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Abstract—Data integration has been a long-standing challenge
in data management with many applications. A key step in data
integration is entity consolidation. It takes a collection of clusters
of duplicate records as input and produces a single “golden
record” for each cluster, which contains the canonical value
for each attribute. Truth discovery and data fusion methods
as well as Master Data Management (MDM) systems can be
used for entity consolidation. However, to achieve better results,
the variant values (i.e., values that are logically the same with
different formats) in the clusters need to be consolidated before
applying these methods.

For this purpose, we propose a data-driven method to stan-
dardize the variant values based on two observations: (1) the
variant values usually can be transformed to the same represen-
tation (e.g., “Mary Lee” and “Lee, Mary”) and (2) the same
transformation often appears repeatedly across different clusters
(e.g., transpose the first and last name). Our approach first
uses an unsupervised method to generate groups of value pairs
that can be transformed in the same way. Then the groups are
presented to a human for verification and the approved ones are
used to standardize the data. In a real-world dataset with 17,497
records, our method achieved 75% recall and 99.5% precision
in standardizing variant values by asking a human 100 yes/no
questions, which completely outperformed a state of the art data
wrangling tool.

I. INTRODUCTION

Data integration plays an important role in many real-

world applications such as customer management, supplier

management, direct marketing, and comparison shopping. Two

key steps in data integration are entity resolution and en-

tity consolidation. Entity resolution [13] produces clusters of

records thought to represent the same entity from disparate

data sources. Many resolution methods [8], [28], [29], [5]

and systems have been developed in recent years, such as

Tamr [25], Magellan [20], and DataCivilizer [9].

Entity consolidation takes as input a collection of clusters,

where each cluster contains a set of duplicate records, and

outputs a single “golden record” for each cluster, which

represents the canonical value for each attribute in the cluster.

As the attribute values of two duplicate records may not

necessarily be redundant, we cannot simply choose an arbi-

trary record from each cluster as the golden record. For ex-

ample, r4[Address] =“5 th St, 22701 California”

and r5[Address] =“3rd E Ave, 33990 California”

in two duplicate records in Table 1 refer to different addresses

and are not redundant. Instead, they conflict with each other.

ID Name Address

r1 Mary	Lee 9	St,	02141	Wisconsin

r2 M.	Lee 9th	St,	02141	WI

r3 Lee,	Mary 9	Street,	02141	WI

r4 Smith, James 5th	St,	22701	California

r5 James	Smith 3rd	E	Ave,	33990	California

r6 J.	Smith 3	E	Avenue,	33990	CA

ID Name Address

r1 Mary	Lee 9th	Street,	02141	WI

r2 Mary	Lee 9th	Street,	02141	WI

r3 Mary	Lee 9th	Street,	02141	WI

r4 James	Smith 5th	St,	22701	California

r5 James	Smith 3rd	E	Avenue,	33990	CA

r6 James	Smith 3rd	E	Avenue,	33990	CA

ID Name Address

C1 Mary	Lee 9th	Street,	02141	WI

C2 James	Smith 3rd	E	Avenue,	33990	CA

Data	Source	NData	Source	1

…	...

Entity						

Resolution

Standardizing	

Variant	Values
Step-1

Applying	Existing	

Methods

Data	Source	2

Table	1:	Clustered	Records

Table	2:	Variant	Value	Standardized

Table	3:	Golden	Records	of	the	Above	Clusters

Step-2

Fig. 1. An example

Probabilistic methods have been proposed to resolve con-

flicts in truth discovery and data fusion [10], [12], [30].

They can be adapted for entity consolidation. Master Data

Management (MDM) systems leverage human-written rules

for entity consolidation. However, to achieve better results, the

variant values (values that are logically the same with different

formats) in the same clusters should be consolidated before

applying existing methods. For this purpose, in this paper, we

propose a data-driven method to standardize the variant values.

As an example, as shown in Figure 1, our method takes Table

1 as input and outputs Table 2. Afterwards, existing entity

consolidation methods can take Table 2 as input and construct

the golden records in Table 3.



