summarization and an element-wise absolute
difference comparison operation to form the input to the classifier
module. This is a medium-complexity model that takes the order
of words in the input sequence into account. This model was se-
lected since it is one of the most commonly used DL approaches for
computing distributed representations of text snippets. The RNN
model we use corresponds to a bidirectional GRU-based RNN model
introduced by Cho et al. [8] for machine translation. Bidirectional
RNNss are the de-facto deep learning model for NLP tasks [51].

We now provide a high-level description of the model. The model
consists of two RNNs: the forward RNN that processes the input
word embedding sequence u in its regular order (from element
entry u[1] to entry u[¢]) and produces hidden states f;.; and the
backwards network that processes the input sequence in reverse or-
der to produce hidden states b;.;. The final attribute summarization
representation corresponds to the concatenation of the last two
outputs of the bidirectional RNN; i.e., to the concatenation of f; and
b1. In our experiments, we did not use multi-layered RNNs since
we did not notice compelling performance gains with them (see Ap-
pendix B.2). This method is similar to the Tuple2Vec-Compositional
DL method introduced by Ebraheem et al. [18].

4.3 Attention: A Sequence Alignment Model

This model uses decomposable attention to implement attribute
summarization and vector concatenation to perform attribute com-
parison. This is a medium-complexity model that analyzes both
input sequences jointly while learning a similarity representation.
The attention model we use is a variation of a model introduced by
Parikh et al. [60] for text entailment. This model was selected since
it has been shown to achieve results close to the state of the art on

Context Input: Embeddings

° Comparison Operator
for attr. A; in entity e,

Rdxk{ 1 . eAggregation Operator
u, u,
u,[1]

. } | N
Soutl~ HEN B N-b>10 -0
E] ||
5B u ' N\
]
E< [m) - .
= = u,[m
3 "= e ~ 7
Efuym—~ HEE NE -bm-O
Q: — —

Rdxm Rd*m

1. Soft Alignment 2. Comparison 3. Aggregation

Figure 4: Decomposable attention-based attribute summa-
rization module.

Primary Input: Embeddings
for attr. A, for entity e, in R¥™

Context Input: Embeddings
for attr. A, for entity e,in R**

k=
ﬂ)
g e | Soft Alignment
20
2 s Reor
ki
A Weighted R RN
- Average N,
§ § Rm
g R | Rvm .
=% —— N | — Comparison
: N
Q Rhm
~ ; re | R
Welght. il |
§ Computation N,
D
3
g m
{gg Weighted | R
< Average
” i
Sepj €R"

Figure 5: The Hybrid attribute summarization module.

NLP tasks related to EM [60]. Intuitively it performs soft alignment
and pairwise token comparison across the two input sequences.

Figure 4 summarizes the working of Attention. Let u; and uy be
two embedding sequences whose summarized representations we
want to compute. To compute the summarized representation for
uj we give uj as primary input and uy as context to the attention
model. We proceed in three steps:

(1) Soft Alignment: For each element u;[k] in the primary input
u; we compute a soft-aligned encoding of u; [k]—denoted by b [k]—
using all elements in the context sequence uy. To do so we first
compute a soft alignment matrix ‘W across all pairs of tokens for u;
and uy. Each row in ‘W corresponds to an entry in u; and each col-
umn to an entry in uy. Each entry of this matrix is a weight for a pair
of elements (u1[k], u2[m]). This weight corresponds to a log-linear
transformation of the dot product over the hidden representations
of uq[k] and uz[m] obtained by a two layer HighwayNet (see Ap-
pendix A). We compute the encoding by [k] for each u;[k] € u; by
taking a weighted average over all elements uz[m] € uz with the
weights being the entries of the k-th row of “W.

(2) Comparison: We compare each embedding u; [k] € u; with
its soft-aligned encoding b1 [k] using a two layer HighwayNet with
ReLU non-linearities. We denote as x; [k] the comparison represen-
tation for each u[k] € uj.

(3) Aggregation: Here, we sum the comparison representation of
all elements in u; and normalize the output by dividing with v/[u1].
This extension over the original model ensures that the variance of
the final attribute summarization does not change as a function of
the number of words in the attribute. This ensures that the gradient
magnitude of the parameters in the comparison module do not depend
on the length of the attribute and thus promotes robustness.

These steps are repeated for uy as primary input and u; as context.

4.4 Hybrid: Sequence-aware with Attention

This model uses a bidirectional RNN with decomposable attention
to implement attribute summarization and a vector concatenation
augmented with element-wise absolute difference during attribute
comparison to form the input to the classifier module. This is the
model with the highest representational power we consider in
this paper. To our knowledge we are the first to consider such a
model for entity matching. Our model is inspired by other hybrid
models proposed in the NLP literature [82, 88]. However, those
models either build upon convolutional neural networks [82] or
use different attention mechanisms [88].

We now describe the internals of this model. Again, let u; and uy
be two embedding sequences whose summarized representations
we want to compute. Our hybrid model follows steps that are similar
to those of the Attention model of Section 4.3. But in contrast to
Attention, it also utilizes sequence-aware encodings of u; and uy
obtained by a Bi-RNN. Figure 5 provides an overview. We have:

(1) Soft Alignment: First, Hybrid constructs a soft alignment
matrix W between the primary input sequence u; and the con-
text sequence uy. The construction is the same as that described
in Section 4.3. Then, Hybrid obtains a soft-aligned encoding by [k]
for each element uj[k] € uj. In contrast to Attention by [k] is con-
structed by taking a weighted average over an encoding of uy. The
weights are obtained by the soft-alignment matrix. The encoding of
uy is obtained by passing uy through a Bi-RNN and concatenating
all the hidden states of the Bi-RNN. Let RN Nj denote this RNN.
This process generates a vector by of soft-aligned encodings.

(2) Comparison: To obtain the comparison between by and the
primary input u; we: (i) obtain an encoding of u;—denoted by u}
by passing it via the same RN N, and concatenating all of its hidden
states; (ii) perform an element-wise comparison between uj and by.
Similar to Attention we use a two layer HighwayNet with ReLU to
perform this element-wise comparison. Let x1 [k] be the comparison

representation for each uj [k] € u;.

(3) Aggregation: Finally, Hybrid aggregates the elements of
the comparison vector x; produced by the previous step using
a weighted average scheme. The weight for each element x[k] is
obtained as follows: (i) we first obtain an encoding of uz—denoted
go—by using a Bi-RNN (RN Ny) and taking its last hidden state to
be the encoding of uy; (ii) we compute a weight for each element
x1[k] € x1 by concatenating x; [k] with g, and passing it via a two
layer ReLU HighwayNet followed by a soft-max layer. Intuitively,

Table 1: Comparison of Magellan (a current ML-based solu-
tion) vs. the best-performing DL solution.

Problem Average F, Aver%§ltlelzrain
Type DL Magellan | AF, DL Magellan
Structured 87.9 88.8 -0.9 5.4h 1.5m
Textual 88.0 83.4 4.6 4.4h 6s
Textual wio | g 5 78.7 9.6 4.0h 5.55
Dirty 87.9 68.5 19.4 0.7h 1.5m

this corresponds to a simple attention mechanism that identifies the
importance of each element x1[k] given uy as context; (iii) we take
a weighted average over all elements of x; using these weights.