Mary Lee ⎯⎯ M. Lee 9th ⎯⎯ 9

Lee, Mary ⎯⎯ Mary Lee Street ⎯⎯ St

Lee, Mary ⎯⎯ M. Lee 3rd ⎯⎯ 3

Smith, James ⎯⎯ James Smith Avenue ⎯⎯ Ave

Smith, James ⎯⎯ J. Smith Wisconsin ⎯⎯ WI

James Smith ⎯⎯ J. Smith California ⎯⎯ CA

and many more

Lee, Mary ⎯⎯ M. Lee

Smith, James ⎯⎯ J. Smith

Mary Lee ⎯⎯ M. Lee

James Smith ⎯⎯ J. Smith

Lee, Mary ⎯⎯ Mary Lee

Smith, James ⎯⎯ James Smith

Candidate Replacements Generated from Table 1

Grouping Replacements by 

Our Unsupervised Method

Group 4

Group 5

Group 6

Street ⎯⎯ St

Avenue ⎯⎯ Ave

California ⎯⎯ CA

Wisconsin ⎯⎯ WI

9th ⎯⎯ 9

3rd ⎯⎯ 3

Group 1

Group 2

Group 3

Fig. 2. Grouping candidate replacements

Solution Overview. We propose a data-driven approach to

identify and standardize the variant values in clusters. Because

the variant values usually can be transformed to each other

(e.g., “Mary Lee”↔“Lee, Mary”), we use an unsuper-

vised method to group all the value pairs in the same cluster

(which we call candidate replacements) such that the value

pairs in the same group can be transformed in the same way

(i.e., they share a transformation). For example, Figure 2

shows 12 sample candidate replacements in Table 1, along

with 6 groups generated by our unsupervised method. The

details will be given in the following sections.

Since users usually are not willing to apply a transformation

blindly, we ask a human to verify each group. The human

browses the value pairs in a group and marks the group as

either correct (meaning the transformation is valid, with most

or all value pairs representing true variant values) or incorrect

(meaning the transformation is invalid and no replacement

should be made). The human is not required to exhaustively

check all pairs; our method is robust to small numbers of errors

as verified in our experiment.

Usually there is a budget for human effort. Therefore we

rank the groups by their size and ask a human to check

the groups sequentially until the budget is exhausted or the

human is satisfied with the result. The reason for this is

twofold. First, larger groups are more ‘profitable’ once they

are approved by the human. Second, larger groups are more

likely to be correct as the variant values often share common

transformations that appear repeatedly across different clus-

ters (e.g., both “Mary Lee”↔“Lee, Mary” and “James

Smith”↔“Smith, James” can be transformed by trans-

posing the first and last name). Finally, the approved groups

will be used to perform the replacement in the clusters.

Unsupervised Group Generation. Clearly, to save human

effort, it is desirable for the number of groups to be as small as

possible. Thus our goal is to group all the value pairs such that

the value pairs within the same group can be transformed in the

same way (i.e., share the same transformation), and the number

of groups is minimized. To formally express the transformation

(which describes how one string is transformed to another),

we borrow a very powerful domain specific language (DSL)

designed by Guwani et al [16]. The DSL is very expressive

and has been used in production in Microsoft Excel. However,

using this DSL, each value pair can be transformed in an

exponential number of ways. Moreover, we will prove it is

NP-complete to optimally group the value pairs in our criteria.
To alleviate this problem, we develop a simple and ef-

fective, data-driven greedy strategy, along with optimization

techniques, to group the value pairs. However, this approach

incurs a large upfront time cost as it generates all the groups

at once. To address this issue, we design an incremental (i.e.,

top-k) algorithm which generates the next largest group with

each invocation. It reduces the upfront cost by up to 3 orders of

maganititude in our experiments. We compared with a baseline

method that uses the data wrangling tool Trifacta and achieved

better precision (all above 99%) and recall (improved by up

to 0.3) in standardizing the data with less human effort. Note

that instead of verifying the transformations (i.e., groups of

value pairs) in our approach, the user was asked to write code

(i.e., rules) in the baseline method.
In summary, we make the following contributions:

• We propose an unsupervised method to learn string

transformations for entity consolidation.

• We prove it is NP-complete to optimally group the value

pairs in our criteria. We design an algorithm to greedily

group the value pairs, along with optimization techniques

to make it more efficient.

• We develop an incremental algorithm to efficiently gen-

erate the groups. At each invocation it guarantees to

produce the next largest group for a human to verify.

• We conducted experiments on three real-world datasets.

In an address dataset with 17,497 records, by having a

human confirm only 100 algorithm-generated groups, we

achieved a recall of 75% and a precision of 99.5% for

identifying and standarizing variant value pairs.

The rest of the paper is organized as follows. Section II

defines the problem. Section III presents our framework. We

introduce the DSL in Section IV and give our unsupervised

string transformation learning algorithm, along with optimiza-

tion techniques, in Section V. The incremental algorithm is

presented in Section VI. Section VII discusses some im-

plementation details. We report experimental results, review

related work, and conclude in Sections VIII, IX, and X.

II. PROBLEM DEFINITION

Entity consolidation assumes a collection of clusters of du-

plicate records and produces a “golden record” for each cluster

that contains the canonical value for each attribute. In this

paper, we focus on the variant value standardization problem

in entity consolidation, which identifies and transforms the

variant values to the same format, as formalized below.
Definition 1: Given a collection C of clusters where each

cluster C ∈ C contains a set of duplicate records, the data



Algorithm 1: GOLDENRECORDCREATION(C)

Input: C : a set of clusters with m columns

C
1,C2, · · · ,Cm;

Output: GR: a set of golden records, one for each

cluster;

begin1

foreach column C
i in C do2

Φ = GeneratingCandidateReplacements(Ci);3

Σtrans = UnsupervisedGrouping(Φ);4

while the budget is not exhausted do5

pick the largest group Σ in Σtrans;6

if a human confirms Σ is correct then7

apply the replacements in Σ to update C
i;8

remove Σ from Σtrans and update Σtrans;9

GR = TruthDiscovery(C);10

return GR11

end12

standardization problem is to update the clusters such that

all the variant values (logically the same values in different

formats) in the same cluster become identical.

As shown in Figure 1, a solution to the data standardization

problem will ideally take Table 1 as input and output Table 2.

In this paper, we focus on the popular case of string values.

Different tactics are needed for numerical values.

III. THE FRAMEWORK

Our golden record construction framework is given in

Algorithm 1. It takes a set of clusters C as input and outputs

a golden record for each cluster. At each iteration it processes

one column/attribute C
i in C by the following steps.

Step 1: Generating Candidate Replacements. A replace-

ment is an expression of the form lhs → rhs where lhs

and rhs are two different strings. A replacement states that

the two strings lhs and rhs are matched (e.g., “Mary

Lee”→“Lee, Mary”), and thus one could be replaced by

the other at certain places1 in C
i. Since the values within

the same cluster in C
i are potentially duplicates, one way to

get candidate replacements is to enumerate every pair of non-

identical values vj and vk within the same cluster in C
i and

use them to form two candidates replacements vj → vk and

vk → vj . For example, consider the attribute Name in Table 1.

12 candidate replacements are generated from the two clusters

and 6 of them are shown in Figure 2 on top-left. By the end

of step 1, we have a set Φ of candidate replacements (Line 3).

Step 2: Generating Groups of Replacements. In this step, we

partition the candidate replacements in Φ into groups such that

the candidate replacements in the same group share a common

transformation (which describes how one string transformed to

another). We introduce a language to formally express trans-

formations in Section IV-A. Note that each replacement group

corresponds to a transformation; thus this step is essentially

1e.g., not all “St”s are “Street” in addresses; they can also be “Saint”.

conducting unsupervised string transformation learning. For

example, Figure 2 shows 6 groups generated from the 12

candidate replacements. Group 1 shares the transformation of

transposing the first and last name; while group 2 objects take

the initial of the first name and concatenate it with the last

name. By the end of this step, we have a set Σtrans of groups,

which is a partition of Φ (Line 4).

Step 3: Applying Approved Replacement Groups. The

groups in Σtrans are ranked by their size in descending order.

We sequentially present each group to a human expert for ver-

ification. The expert either rejects or approves a replacement

group. If it is approved, the expert needs to further specify the

replacement direction, i.e., either replacing lhs with rhs or

the other way around. The verification stops once the budget

is exhausted or the expert is satisfied with the results.
The reason for confirming the groups in decreasing size

order is twofold. First, the more replacements there are in

a group, the more places we can apply them to update the

clusters once the group is approved by the human, i.e., the

larger groups are more ‘profitable’ once they are approved.

Second, the larger groups are more likely to be approved, as

variant values often share common transformations that appear

repeatedly across different clusters (e.g., transposing the first

and last name). On the other hand, the transformations of value

pairs in smaller groups are more peculiar and uncommon. Thus

the value pairs in smaller groups are less likely to be variant

values and get approved. Section VII-A gives the details. By

the end of this step, Ci is updated (Lines 5-9).

Running Truth Discovery. Finally, after we process all the

columns in C by the above steps, a truth discovery algorithm

is applied on the updated clusters C to resolve any potential

conflicts. In the end, we have the golden records (Line 10).

IV. GENERATING GROUPS

We introduce the DSL in Section IV-A and discuss how to

group the candidate replacements in Φ in Section IV-B.

A. Transformation Programs

Transformation Programs. A transformation program (or

program for short) captures how one string is transformed

to another. We adopt the domain specific language (DSL)

designed by Gulwani [15], [16] to express the programs. Here

we give a high level description. In a nutshell, a transformation

program takes a string s as input and outputs another string

t. The DSL defines position functions and string functions,

which all apply to the input string s.
A position function returns an integer that indicates a

position in s based on a collection of pre-defined regular

expressions (regexes). For example, Figure 3 on the left shows

some example position functions and pre-defined regexes. Let

the input string s be “Lee, Mary”, as shown in Figure 4,

we have s.PA = 1 as the 1st match of the capital regex TC

in s is ”L” and the beginning position of ”L” is 1.
A string function returns either a substring of s or a constant

string. The returned substring is located by two position func-

tions. Thus the space of string functions is all pairs of possible



PA : beginning of the 1st match of TC

PB : ending of the 1st match  of Tl

PD : ending of the last (-1st) match of TC

PC : ending of the 1st match of Tb

f1 : Substring (PA, PB)

f2 : Substring (PC, PD)

f3 : Constant (“. ”)

example position	functions example string	functions an	example program

K := f2⨁ f3 ⨁ f1

capital regex: TC = [A-Z]+

lowercase regex: Tl  = [a-z]+

whitespace regex: Tb  = \s+

digital regex: Td  = [0-9]+

example	pre-defined regexes
Fig. 3. An example program ρ := f2 ⊕ f3 ⊕ f1

Lee,	Mary
PC PDPA PB

f1 f2

f3 = Constant(“. ”) = “. ”