The same steps are repeated for uy as primary input and u; as
context. Steps 1-2 in this model are different from typical hybrid ar-
chitectures such as [82, 88]. The modifications make the alignment
computation between the input word embedding sequences to not
rely on the RNN encoding of the input. This enables the model
to converge faster since the alignment network can receive useful
gradients right from the start of training when the RNN weights
are random.

5 EMPIRICAL EVALUATION

Goals and Takeaways: Our first goal is to understand where DL
outperforms current EM solutions. Toward this goal, we experimen-
tally compare the four DL models from Section 4 (i.e., SIF, RNN,
Attention, and Hybrid) with Magellan, a state-of-the-art learning-
based EM solution [41]. We used 23 EM tasks that cover three types
of EM problems: structured, textual, and dirty.

The main takeaways are as follows. (1) On structured EM tasks,
DL solutions are competitive with Magellan but takes far more
training time. Thus, it is not yet clear to what extent DL can help
structured EM (see Table 1). (2) On textual EM tasks (i.e., instances
having a few attributes all of which are textual blobs), DL outper-
forms Magellan. The gain may not be large if there are “informative”
attributes (e.g., titles full of discriminative information), otherwise
it can be significant. (3) On dirty EM tasks, DL significantly outper-
forms Magellan. Thus, we find that in the absence of labor-intensive
data extraction/cleaning DL is highly promising, outperforming
current automatic EM solutions for textual and dirty data.

Our second goal is to understand the impact of performance
factors, such as model complexity (e.g., do we need complex DL
models?) and amount of labeled data. The main takeaways are as
follows. (1) When a limited amount of training data is available,
models that use soft alignment (see Section 3.3) during attribute
summarization should be preferred as they yield up to 23% higher
F; over simpler DL models (see Section 5.4.2). (2) When a lot of
training data is available, the accuracy difference between complex
and simpler DL models is smaller. Thus, one can use simpler DL
models that are faster to train (see Section 5.4).

Datasets: We use datasets from a diverse array of domains and
different sizes (see Table 2). Dataset details are deferred to Appendix
B. For structured EM, we use 11 datasets. The first seven datasets
are publicly available and have been used for EM (e.g., [15, 43]).
The last four datasets (Clothings, etc.) describe products in various
categories and come from a major retailer. Column “Size” lists the
number of labeled examples for each dataset. Each example has

Table 2: Datasets for our experiments.

Type Dataset Domain Size # Pos. | # Attr.
BeerAdvo-RateBeer beer 450 68 4
iTunes-Amazon,; music 539 132
Fodors-Zagats restaurant 946 110 6
DBLP-ACM, citation 12,363 2,220 4
DBLP-Scholar, citation 28,707 | 5,347 4
Amazon-Google software 11,460 1,167 3

Structured Walmart-Amazon, electronics | 10,242 962 5
Clothing, clothing | 247,627 | 105608 | 28
Electronics, electronics | 249,904 | 98,401 28
Home, home 249,513 | 111,714 28
Tools, tools 249,317 | 96,836 28
Abt-Buy product 9,575 1,028 3
Company company | 112,632 | 28,200 1

Textual Clothing'2 Clothing 247,627 | 105,608 3
Electronics, electronics | 249,904 | 98,401 3
Home, home 249,513 | 111,714 3
Tools, tools 249,317 | 96,836 3
iTunes-Amazon, music 539 132 8
DBLP-ACM, citation 12,363 2,220 4

Dirty DBLP-Scholar, citation 28,707 5,347 4
Walmart-Amazon, electronics | 10,242 962 5
Home, home 249,513 | 111,714 28
Tools, tools 249,317 | 96,836 28

two tuples to be matched. The tuples are structured, i.e., attribute
values are atomic, i.e., short and pure, and not a composition of
multiple values that should appear separately.

For textual EM, we use six datasets. Abt-Buy describes products
[43]. Company is a dataset that we created. It tries to match com-
pany homepages and Wikipedia pages describing companies. The
last four datasets (Clothingy, etc.) describe products in different
categories and come from a major retailer. In these datasets, each
tuple has 1-3 attributes, all of which are long textual blobs (e.g., long
title, short description, long description).

For dirty EM, we use six datasets. As discussed earlier, we focus
on dirty data where attribute values are “injected” into other at-
tributes, e.g., the value of brand is embedded in title while leaving
the correct value cell empty. All dirty datasets are derived from
the corresponding structured datasets described above. To generate
them, for each attribute we randomly move its value to attribute
title in the same tuple with 50% probability. This simulates a com-
mon dirty-data problem in real-world scenarios (e.g., information
extraction) while keeping the modifications simple.

Methods: We evaluate the four DL models described in Section 4:
SIF (aggregation-based), RNN (RNN-based), Attention (attention-
based), and Hybrid. They are implemented using Torch [13] (a DL
framework with extensive support for accelerating training using
GPUs), and trained and evaluated on AWS p2.xlarge instances with
Intel Xeon E5-2686 CPU, 61 GB memory, and Nvidia K80 GPU. We
compare the DL models with Magellan, a state-of-the-art machine-
learning based EM solution [41].

To measure accuracy, we use precision (P), the fraction of match
predictions that are correct, recall (R), the fraction of correct matches
being predicted as matches, and Fy, defined as 2PR/(P + R).

To apply the DL models to a dataset, we split all pairs in the
dataset (recall that each example is a pair of tuples) into three
parts with ratio of 3:1:1, for training, validation, and evaluation
respectively. We use Adam [40] as the optimization algorithm for

Table 3: Results for structured data.

Table 6: Results for dirty data.

Model F, Score

Dataset SIF RNN | Attention | Hybrid | Magellan AF,
BeerAdvo-RateBeer | 58.1 72.2 64.0 72.7 78.8 -6.1
iTunes-Amazon, 814 88.5 80.8 88.0 91.2 -2.7
Fodors-Zagats 100 100 82.1 100.0 100 0.0
DBLP-ACM, 97.5 98.3 98.4 98.4 98.4 0.0
DBLP-Scholar, 90.9 93.0 93.3 94.7 92.3 2.4
Amazon-Google 60.6 59.9 61.1 69.3 49.1 20.2
Walmart-Amazon, | 65.1 67.6 50.0 66.9 71.9 -4.3
Clothing, 9.6 | 968 96.6 96.6 96.3 05
Electronics; 90.2 90.6 90.5 90.2 90.1 0.5
Home, 87.7 88.4 88.7 88.3 88.0 0.7
Tools, 91.8 93.1 93.2 92.9 92.6 0.6

Table 4: Results for textual data (w. informative attributes).
Model F, Score

Dataset SIF | RNN | Attention | Hybrid | Magellan |
Abt-Buy 350 | 394 | 568 | o028 4356 192
Clothing, 847 | 83 | 850 855 82.5 3.0
Electronics, 90.4 92.2 91.5 92.1 85.3 6.9
Home, 845 | 855 | 861 86.6 823 43
Tools 020 | 945 | 938 | 943 90.2 13

Table 5: Results for textual data (w.o. informative attributes).
Model F, Score

Dataset SIF RNN | Attention | Hybrid | Magellan AF;
Abt-Buy 32.0 38.5 55.0 47.7 33.0 22.0
Company 71.2 85.6 89.8 92.7 79.8 12.9
Clothing, 84.6 84.4 84.6 84.3 78.8 5.8
Electronics, 89.6 90.4 90.8 91.1 82.0 9.1
Home, 84.0 84.8 83.7 85.4 74.1 11.3
Tools, 91.6 92.5 92.6 93.0 84.4 8.6

all DL models for 15 training epochs. The validation set is used to
select the best model snapshot for evaluation after each epoch to
avoid over-fitting (see our technical report [55] for more details on
training DL models). To apply Magellan to a dataset, we use the
same 3:1:1 data split. We train five classifiers (decision tree, random
forest, Naive Bayes, SVM and logistic regression), use the validation
set to select the best classifier, and then evaluate on the evaluation
set. It is important to note that Magellan uses the tuple attributes to
automatically generate a large set of features used during training.