K(“Lee, Mary”) = f2⨁ f3 ⨁ f1 = “M. Lee”

1 4 6 7

Fig. 4. Evaluating the example functions and program ρ in Figure 3 on an
input string “Lee, Mary”

position functions. A program is defined as a sequence of

string functions and its output t is the concatenation of the

outputs of these string functions. Figures 3 and 4 show an

example. For s = “Lee, Mary”, we have s.f1 = “Lee” and

s.f2 = “M”. The program ρ := f2 ⊕ f3 ⊕ f1 will produce

t = ρ(s) = “M. Lee”.

Transformation Graph. We say a program ρ is consistent

with a replacement s → t (or ρ can express the replacement)

iff ρ(s) produces t. Due to the many possible combinations of

string functions, there are an exponential number of consistent

programs for a given replacement s → t. Fortunately, all

the consistent programs of a replacement can be encoded

in a directed acyclic graph (DAG) in polynomial time and

space [15]. Intuitively, each node in the graph corresponds

to a position in t, each edge in the graph corresponds to a

substring of t and the labels on the edge are string functions

that return this substring when being applied to s.

Example 1: Figure 5 shows the transformation graph for

“Lee, Mary”→“M. Lee”. Some notations are borrowed

from Figure 3. The string functions (edge labels) associated

with each edge are also shown in the figure. For simplicity,

we only show 5 out of all the 21 edges and ignore some

edge labels in the figure. The edge e4,7 corresponds to the

substring “Lee”. One of its label is f1, as it returns “Lee”

when being applied to s = “Lee, Mary” as discussed before.

Substring(PA, PE) is also a label of e4,7, as s.PA = 1,

s.PE = 4, and s.Substring(1, 4) = “Lee”.

Formally, the transformation graph is defined as below.

Definition 2 (Transformation Graph): Given a replacement

s → t, its transformation graph is a directed acyclic graph

G(N,E) with a set N of nodes and a set E of edges. There

are |t|+1 nodes, i.e., N = {n1, . . . , n|t|+1}. There is a directed

edge ei,j ∈ E from ni to nj for any 1 ≤ i < j ≤ |t| +
1. Moreover, each edge ei,j is labeled with a set of string

functions that returns t[i, j − 1] when being applied to s.

The transformation graph can be built in O(|s|2|t|2) time

and there are O(|t|2) edges in the graph. As a replacement has

only one transformation graph, we refer to a replacement and

M . _ L e e1 2 3 4 5 6 7

e4,7

label = {f1 , Substring(PA,PE), … } 

where PE is the beginning of the 1st

match of the punctuation regex Tp

e1,7 label = {Constant(“M. Lee”)}

e2,4e1,2

label = {f3 }label = {f2 , … }

e1,4 label = {Constant(“M.  ”)}

Fig. 5. The graph for “Lee, Mary”→“M. Lee”

its transformation graph (or graph for short) interchangeably.

Transformation Path. Given a replacement s → t, a trans-

formation path is a path in its graph from the first node n1 to

the last node n|t|+1, where each edge has only one label (i.e.,

a string function). Note that a transformation path uniquely

refers to a consistent program. We use them interchangeably.

For instance, two transformation paths in Figure 5 are:

ρ1 :=➀
f2
−→➁

f3
−→➃

f1
−→➆ and ρ2 :=➀

Constant(“M. Lee“)
−−−−−−−−−−−→➆

Next we discuss how to use transformation graphs to group

the candidate replacements in Φ.

B. The Optimal Partition Problem

As discussed before, given a collection of replacements, we

aim to group them such that the replacements within the same

group share a consistent program (i.e., their graphs share a

transformation path) while the number of groups is minimum.

Definition 3 (Optimal Partition): Given a set Φ of replace-

ments, the optimal partition problem is to partition Φ into

disjoint groups Φ1, . . . ,Φn such that (i) the replacements in

each group Φi share at least one consistent program; and (ii)

the number of groups n is minimum.

Unfortunately, we can prove the optimal partition problem is

NP-complete by a reduction from the set cover problem (proof

sketch: each transformation path corresponds to the set of

graphs in Φ containing this path; the optimal partition problem

is to find the minimum number of transformation paths such

that the set of all graphs is covered). As it is prohibitively

expensive to find the optimal partition, we employ a standard

greedy strategy. For each replacement ϕ ∈ Φ, we denote

the transformation path in its graph that is shared by the

largest number of the graphs in Φ as its pivot path. Then the

replacements with the same pivot path are grouped together2.

We discuss how to find the pivot path for a given replacement

2Note that two paths are considered to be the same if each pair of string
functions in the two sequences are the same.



Algorithm 2: UNSUPERVISEDGROUPING(Φ)

Input: Φ: a collection of candidate replacements.

Output: Σ: groups of replacements with the same

transformation, where Σ[ρ] contains all the

replacements in Φ with ρ as the pivot path.

begin1

Build graphs G for all replacements in Φ;2

Build inverted index I for all edge labels in G;3

foreach graph G ∈ G do4

ρ = ρmax = ℓmax = φ ;5

SEARCHPIVOT(G, ρ, G, n1, ρmax, ℓmax);6

add G to the group Σ[ρmax];7

return Σ;8

end9

Algorithm 3: SEARCHPIVOT(ρ, ℓ, ni, ρmax, ℓmax)

Input: G: a transformation graph;

ρ: a path in G starting from n1;

ℓ: the list of graphs in G containing ρ;

ni: the node at the end of ρ;

ρmax: the best path in G found so far;

ℓmax: the list of graphs in G containing ρmax.

begin1

if ni is the last node in G then2

if |ℓ| > |ℓmax| then3

ρmax = ρ;4

ℓmax = ℓ;5

else6

foreach edge ei,j from ni to nj in G do7

foreach string function label f on ei,j do8

ρ′ = ρ⊕ f ;9

ℓ′ = ℓ ∩ I[f ];10

SEARCHPIVOT(G, ρ′, ℓ′, nj , ρmax,11

ℓmax);

end12

in Φ in next section. In this way, we can partition the

replacements in Φ into disjoint groups.

V. SEARCHING FOR THE PIVOT PATH

We use G to denote the set of graphs corresponding to the

candidate replacements in Φ. Section V-A gives the pivot path

search algorithm and Section V-B presents two optimizations.

A. Pivot Path Search Algorithm

A naive method enumerates every transformation path ρ in

a graph G and counts the number of graphs in G containing

ρ. Then the pivot path is the transformation path contained by

the largest number of graphs. For this purpose, given a path

ρ := f1 ⊕ f2 ⊕ · · · ⊕ fm, we first show how to get the list of

graphs in G containing ρ.

We observe that if a graph G contains ρ, every string

function f1, f2, · · · , fm of ρ must appear in G as a label.

Thus we can build an inverted index I with string functions

as keys. The inverted list I[f ] consists of all the graphs G ∈ G

Algorithm 4: EARLYTERMINATION

begin1

// add after Line 2 of Algorithm 2

foreach graph G ∈ G do set Glo as 1;2

// add after Line 2 of Algorithm 3

foreach graph G′ ∈ ℓ do3

if G′
lo < |ℓ| then G′

lo = |ℓ|;4

// add before Line 11 of Algorithm 3

if |ℓ′| > |ℓmax| and |ℓ′| ≥ Glo then5

end6

that have f (i.e., f is an edge label in G). Then given a path

ρ := f1 ⊕ · · · ⊕ fm, we can find the list of graphs in G that

contain ρ by taking the intersection I[f1] ∩ · · · ∩ I[fm].

However, since ρ is a path, the edges corresponding to the

string functions f1, f2, · · · , fm are required to be adjacent in

the graphs. To enable this, we also add the edge information

to the entries of the inverted lists. In particular, the inverted

list I[f ] consists of all triples 〈G, i, j〉 such that the edge eij
from ni to nj in G has the label f . Then, when intersecting

I[f1] with I[f2], only if an entry 〈G, i1, j1〉 from I[f1] and

another entry 〈G, i2, j2〉 from I[f2] satisfy j1 = i2 (i.e., their

edges ei1,j1 and ei2,j2 are adjacent), they produce a new entry

〈G, i1, j2〉 in the result list. By doing so, one can verify that

I[f1]∩· · ·∩I[fm] is exactly the list of graphs in G containing

ρ. Hereinafter, whenever we intersect two lists, we intersect

them in the way we described above.

Example 2: Consider ϕ1=“Lee, Mary”→“M. Lee”,

ϕ2=“Smith, James”→“J. Smith”, and ϕ3=“Lee,

Mary”→“Mary Lee” and their transformation graphs G1,

G2, and G3. Using the string functions f1, f2, and f3 in

Figures 3-5, we have I[f1]=(〈G1, 4, 7〉, 〈G2, 4, 9〉, 〈G3, 6, 9〉),
I[f2]=(〈G1, 1, 2〉, 〈G2, 1, 2〉, 〈G3, 1, 2〉), and I[f3] =
(〈G1, 2, 4〉, 〈G2, 2, 4〉). The path f2 ⊕ f3 ⊕ f1 is contained by

ϕ1 and ϕ2 as I[f2] ∩ I[f3] ∩ I[f1] = (〈G1, 1, 7〉, 〈G2, 1, 9〉).