5.1 Experiments with Structured Data

Table 3 shows the accuracy of the four DL models and Magellan on
the 11 structured datasets. We use red font to highlight the highest
score in each row. The last column shows the relative increase in F;
for the best DL model vs Magellan (see detailed in Appendix B.2).

The results show that DL models perform comparably with Mag-
ellan. The best DL model outperforms Magellan in 8 out of 11 cases.
But the gain is usually small (less than 0.7%, see the last column),
except 2.4% for DBLP-Scholar; and 20.2% for Amazon-Google (AG).
This is because the product titles across matching pairs from the
source datasets (Amazon and Google) correspond to synonyms of
one another. That is, they are semantically similar but have large
string similarity distances. This makes it difficult for Magellan to
capture the similarity between mentions as it mainly relies on string
similarity based features. However, DL can identify the semantic
similarities across data instances to achieve a 20% F; gain. In the
case of Walmart-Amazonj, however, this ability to learn rich infor-
mation from data hurts DL, because the model overfits due to the
quirks of the training set, thus reaching 4.3% less F; compared to
Magellan. This is less of an issue for Magellan which has a more
restricted search space (as it uses string similarity-based features).

Hybrid performs the best among the four DL models. As dis-
cussed previously, DeepER, the current DL solution for EM [18], is

Model F, Score
Dataset SIF RNN Attenti(;n Hybrid | Magellan AF,
iTunes-Amazon, 66.7 79.4 63.6 74.5 46.8 32.6
DBLP-ACM, 93.7 97.5 97.4 98.1 91.9 6.2
DBLP-Scholar, 87.0 93.0 92.7 93.8 82.5 11.3
Walmart-Amazon, | 43.2 39.6 53.8 46.0 37.4 16.4
Home, 82.8 86.4 88.0 87.2 68.6 19.4
Tools, 88.5 92.8 92.6 92.8 76.1 16.7

comparable to SIF and RNN. Our results suggest that these models
are not adequate, and that we should explore more sophisticated
models, such as Hybrid, to obtain the highest possible EM accuracy.
Moreover, DL does appear to need a large amount of labeled data
to outshine Magellan. The first three datasets (in Table 3) have only
450-946 labeled examples. Here DL performs worse than Magellan,
except on Fodors-Zagats, which is easy to match. The next four
datasets have 12.3K-28.7K labeled examples. Here DL outperforms
Magellan in two cases. It performs reliably better than Magellan in
the last four datasets, which have about 249K labeled examples.

5.2 Experiments with Textual Data

Textual datasets have few attributes, all of which are text blobs. For
5 out of 6 textual datasets listed in Table 2, we observe that they
contain an “informative” attribute that packs a lot of information
(i.e., having a high “signal-to-noise” ratio), which is title (containing
brand name, product model, etc.). For these datasets, we expect
Magellan to do well, as it can use similarity measures such as
Jaccard to compare this attribute. Table 4 shows that this is indeed
the case. Yet DL’s F;-score is 3.0-19.2% higher than Magellan’s.

If we remove this “informative” attribute, the gain increases from
5.8 to 22.0% relative F;, as shown in Table 5. One textual dataset,
Company, has no such informative attribute. For this dataset, DL
outperforms Magellan, achieving 92.7% F; vs 79.8% F;.

The results suggest that DL outperforms Magellan for textual
EM. They suggest that Hybrid is still the best among the DL mod-
els. We also find that the F;-score difference between the best
performing attention-based model (Attention or Hybrid) and the
best performing model that does not use soft alignment (SIF and
RNN) is around 4.5 points on average but goes up to 23.5 points
(i.e., for the Abt-Buy dataset in Table 4). To understand this better,
we investigated examples from datasets where the F; between the
two types of methods is large. We found that in all cases the two
data instances corresponded to misaligned word sequences similar
to those found in the problem of text entailment. An example is
matching sequences “samsung 52’ series 6 lcd black flat panel hdtv
In52a650” and “samsung 1n52a650 52 led tv”.

5.3 Experiments with Dirty Data

Recall that dirty datasets are those where some attribute values are
not in their correct cells but in the cells of some other attributes
(e.g., due to inaccurate extraction). In such cases, we can ignore the
“attribute boundaries” and treat the entire tuple as a single text blob,
then apply DL, as in the textual case. The results in Table 6 show
that DL significantly outperforms Magellan, by 6.2-32.6% relative F;.
Interestingly, even in the presence of extensive noise, for four out of
six dirty datasets, Hybrid and Attention still perform only at most
1.1% lower in F; compared to their scores for the corresponding
structured datasets. This suggests that DL is quite robust to certain
kinds of noise (e.g., moving attribute values around).

Table 7: Fi-score for Hybrid with different language repre-
sentations.

Table 9: Fi-score comparison for different deep learning so-
lutions and Magellan for different dataset types and sizes.

Attribute Structured Textual Dirty Dataset SIF | RNN | Attention | Hybrid | Magellan
Embedding Home, | Tools, | Company | Home, | Home, | Tools, S 4 small | 79.1 83.9 76.2 84.6 86.5
Pre-trained | _Olove | 865 | 865 | 935 | 866 | 87.1 | 883 tructured 7 rge | 91.0 | 918 91.8 915 913
| fastText [883 | 92.9 92.7 86.6 | 872 | 92.8 -
Char-based learned | 882 | 928 87.7 869 | 875 | 938 Textual |Small] 351 | 39.4 56.8 62.8 43.6
large | 87.5 88.9 88.8 89.3 83.9
Table 8: Train time comparison for different deep learning Tsfxftual w/o | small | 32.0 38.5 55.0 47.7 33.0
solutions and Magellan for different dataset types and sizes. info. attr. | large | 86.1 | 86.9 88.4 89.7 80.2
Dataset SIF RNN | Attention | Hybrid | Magellan Dirty Tmall 76.8 86.2 78.2 84.2 64.7
Structured |Small[3705 [5-15m | 7-25m | 10-45m 1s arge | 85.6 | 89.6 90.3 90.0 72.3
large | 25m | 6.57h | 7-75h | 9511h | 2-4m Table 10: F;-score as we vary attribute comparison choices.
Textual small | 15s 5m 7.5m 15m 1s -
large | 8-16m | 3-6h 3-6h 7-10h 9-12s Model Comparison Abt-Buy W-A, Home,
Textual w/o | small | 13s 4m 5m 10m 1s SIF Concatenation 22.6 34.7 83.8
info. attr. | large | 6-9m | 3-3.5h 3-3.5h 6.5-9h 8-12s Element-wise Abs. Diff. | 35.1 60.6 87.7
Dirty small | 3-30s | 2.5-7m 3-10m 5-20m 1s RNN Concatenation _ 25.9 27.0 86.8
large | 5m [25-35m| 40-55m 1-1.5h 2-4m Element-wise Abs. Diff. 38.5 67.6 88.4
Attention Conca?enation _ 54.9 50.0 88.7
Element-wise Abs. Diff. 36.0 65.9 87.6
- . Concatenation 64.7 60.0 86.0
5.4 Trade-offs for Deep EM Hybrid Element-wise Abs. Diff. 39.3 67.1 86.7

We now validate that the different design choices described in
Section 3.1 have an impact on the performance of deep learning
for entity matching. We report on trade-offs related to all design
choices introduced by our architecture template.