The Search Algorithm. As there are an exponential number

of transformation paths in a graph, it is prohibitively expensive

for the naive method to enumerate all of them. To alleviate this

problem, we give a recursive algorithm to find the pivot path

in a graph G. At a high level, the algorithm maintains a path ρ

in G starting from the first node n1 and the list ℓ of all graphs

in G containing ρ. At each invocation, the algorithm will try

to append a label (string function) f on the outgoing edges

of the last node ni in ρ to the end of ρ and update ℓ to the

list of graphs containing the new path. After this, if ρ does

not reach the last node in G, the algorithm will be invoked

again to further extend ρ. Otherwise ρ reaches the last node

and must be a transformation path; and ρ is the pivot path if

ℓ has the largest number of the graphs in G.

Algorithm 3 gives the pseudo-code of the search algorithm.

At each invocation, it takes six parameters: a graph G, a path

ρ in G starting from the first node n1, the list ℓ of graphs

in G containing ρ, the node ni at the end of ρ, the best

path ρmax (i.e., contained by the largest number of graphs

in G) in G found so far, and the list ℓmax of graphs in G



TABLE IV
AN EXAMPLE OF SEARCHPIVOT

ρ ℓ ni ρmax ℓmax f

1 φ {〈G1, 1, 1〉, 〈G2, 1, 1〉, 〈G3, 1, 1〉} n1 φ φ Constant(“M. Lee”) on e1,7

2 Constant(“M. Lee”) {〈G1, 1, 7〉} n7 Constant(“M. Lee”) {〈G1, 1, 7〉} —
3 φ {〈G1, 1, 1〉, 〈G2, 1, 1〉, 〈G3, 1, 1〉} n1 Constant(“M. Lee”) {〈G1, 1, 7〉} f2 on e1,2

4 f2 {〈G1, 1, 2〉, 〈G2, 1, 2〉} n2 Constant(“M. Lee”) {〈G1, 1, 7〉} f3 on e2,4

5 f2 ⊕ f3 {〈G1, 1, 4〉, 〈G2, 1, 4〉} n4 Constant(“M. Lee”) {〈G1, 1, 7〉} f1 on e4,7

6 f2 ⊕ f3 ⊕ f1 {〈G1, 1, 7〉, 〈G2, 1, 9〉} n7 f2 ⊕ f3 ⊕ f1 {〈G1, 1, 7〉, 〈G2, 1, 9〉} —

containing ρmax. First, it checks whether the maintained path

ρ is a transformation path (Line 2). If ρ is a transformation

path and there are more graphs in G containing ρ than ρmax,

the algorithm updates the best path ρmax found so far as ρ and

the list ℓmax as ℓ (Lines 3 to 5). If ρ is not a transformation

path, it tries to extend ρ with one more edge label (string

function). Specifically, for each outgoing edge ei,j of the node

ni, which must be adjacent to ρ, and each string function label

f on ei,j , it appends f to the end of ρ to get a new path ρ′

and intersects ℓ with the inverted list I[f ] to get the list ℓ′ of

graphs containing the new path ρ′ (Lines 7 to 10). Then the

algorithm recursively invokes itself to examine the new path

ρ′ (Line 11). When the recursive algorithm terminates, ρmax

must be the pivot path of G. Initially, ρ, ρmax, and ℓmax are

all empty while ℓ contains all the graphs in G, as an empty

path can be contained by any graph (Line 5 of Algorithm 2).

Example 3: Consider the graphs G in Example 2. We invoke

SEARCHPIVOT to search the pivot path of G1. As shown in

the first row of Table IV, initially ρ, ρmax, and ℓmax are all

φ and ℓ has all the graphs in G. Next we go through every

label on the edges starting from n1.

For example, consider the label Constant(“M. Lee”) on

e1,7 as shown in Figure 5. We update the maintained path

ρ and list ℓ, as shown in row 2 of Table IV, and invoke

SEARCHPIVOT again with ni as the endpoint of e1,7, i.e., n7.

Since n7 is the last node in the graph, ρ is a transformation

path and we assign ρ and ℓ to ρmax and ℓmax respectively.

Next, we explore another edge starting from n1. The main-

tained path ρ and list ℓ are restored as shown in row 3 of

Table IV. Consider the label f2 on e1,2. We update ρ and ℓ to

row 4 of Table IV and invoke SEARCHPIVOT again with ni as

the endpoint of e1,2, i.e., n2. As n2 is not the last node in G1,

we further go through the labels on the edges starting from

n2. Eventually, as shown in row 6 of Table IV , ρ is extended

to a transformation path f2 ⊕ f3 ⊕ f1. Since the list ℓ has

more graphs than ℓmax, we update ρmax and ℓmax by ρ and

ℓ respectively. The algorithm continues to explore the graph

but could not find any better transformation path. Finally it

returns the pivot path ρmax = f2 ⊕ f3 ⊕ f1.

Algorithm 2 gives the pseudo-code of our unsupervised

string transformation learning algorithm UNSUPERVISED-

GROUPING. Each generated group Σ[ρ] corresponds to a string

transformation program ρ written in our DSL.

B. Improving Pivot Path Search

In this section, we introduce two optimizations to improve

the efficiency of the pivot path search algorithm. Intuitively,

intersecting two inverted lists cannot result in a longer list.

Thus if the length of ℓ is no longer than that of ℓmax, we

can skip recursively invoking the algorithm to extend ρ to a

transformation path as it cannot result in any transformation

path contained by more graphs in G than ρmax (i.e., cannot

result in the pivot path). Next we discuss the details.

Local Threshold-based Early Termination. The length of the

maintained list ℓ decreases monotonically as the maintained

path ρ is getting longer. This is because each time a label f

is appended to ρ, ℓ is updated to ℓ ∩ I[f ] and gets shorter.

As we only need the pivot path – the one that is shared by

the largest number of the graphs in G, we can use |ℓmax|
as a (local) threshold: only if |ℓ| > |ℓmax|, the algorithm is

recursively invoked. To enable this, we add an if condition

“|ℓ′| > |ℓmax|” before Line 11 of Algorithm 3.

Global Threshold-based Early Termination. Once the main-

tained path ρ becomes a transformation path (Line 2 in

Algorithm 3), we know all the graphs in ℓ must contain ρ.

Thus, for each graph in ℓ, any path no better than ρ must not

be its pivot path. Specifically, we can use |ℓ| as a (global)

threshold for those graphs in ℓ. Then when searching for the

pivot paths of the graphs in ℓ, we can use this global threshold

for early termination in the same way as the local threshold.

To enable this in Algorithm 3, we can associate each graph G

with a global threshold Glo. Then whenever a transformation

path is found (Line 2 in Algorithm 3), the corresponding global

threshold G′
lo of the graph G′ in ℓ′ will be updated to |ℓ′| if

|ℓ′| is larger. Algorithm 4 shows how to enable the two early

optimizations in SEARCHPIVOT.
Example 4: Continue with Example 3. At the 6th row of

Table IV, we have the local threshold of G1 as |ℓmax| = 2.

Then, as none of the edge labels of G1 has an inverted list

length longer than 2, we will not invoke SEARCHPIVOT any

more and have the pivot path ρmax := f2⊕f3⊕f1. Moreover,

as ρ is a transformation path, we set the global threshold of

G2 ∈ ℓ as |ℓ| = 2. Then, when we search for the pivot path

of G2, we can skip all edge labels with inverted list length

shorter than 2, including Constant(“J. Smith”) on e1,9.

VI. INCREMENTAL GROUPING METHOD

We observe that the approach UNSUPERVISEDGROUPING

in Section V-A partitions all the replacements upfront. This

will incur a huge upfront cost, i.e., the users need to wait a

long time before any group is generated. Moreover, due to the

limited budget, many small groups will not be presented to the

user for verification and it is unnecessary to generate them. To

alleviate this problem, we propose an incremental algorithm

(i.e., top-k algorithm) in this section. It produces the largest

group at each invocation. Next we give the details.



A. Largest Group Generation

We first give the intuition of largest group generation. We

denote the pivot path that is shared by the largest number of

graphs in G as the best pivot path ρbest. Then the list ℓbest
of graphs containing ρbest must be the largest group. This is

because no other path can be shared by more graphs than ρbest.

Next we show how to calculate ρbest and ℓbest.

Intuitively, for each graph G in G, we associate it with an

upper bound and a lower bound of the number of graphs in

G containing its pivot path. Let τ be the largest lower bound

among all the graphs in G. We visit each graph in G and invoke

SEARCHPIVOT to find its pivot path. In this process, the lower

and upper bounds of the graphs in G will become tighter and

the largest lower bound τ will be updated accordingly. We stop

once τ is no smaller than any upper bound of the unvisited

graphs. Then the pivot path shared by the largest number of

graphs so far must be the best pivot path ρbest. This is because

for the unvisited graphs, their pivot paths must be shared by

no more than τ graphs, while one of the pivot paths in the

visited graphs must be shared by no less than τ graphs.