5.4.1 Language Representation Selection. We validate that dif-
ferent types of language representations lead to DL models with
different performance and that no single option dominates the oth-
ers. We run our Hybrid model over structured, textual, and dirty
data and compare different language representations with respect
to (1) the granularity of the embeddings (i.e., word vs. character)
and (2) pre-trained vs. learned. The results are shown in Table 7.

Word vs. Character: We compare GloVe [61] (a word-level em-
bedding) with fastText [6] (a character-level embedding). Table 7
shows that the Fj-scores are similar but there are two exceptions.
(1) On Tools fastText achieves 6% higher F;-scores. This is because
Tools’ vocabulary include domain-specific words not present in the
vocabulary of GloVe. Recall that GloVe maps all OOV words to the
same embedding. FastText can approximate the embedding of those
words by using a character-level strategy. (2) On Company GloVe
outperforms fastText, though the by less than one point F;. Recall
that the entries in Company are obtained from Wikipedia which
corresponds to the corpus used to train GloVe. In general, we find
that character-level embeddings often obtain higher F;-scores than
word-level embeddings.

Pre-trained vs. Learned: We compare fastText with a character-
level embedding trained from scratch. Table 7 shows that the two
obtain similar F;-scores with two exceptions. (1) The learned-from-
scratch model is better for Tools, suggesting that learning an em-
bedding from scratch is beneficial for highly-specialized datasets.
(2) fastText achieves 5% higher F; on Company, demonstrating the
effect of limited training data when learning an embedding from
scratch. Overall, we find that training an embedding from scratch
does not lead to performance improvements unless we perform EM
over domains with highly specialized vocabularies.

54.2 Attribute Summarization Selection. So far we have shown
that attribute summarization methods with cross-sequence align-
ment (Attention and Hybrid) outperform simpler methods (SIF and

RNN). We now validate the accuracy vs. training time trade-off
with respect to the attribute summarization used by different DL
solutions. The factors that affect this trade-off are the complexity
of the model and the size of the input dataset.

The complexity of a DL solution depends on the attribute sum-
marization choice in our DL architecture template. In general, the
more expressive (complex) a model is, the higher its accuracy will
be, but with longer training time. To validate the accuracy vs. train-
ing time trade-off we ran the four DL methods and Magellan while
varying the size of the input dataset from “small” to “large”. The
results are shown in Tables 8 and 9.

We observe that the Fi-score gap between attribute summariza-
tion methods that perform cross-sequence alignment (Attention
and Hybrid) and those that do not (SIF and RNN) decreases as
the size of the input datasets increases. The F;-score difference is
up to 8% larger for small datasets than for large datasets—23.5 vs.
2.8 F; point difference. On the other hand, the training time for
cross-sequence alignment models increases dramatically for large
datasets (it sometimes exceeds 10 hours).

We attribute the above results to the soft alignment performed
by attention mechanisms. Word embeddings coupled with a soft-
alignment mechanism already capture similarity and comparison
semantics. On the other hand, mechanisms that encode each input
entity mention in isolation (SIF and RNN) rely only on the final
classifier module to capture similarity and comparison semantics.
We conjecture this to be the reason why methods that perform soft
alignment are superior in the presence of little training data (i.e.,
small datasets). However, with more training data SIF and RNN are
more attractive as they take far less time to train.

5.4.3 Attribute Comparison Selection. We validate the effect of
different attribute comparison functions (see Section 3.4) on the
performance of DL models. We fix the attribute summarization
strategy for the four solutions discussed in Section 4 and for each
solution we vary the attribute comparison function used. We find
that fixed distance functions perform poorly overall. Thus, we focus
on the results for learnable distance functions. Specifically, we eval-
uate the performance of (1) concatenation, where the final classifier

is responsible for learning the semantics of a distance between the
entity mention encodings, and (2) element-wise absolute distance,
where the features to the final classifier already capture the seman-
tics of distance. Table 10 shows the results. We observe that for
methods without cross-sequence alignment, using an element-wise
comparison leads to F; improvements of up to 40% F; (see the re-
sults for SIF and RNN). For methods with cross-sequence alignment,
however, there is no dominating option.

5.5 Micro-benchmarks

We perform micro-benchmark experiments to evaluate: (1) the ef-
fect of training data on the accuracy of models, (2) the sensitivity of
DL to noisy labels, (3) how DL models compare to domain-specific
approaches to EM, and (4) how different variations in the DL ar-
chitecture, such as different dropout levels, using multiple layers,
etc. affect the performance of DL. We find that Hybrid—the most
expressive out of all DL models—is more effective at exploiting
the information encoded in training data, DL is significantly more
robust to noise than traditional learning techniques (e.g., used in
Magellan), DL methods are competitive to domain-specific methods
when we have access to 10K training examples or more, the perfor-
mance of DL is robust to variations in the type of RNN network used
(e.g., LSTM vs. GRU), the dropout levels, and the number of layers
in the recurrent part of the architecture (see more in Appendix B.2).

6 DISCUSSION
6.1 Understanding What DL Learns

To gain insights into why DL outperforms Magellan on textual and
dirty data, we focus on Hybrid and use first derivative saliency [38,
47, 48, 74] to analyze what it learns. Saliency indicates how sensi-
tive the model is to each word in the string sequence of an entity
mention. We expect words with higher saliency to influence the
model output more. This is an indirect measure of how important
a word is for Hybrid’s final prediction. We consider “Home” and
“Company” and compute the importance of each word in one at-
tribute. Overall, we find that Hybrid was able to assign high weights
to tokens that carry important semantic information, e.g., serial
numbers of products, names of locations or people associated with
an entity and special entity-specific attributes such as patterns or
product color (see Figure 8 in the Appendix). We obtained similar
results for all datasets. Finally, we find that the errors made by DL
models are mostly due to (1) linguistic variations of domain-specific
terms, (2) missing highly-informative tokens, and (3) tokens that
are similar but semantically different. A detailed discussion can be
found in our technical report [55].

6.2 Challenges and Opportunities
We discuss challenges (C) and opportunities (O) for DL for EM.

(C1) DL for Structured Data: Overall, we find the advantages
of sophisticated DL methods to be limited when operating over
clean, structured data, in that simpler learning models (e.g., logistic
regression, random forests) often offer competitive results. This
topic will need more empirical evaluation before we can reach a
solid conclusion.

(C2) Scalability vs. Accuracy: For textual or dirty data, we find
that complex DL offer significant accuracy improvements over

existing state-of-the-art EM methods, but often require far longer
training time. Their poor scalability will need to be addressed. (In
addition, we find that given a large amounts of training data one
can leverage simpler and faster DL solution without significant
losses in accuracy.)

(C3) The Value of Training Data: As expected, DL models of-
ten require large amounts of training data to achieve good per-
formance. Obtaining large amounts of training examples can be
resource-intensive in many practical scenarios. Recent work on
weak supervision [62] focuses on obviating the need for tedious
and manual annotation of training examples. What makes this chal-
lenge unique to EM is that existing weak supervision approaches
have focused primarily on textual data for tasks such as information
extraction [62, 85], or visual data for tasks such as image classifica-
tion [54]. As such, a fundamental challenge for DL-based EM is to
devise new weak supervision methods for structured data as well
as methods that are more robust to the class imbalance (between
positive and negative examples) in EM.

(O1) DL and Data Integration: Our DL results suggest that DL
can be promising for many problems in the broader field of data
integration (DI), e.g., data cleaning, automated data extraction, data
reformatting, and value canonicalization. Preliminary successes
have already been reported in recent work [65, 85] but more effort
to examine how DL can help DI is necessary.

(02) Optimizers for DL Models: As showed in Section 5 there
are several design choices with trade-offs when constructing DL
models for EM, e.g., the choice of attribute summarization network,
the kind of word embeddings, etc. An exciting future direction is to
design simple rule-based optimizers that would analyze the EM task
at hand and automate the deployment of such DL models. We can
also explore how to use database-inspired optimization techniques
to scale up DL models [83].

(03) Semantic-aware DL: Our study revealed that DL has limited
capability of capturing domain-specific semantics. A promising
research direction is to explore mechanisms for introducing domain-
specific knowledge to DL models. We envision this to be possible
either via new weak-supervision methods [85] or by integrating
domain knowledge in the architecture of DL models itself [11]. We
also envision the design of new domain-specific representation
learning models, such as domain-specific word embeddings for EM.

7 CONCLUSION

We examined the advantages and limitations of DL models when
applied to a diverse range of EM tasks, specifically EM over struc-
tured, textual, and dirty data. We conducted a detailed experimental
study that revealed the advantages of DL for EM, especially in the
case of textual and dirty data. We also explored the design space for
DL solutions for EM and studied the accuracy-efficiency trade-offs
introduced by different choices in that space. Our study highlights
several limitations and challenges associated with DL models, and
outlines several open problems on how DL can push the boundaries
of automated solutions for data integration related tasks.

Acknowledgment: This work is generously supported by @Wal-
martLabs, Google, Johnson Controls, UW-Madison UW2020 grant,
NIH BD2K grant U54 AI117924, and NSF Medium grant IIS-1564282.

REFERENCES

(1]

(9]
[10]

(1]
[12]
[13]
[14]
[15]
[16]

[17]
(18]

[19]

[20]

[32]

[33]
[34]
[35]
[36]

[37

[38]

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-beat
baseline for sentence embeddings. ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. ICLR.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, et al. 2016. End-to-end
attention-based large vocabulary speech recognition. IEEE ICASSP.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A
Neural Probabilistic Language Model. JMLR (March 2003), 1137-1155.

Mikhail Bilenko and Raymond J. Mooney. 2003. Adaptive Duplicate Detection
Using Learnable String Similarity Measures. KDD.

Piotr Bojanowski, Edouard Grave, Armand Joulin, et al. 2016. Enriching Word
Vectors with Subword Information. CoRR abs/1607.04606 (2016).

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, et al. 2017. Recurrent neural network-
based sentence encoder with gated attention for natural language inference.
CoRR abs/1708.01353 (2017).

Kyunghyun Cho et al. 2014. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. EMNLP.

Peter Christen. 2012. Data Matching. Springer.

Kevin Clark et al. 2016. Improving coreference resolution by learning entity-level
distributed representations. CoRR abs/1606.01323 (2016).

William W. Cohen. 2016. TensorLog: A Differentiable Deductive Database. CoRR
abs/1605.06523 (2016).

Ronan Collobert et al. 2011. Natural language processing (almost) from scratch.
JMLR.

R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011. Torch7: A Matlab-like Envi-
ronment for Machine Learning. In BigLearn, NIPS Workshop.

Ido Dagan, Dan Roth, Fabio Zanzotto, and Graeme Hirst. 2012. Recognizing
Textual Entailment. Morgan & Claypool Publishers.

Sanjib Das et al. [n. d.]. The Magellan Data Repository. https://sites.google.com/
site/anhaidgroup/useful-stuff/data. ([n. d.]).

Bhuwan Dhingra, Hanxiao Liu, et al. 2017. A Comparative Study of Word
Embeddings for Reading Comprehension. CoRR abs/1703.00993 (2017).

Jens Dittrich. 2017. Deep Learning (m)eats Databases. VLDB Keynote.
Muhammad Ebraheem, Saravanan Thirumuruganathan, et al. 2017. DeepER-
Deep Entity Resolution. CoRR abs/1710.00597 (2017).

Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.
Duplicate Record Detection: A Survey. TKDE 19, 1 (Jan. 2007), 1-16.

Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. 2009. Reasoning About Record
Matching Rules. VLDB.

Matthew Francis-Landau et al. 2016. Capturing semantic similarity for entity
linking with convolutional neural networks. CoRR abs/1604.00734 (2016).
Octavian-Eugen Ganea and Thomas Hofmann. 2017. Deep Joint Entity Disam-
biguation with Local Neural Attention. CoRR abs/1704.04920 (2017).

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional Sequence to Sequence Learning. ICML.

Lise Getoor and Ashwin Machanavajjhala. 2012. Entity Resolution: Theory,
Practice & Open Challenges. VLDB.

Amir Globerson, Gal Chechik, Fernando Pereira, and Naftali Tishby. 2007. Eu-
clidean Embedding of Co-occurrence Data. JMLR 8 (Dec. 2007), 2265-2295.
Chaitanya Gokhale, Sanjib Das, AnHai Doan, et al. 2014. Corleone: Hands-off
Crowdsourcing for Entity Matching. SIGMOD.

David Golub and Xiaodong He. 2016. Character-level question answering with
attention. CoRR abs/1604.00727 (2016).

Tan Goodfellow et al. 2016. Deep Learning. MIT Press.

Alex Graves, Santiago Fernandez, et al. 2005. Bidirectional LSTM Networks for
Improved Phoneme Classification and Recognition. ICANN’05.

Alex Graves and Navdeep Jaitly. 2014. Towards End-To-End Speech Recognition
with Recurrent Neural Networks. ICML.

Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. 1961.
Baseball: An Automatic Question-answerer. IRE-AIEE-ACM ’61 (Western).
Geoffrey Hinton, Li Deng, Dong Yu, et al. 2012. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine 29, 6 (2012), 82-97.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In
International Workshop on Similarity-Based Pattern Recognition. Springer.
Hongzhao Huang et al. 2015. Leveraging deep neural networks and knowledge
graphs for entity disambiguation. CoRR abs/1504.07678 (2015).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of Tricks for Efficient Text Classification. CoRR abs/1607.01759 (2016).

Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition (1st ed.). Prentice Hall PTR.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015. Visualizing and under-
standing recurrent networks. ICLR Workshop.

= s
=8

=
)

IS
Kot

NN
o

a
=

o
5,

o
=

o
&

=
=

<
&

=
=~

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2016. Character-
aware neural language models. AAAIL

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. CoRR abs/1412.6980 (2014).

Pradap Konda et al. 2016. Magellan: Toward building entity matching manage-
ment systems. VLDB.

Pradap Konda et al. 2018. Magellan: Toward Building Entity Matching Manage-
ment Systems (SIGMOD Research Highlight). SIGMOD Record (2018).

Hanna Képcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. VLDB.

Hanna Kopcke, Andreas Thor, Stefan Thomas, and Erhard Rahm. 2012. Tailoring
Entity Resolution for Matching Product Offers. EDBT.

Rémi Lebret et al. 2014. Word Embeddings through Hellinger PCA. EACL.
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436-444.

Jiwei Li et al. 2016. Visualizing and Understanding Neural Models in NLP.
NAACL.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Understanding Neural Networks
through Representation Erasure. CoRR abs/1612.08220 (2016).

Yang Liu et al. 2016. Learning natural language inference using bidirectional
LSTM model and inner-attention. CoRR abs/1605.09090 (2016).

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. EMNLP.

Christopher Manning. 2017. Representations for Language: From Word
Embeddings to Sentence Meanings. https://simons.berkeley.edu/talks/
christopher-manning-2017-3-27. (2017).

Tomas Mikolov, Ilya Sutskever, Kai Chen, et al. 2013. Distributed Representations
of Words and Phrases and Their Compositionality. NIPS.

Makoto Miwa and Mohit Bansal. 2016. End-to-End Relation Extraction using
LSTMs on Sequences and Tree Structures. ACL.

Volodymyr Mnih and Geoffrey E. Hinton. 2012. Learning to Label Aerial Images
from Noisy Data. ICML.

Sidharth Mudgal et al. 2018. Deep Learning For Entity Matching: A Design
Space Exploration. Technical Report. http://pages.cs.wisc.edu/~anhai/papers/
deepmatcher-tr.pdf.

Felix Naumann and Melanie Herschel. 2010. An Introduction to Duplicate Detection.
Morgan and Claypool Publishers.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning text simi-
larity with siamese recurrent networks. ACL.

Massimo Nicosia and Alessandro Moschitti. 2017. Accurate Sentence Matching
with Hybrid Siamese Networks. CIKM.

George Papadakis, Jonathan Svirsky, Avigdor Gal, et al. 2016. Comparative
Analysis of Approximate Blocking Techniques for Entity Resolution. VLDB.
Ankur P Parikh, Oscar Téackstrém, Dipanjan Das, and Jakob Uszkoreit. 2016. A
decomposable attention model for natural language inference. EMNLP.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. EMNLP.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, et al. 2017. Snorkel: Rapid
Training Data Creation with Weak Supervision. VLDB.

Jurgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85-117.

Ziad Sehili, Lars Kolb, Christian Borgs, Rainer Schnell, and Erhard Rahm. 2015.
Privacy Preserving Record Linkage with PPJoin. BTW.

Uri Shaham, Xiuyuan Cheng, Omer Dror, et al. 2016. A Deep Learning Approach
to Unsupervised Ensemble Learning. ICML.

Tao Shen et al. 2017. DiSAN: Directional Self-Attention Network for RNN/CNN-
free Language Understanding. CoRR abs/1709.04696 (2017).

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. Entity linking with a knowledge
base: Issues, techniques, and solutions. TKDE 27, 2 (2015), 443-460.

Rohit Singh, Vamsi Meduri, Ahmed Elmagarmid, et al. 2017. Generating Concise
Entity Matching Rules. SIGMOD.

Parag Singla et al. 2006. Entity Resolution with Markov Logic. ICDM.

Richard Socher et al. 2013. Parsing with compositional vector grammars. ACL.
Richard Socher et al. 2013. Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank. EMNLP.

Rupesh Kumar Srivastava et al. 2015. Highway networks. ICML.

Michael Stonebraker, Daniel Bruckner, Thab F. Ilyas, et al. 2013. Data Curation at
Scale: The Data Tamer System. CIDR.

Hendrik Strobelt et al. 2016. Visual Analysis of Hidden State Dynamics in
Recurrent Neural Networks. CoRR abs/1606.07461 (2016).

Yaming Sun, Lei Lin, Duyu Tang, et al. 2015. Modeling Mention, Context and
Entity with Neural Networks for Entity Disambiguation. IJJCAL

Ilya Sutskever. 2013. Training recurrent neural networks. Ph.D. Dissertation.
University of Toronto.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. NIPS.

Ming Tan et al. 2016. Improved Representation Learning for Question Answer
Matching. ACL.

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://simons.berkeley.edu/talks/christopher-manning-2017-3-27
https://simons.berkeley.edu/talks/christopher-manning-2017-3-27
http://pages.cs.wisc.edu/~anhai/papers/deepmatcher-tr.pdf
http://pages.cs.wisc.edu/~anhai/papers/deepmatcher-tr.pdf

[79] Ashish Vaswani et al. 2017. Attention Is All You Need. NIPS.

[80] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. 2016. Match-
ing networks for one shot learning. ACL.

[81] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. 2012. CrowdER:
Crowdsourcing Entity Resolution. VLDB.

[82] Shuohang Wang and Jing Jiang. 2017. A Compare-Aggregate Model for Matching
Text Sequences. ICLR.

[83] Wei Wang et al. 2016. Database Meets Deep Learning: Challenges and Opportu-
nities. ACM SIGMOD Record 45, 2 (2016), 17-22.

[84] Sam Wiseman, Alexander M. Rush, and Stuart M. Shieber. 2016. Learning Global
Features for Coreference Resolution. NAACL.

[85] Sen Wu, Luke Hsiao, Xiao Cheng, et al. 2017. Fonduer: Knowledge Base Con-
struction from Richly Formatted Data. CoRR abs/1703.05028 (2017).

[86] Wenpeng Yin et al. 2016. Simple Question Answering by Attentive Convolutional
Neural Network. COLING.

[87] Wenpeng Yin, Mo Yu, Bing Xiang, et al. 2016. Simple question answering by
attentive convolutional neural network. CoRR abs/1606.03391 (2016).

[88] Radu Florian Zhiguo Wang, Wael Hamza. 2017. Bilateral Multi-Perspective
Matching for Natural Language Sentences. [JCAL

A SOFT-ALIGNMENT WEIGHTS

We describe how we compute the soft-alignment matrix for Atten-
tion and Hybrid in Section 4. Let u; and uy be the primary input
and context respectively. Let K and M be the total number of el-
ements in each sequence. For each pair of entries u;[k] € u; and
uz[m] € uz we compute a weight wy. ,,, as follows:

(1) We first obtain a d-dimensional representation for u;[k] and
uz[m] by using a two layer HighWay net with ReLU:

q1,k = h(ui[k])
q2,m = h(uz[m])
where h denotes the HighWay net and q_ and qz, » denote
the hidden representations for u; [k] and uy[m].
(2) We obtain an unnormalized score sy ,, by taking the dot
product of qQi,k and q2, m, i.e., Skeom = qlT’qu,m.
(3) We normalize all weights using soft-max:

O
S exp(sk)
B EMPIRICAL EVALUATION
B.1 Experiment setup

Dataset Creation: We provide more details on the creation of the
datasets shown in Table 2. There are three types of datasets: struc-
tured, textual and dirty. We use 11 structured datasets in different
sizes and domains in this paper. The first 7 are smaller datasets from
[15] except for "Amazon-Google" which is from [43]. Each dataset
contains two tables that need matching. Since we only focus on the
matching step in EM, we first apply blocking using [41] to get a
candidate set. Next, we obtain the correct labels for all pairs in the
candidate set which is then taken as the final dataset to work on.
The last four large product datasets are from a major product re-
tailer. Since the datasets are already in the after-blocking candidate
set format with all pairs labeled, we can directly use them.

For textual EM, we use 6 datasets. The first small dataset Abt-
Buy is from [43]. Since it contains two tables, we also first con-
duct blocking and then label the candidate set. "Company” is a
dataset we created, consisting of pairs (a, b), where a is the text
of a Wikipedia page describing a company and b is the text of a
company’s homepage. We created matching pairs in this dataset
by crawling Wikipedia pages describing companies, then following

company URLs in those pages to retrieve company homepages. To
generate the non-matching pairs, for each matching pair (a, b), we
fix a and form two negative pairs (a, b1) and (a, b2), where b; and
by are the top-2 most similar pages other than b in the company
homepage collection, calculated by word-based Jaccard similarity .
This dataset will be publicly released. The last four textual product
datasets are from the same retailer as mentioned above.

For dirty EM we also use 6 datasets. For this data type we want
to mimic high data variations in real EM problems. In this paper,
we specifically focus on one very common type of dirtiness, which
is that some attribute values are sprinkled in others, e.g., the value
of attribute "brand” is embedded in "title" while leaving the correct
value cell empty. This is very common due to imperfect IE meth-
ods. The six dirty datasets are all derived from the corresponding
structured datasets described above. To generate the datasets, for
each attribute other than "title", we randomly move each value to
the attribute "title" in the same tuple with 50% probability. This
simulates a common problem in dirty data seen in the wild while
keeping the modifications simple.

B.2 Additional experiments

Detailed Evaluation Tables: In our technical report [55], we
present the detailed F; scores summarized in Section 5 for all types
of EM tasks considered (i.e., structured, textual, and dirty).

Varying the Size of Training Set: We analyze the sensitivity
of different entity matching methods to changes in the amount
of available training data. For each of the three types of datasets
considered, we pick two large representative datasets and analyze
how the performance of two DL models and Magellan varies as we
change the size of training data. The results are shown in Figure 6.
For each dataset, we keep the ratio of training set size to validation
set size constant (used 3:1 as we discussed in Section 5), and vary
the total number of entity pairs in these two sets (called dataset
size from here on) by sampling from the original large datasets. We
pick the best DL model considered, i.e., the hybrid model and the
simplest and fastest DL model, i.e., the SIF model, for this analysis.

In the case of structured data, we see that Magellan outper-
formed the hybrid DL model when the dataset size is less than 50K.
With more data, the hybrid model starts becoming comparable to
Magellan and largely stays this way, until the dataset size reaches
200K at which point it slightly outperforms Magellan.

For textual data we picked dataset “Home-Textual” with an
atomic informative attribute (“Title”) and the purely textual dataset
“Company”. In the first case, we see that DL starts outperforming
Magellan even with a dataset size of 1K but the difference is not very
significant. With a few thousand instances, the difference becomes
more significant. In the purely textual case, we see that Magellan
quickly attains a relatively high F; score with a dataset size of just
1K, due to its heuristic-based string similarity features, while the
hybrid DL model lags behind. It takes nearly 10K data instances
before the hybrid model starts outperforming Magellan. With more
data its performance steadily continues to increase until we finally
exhaust our set of labeled data instances.

For dirty structured data, Magellan initially outperforms DL
when the dataset size is only 1K, but DL starts outperforming Mag-
ellan when a few thousand training instances are available.

Structured-Home Structured-Tools

90 I 95 ‘
o © 90 =
85 L //,
t
o 80
™/ 80 T{
w 7o M 5
==SIF ~#=Hybrid Magellan “ —4—SIF == Hybrid
0 0

70
50k 100k 150k 200k
Textual-Home

Magellan

50k 100k 150k 200k
Textual-Company

90 95
Egs 0 85 |
® 75 £
580 P e
3 [65 |
w75 55

70 # —4=SIF =@=Hybrid Magellan * —=—SIF ==Hybrid Magellan

0 50k 100k 150k 200k = 0 30k 60k 90k

Dirty-Home Dirty-Tools

90 95
g 85
° 80 80
-
§ 75 75 k e
L70 70 =
B 65 65
60

Magellan —4—SIF —@—Hybrid Magellan

* =#=SIF == Hybrid

T
0 50k 100k 150k 200k 0 50k 100k 150k 200k
Train + validation size Train + validation size

Figure 6: Varying the training size.

Structured-Home Structured-Tools

AIOO ‘ 100 J‘

S 90 peg 90 ==

g 70 70 <
L; gg ~4—SIF =#=Hybrid Magellan 60 ==SIF —@=Hybrid Magellan

0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

Textual-Home Textual-Company

& 9% 90
3
PR = ——
S
2 50 50 =
= 30 =4=SIF =@=Hybrid Magellan 30 ~4=SIF =@=Hybrid Magellan
0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
Dirty-Home Dirty-Tools
100 100
£ 90 , 90
s 30 4% 80
§ 70 2 70
= 60 60
50 ~#—SIF == Hybrid Magellan ~4—SIF == Hybrid Magellan

0% 10% 20% 30% 40%5 0% 10% 20% 30% 40%
Percentage of noise Percentage of noise

Figure 7: Varying label noise.

o (8 any manufacturing defects li colonial mills area rug home & garden features technique
E (b) silver metal armless ships individually tempo vinyl br features ul 1i stationary stool li

(©) height top to bottom inches li li overall width side to side inches
E‘ (d) group started about 70 years ago at uzumasa japan the center of the japanese
£ (o[the group exciting and entertaining| venues the deltic group exciting and entertaining venues menu
S M b. riley financial on july 1 2016 j- taragan = became the new ceo of

Figure 8: Saliency scores indicating the importance of words in six entities. Darker colors mean higher importance.

Robustness to Label Noise: We introduce noise in the match /
non-match labels assigned to entity pairs in six EM datasets, two
from each EM category considered. We picked the same six datasets
as in the previous experiment varying training set size. The results
are shown in Figure 7. For each dataset, we introduce label noise in
the range of 0 - 40%. For example, for the case with 20% noise, we
flip the labels of a randomly selected 20% subset of the entity pairs
in the dataset.

In all cases we see that the hybrid model is fairly robust to noise
especially until 30% noise, after which we see a steeper drop. On
structured and textual datasets, we note that the performance gap
between the hybrid model and Magellan increases as the noise
increases indicating that the hybrid model is more robust to noise.

Comparison to Domain-Specific EM Approaches: We would
like to understand how DL models compare to domain specific (DS)
EM approaches involving manual information extraction and fea-
ture engineering. To do so, we take four product datasets from each
of the three EM categories described in Section 2.1. For each dataset,
we compare the performance of our best DL model considered with
rigorous DS approach based EM.

We perform several experiments, the results of which are shown
in Table 12. In the "Approach" column we describe how the domain

specific EM was performed. In general, for each dataset we first
perform IE and feature engineering, then train a machine learning
based system (Magellan) using these features.

Note that in the case of textual datasets we make use of structured
information extracted from the textual attributes by data analysts
over several months. We also make use of relevant ideas discussed in
[44] to perform our own extraction and feature engineering which
took multiple days.

We see that domain specific extraction does help as compared
to the DL model without domain specific features. However, the
average improvement is only 0.8%, 1.1% and 1.4% respectively for
structured, textual and dirty datasets. The DL model was able to
approach quite close to the performance of months of intensive
domain specific EM effort with less than half a day of training.

We also perform additional experiments to investigate how DL
models compare to domain specific approaches in the presence of
limited training data. We vary the training data size in the same
way as described in the paragraph “Varying the Size of Training
Set” above. The results in Figure 9 indicate that with very limited
training data, DS EM approaches are very helpful. However, with a
few 10s of thousands of labeled data instances the DL model catches
up — with 10K labeled instances, the hybrid DL model is within

Table 11: Model variations.

RNN Unit | Layer Dropout Attention Structured Textual Dirty
& Layers | Stacking | Probability Location Home Tools | Company | Home Home Tools
1L GRU | Standard 0 None Standard 88.3 92.9 92.7 86.6 87.2 92.8
2L GRU | Standard 0 None Standard 87.6 92.5 92.8 86.4 87.1 92.5
1L LSTM | Standard 0 None Standard 88.1 92.7 93.3 86.4 87.8 93.5
2LLSTM | Standard 0 None Standard 87.5 92.0 93.7 85.8 88.3 93.0
2L GRU | Residual 0 None Standard 88.0 93.0 92.5 86.7 87.3 93.2
2L GRU | Highway 0 None Standard 88.0 93.4 93.0 86.6 87.6 93.3
1L GRU | Standard 0.05 Before RNN Standard 88.0 93.7 92.4 85.7 87.6 93.0
1L GRU | Standard 0.2 Before RNN Standard 87.5 93.4 92.7 84.8 88.5 93.8
1L GRU | Standard 0.05 After RNN Standard 88.1 92.8 92.4 86.4 87.3 92.9
1L GRU | Standard 0.2 After RNN Standard 87.7 92.6 91.8 86.0 87.1 92.9
2L GRU | Standard 0.05 Between RNN layers Standard 87.7 92.5 92.4 86.2 86.8 92.5
2L GRU | Standard 0.2 Between RNN layers Standard 87.3 92.3 92.5 85.6 87.9 92.5
1L GRU | Standard 0 None 2 head attention 88.3 92.8 92.5 86.6 87.2 92.8
1L GRU | Standard 0 None Scaled dot product 88.3 92.8 87.0 86.5 86.7 92.7
2LLSTM | Standard 0.2 Between RNN layers Standard 87.3 92.1 93.4 85.2 88.6 93.2
2L LSTM | Highway 0 None Standard 88.2 92.7 93.5 86.5 88.5 94.0
1L LSTM | Standard 0.2 Before RNN Standard 87.2 93.0 93.3 84.2 88.8 94.3
Table 12: Comparison to domain specific approaches. configurations formed by the 4 primary dimensions, we initially
Type | Dataset |DLTiybrid| DS Magellan| AF, DS Approach make the assumption that all dimensions are independent of each
Clothing | 96.6 %:5 -0.1_[(1) Create domain specific features. other, and vary each dimension one by one to form the first 14
Structured Eli:&tm 222 :I): 1:) (8) Train classifiers using Magellan variants listed in Table 11. After this set of experiments, we altered
CIT"‘#S 929 940 L1 i E— multiple dimensions concurrently, based on the best configurations
othing 855 89.2 37 |(1) Perform IE to extract attributes . o X
Textual F,le;:[lronics 521 909 12|, fomtet erite e we observed for each dimension independently. The last 3 rows in
ome Sos e 24__13) Train classifiers using Magell Table 11 show the results for these.
Clothing | 963 965 0.2__|(1) Clean all dirty attributes. We note that no single configuration is universally much better
. Electronics | 89.0 913 23 |(2) Create domain specific features.
Dty = 572 53 51 —(3) Train classifiers using Magellan. than the most basic variant of the hybrid model (standard 1 layer
Tools 928 940 12 GRU, highlighted in blue in Table 11). The best setting compared
Structured-Home Textual-Home Dirty-Home to this variant, the 2 layer LSTM with highway stacking (second
0 o /f"“’"_" last row in Table 11), is only 0.5% better on average across the six
ZZ ﬁ gg datasets. Moreover, the maximum improvement in F; score by any
75 70 variant compared to the most basic setting across the six datasets is
e st -y R I v r— only 1.6%. Hence for our analysis we only considered the simplest

70
0 50k 100k 150k 200k 0 50k 100k 150k 200k 0

Textual-Tools

50k 100k 150k 200k
Dirty-Tools

Structured-Tool
ructured-Tools o5

90
85
80

70 ——DS-Magellan ~8—DL-Hybrid 75 ——DS-Magellan —B=DL-Hybrid ——DS-Magellan —8=DLHybrid
0 50k 100k 150k 200k '~ 0 50k 100k 150k 200k ©° o sok 100k 150k 200k
Train size Train size Train size

Figure 9: Varying the training size (domain specific).

5.1 percent points of the DS approach on average, and within 2.9
percent points on average with 50K labeled data.

Performance of DL Model Variations: Aswith most DL models,
the models we presented in Section 4 can be altered along several
dimensions to obtain variants. We analyzed several variants of
the best model we considered, i.e., the hybrid model in order to
determine its optimal configuration. To do so we altered the model
along 4 primary dimensions and evaluated 17 variants of the hybrid
model on six datasets, two from each EM category discussed in
Section 2.1. We picked the same six datasets as in the experiment
varying training set size. We present the F; scores corresponding
to each variant for each dataset considered in Table 11. In order to
efficiently determine the optimal setting from the large space of

setting of the hybrid model, with no bells and whistles, to keep the
exposition straightforward and to avoid unnecessary complexity.
However, in practical application scenarios, the model variation
dimensions can be treated as hyperparameters and the best con-
figuration can be automatically discovered using hyperparameter
optimization tools.

Comparing with Other Ways of Formulating EM: As dis-
cussed in Section 2.1, the triplet framework [34] can be adapted
for EM. We have done so and compared it with the hybrid model,
on two structured datasets (Home and Tools), two textual datasets
(Company and Home), and two dirty datasets (Home and Tools).
The triplet solution performs significantly worse than Hybrid in
all six cases, with a F; score difference ranging from 2.5% to 21.1%,
or 7.6% lower on average. This is likely due to the fact that our DL
model directly optimizes the DL model to maximize the classifica-
tion accuracy, whereas the triplet approach focuses on obtaining
better hidden representations of entities, even at the cost of clas-
sification performance. We have also empirically found that the
solution in [57] performs worse than Hybrid and RNN (e.g., by
4.1-9.6% compared to Hybrid). We omit further details for space
reasons and refer the reader to the technical report [55].

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Entity Matching
	2.2 Deep Learning
	2.3 DL Solutions for Matching Tasks in NLP

	3 A Design Space of DL Solutions
	3.1 Architecture Template & Design Space
	3.2 Attribute Embedding Choices
	3.3 Attribute Summarization Choices
	3.4 Attribute Comparison Choices

	4 Representative DL Solutions for EM
	4.1 SIF: An Aggregate Function Model
	4.2 RNN: A Sequence-aware Model
	4.3 Attention: A Sequence Alignment Model
	4.4 Hybrid: Sequence-aware with Attention

	5 Empirical evaluation
	5.1 Experiments with Structured Data
	5.2 Experiments with Textual Data
	5.3 Experiments with Dirty Data
	5.4 Trade-offs for Deep EM
	5.5 Micro-benchmarks

	6 Discussion
	6.1 Understanding What DL Learns
	6.2 Challenges and Opportunities

	7 Conclusion
	References
	A Soft-Alignment Weights
	B Empirical evaluation
	B.1 Experiment setup
	B.2 Additional experiments