Formally, as discussed in Section V-B, for a graph G, we

update its global threshold Glo only if a transformation path

in G is found by SEARCHPIVOT. Thus we can use the global

threshold Glo as the lower bound of G. We discuss how to

initialize the upper bound Gup in Section VI-B. Then we

sort all the graphs in G by their upper bounds in descending

order and visit them sequentially. As we only need the best

pivot path ρbest, it is unnecessary to find the pivot path of a

graph G if it is shared by no more than τ graphs in G. For

this purpose, when visiting a graph G and searching for its

pivot path, we use τ as a local threshold (recall Section V-B)

in SEARCHPIVOT. Then SEARCHPIVOT either finds its pivot

path shared by more than τ graphs or concludes its pivot path

cannot be shared by more than τ graphs. In the latter case,

we can assign τ as a tighter upper bound for G. In the former

case, since SEARCHPIVOT already finds the pivot path ρmax

of G, we can update its lower and upper bound to the number

of graphs sharing ρmax. Moreover, since ρmax is shared by

more than τ graphs, the largest lower bound τ should also

be updated. We stop whenever τ is no smaller than the upper

bound of the currently visiting graph as the graphs are ordered

by their upper bounds. Then all the graphs with lower bounds

equal to τ form the largest group.

Example 5: Continue with Example 2. Initially the lower

bounds of G1, G2, and G3 are all 1 and the upper bounds

are 2, 2, and 1 respectively (we will discuss this details in the

next section). The largest lower bound τ = 1. Then we invoke

SEARCHPIVOT to find the pivot path of G1 as discussed in

Example 3. We find the pivot path ρmax of G1 is shared by 2

graphs G1 and G2. Thus we update the lower bound of G1 to

2 and the largest lower bound τ to 2. Next we visit the second

graph G2. Since its upper bound is 2, which is no larger than

τ = 2, we can stop and ρmax must be the best pivot path and

the largest group consists of G1 and G2.

Algorithm 5: INCREMENTALGROUPING

// replace Line 4 of Algorithm 1

G = Preprocessing(Φ);1

// replace Line 6 of Algorithm 1

Σ = GenerateNextLargestGroup(G);2

// replace Line 9 of Algorithm 1

remove all the graphs in Σ from G and update G;3

B. Initializing the Upper Bounds

Next we discuss how to initialize an upper bound for a

graph. We observe that the pivot path is a sequence of edge

labels and the number of graphs sharing the pivot path is the

intersection size of the inverted lists of these edge labels. Thus,

for any graph, we can use the length of the longest inverted list

among all its edge labels as an upper bound as the intersection

cannot result in longer lists.

Clearly, we desire the upper bound to be as tight as possible

to reach the stop condition earlier. To achieve a tighter upper

bound, we have the following observation. The pivot path must

cover the entire output string t, i.e., it goes from the first node

n1 to the last n|t|+1. Thus, for any node nk, one of the edges

ei,j where i ≤ k < j (i.e., ei,j “covers” nk) must appear in

the pivot path. Based on this observation, we can deduce an

upper bound ub[k] from any position nk, which is the length

of the longest inverted list among all the labels of the edge ei,j
where i ≤ k < j, i.e., ei,j covers nk. Since every value in ub

is an upper bound, we use the tightest one (i.e., the smallest

value in ub) to initialize Gup.

Example 6: Continue with Example 2. For G1, we have

ub[5] = 3 as the label f1 on e4,7 has an inverted list I[f1] of

length 3 as shown in Example 2. ub[2] = 2 as none of the

labels of G3 can produce the character ‘.’. Finally the upper

bound of G1 is initialized as ub[2] = 2.

C. The Incremental Algorithm

Algorithm 5 shows the pseudo-code of our incremental

algorithm. Instead of invoking UNSUPERVISEDGROUPING in

our framework in Algorithm 1, we first invoke Algorithm 6 to

preprocess the candidate replacements (Line 1). Then, while

the budget is not exhausted, we invoke Algorithm 7 to produce

the next largest group Σ for a human to verify (Line 2) and

update the graphs as necessary (Line 3).

Algorithm 6 takes the set Φ of candidate replacements as

input. It creates the graphs G for Φ (Line 2), builds the

inverted index I (Line 3), and initializes the lower bounds

(Line 5) and upper bounds (Lines 6-11) for the graphs in G.

Each invocation of Algorithm 7 produces the next largest

group. It first initializes the largest lower bound τ (Line 2).

Then it sorts all the graphs in G by their upper bounds in

descending order and visit them sequentially (Lines 3-4). It

uses two variable ρbest and ℓbest to keep the best pivot path

found so far and the list of graphs in G containing ρbest. When

visiting a graph G, it first checks whether its upper bound is

larger than τ . If so, we can stop and return ℓbest as ρbest
must be the best pivot path (Line 5). Otherwise, it invokes

SEARCHPIVOT to check if the pivot path of G is contained



Algorithm 6: PREPROCESSING(Φ)

Input: Φ: a collection of candidate replacement.

Output: G: the set of graphs corresponding to Φ.

begin1

Construct graphs G for all replacement in Φ;2

Build inverted index I for all edge labels in G;3

foreach graph G ∈ G do4

set Glo as 1;5

foreach edge ei,j in G do6

foreach string function label f on ei,j do7

foreach i ≤ k < j do8

if ub[k] < |I[f ]| then9

ub[k] = |I[f ]|;10

set Gup as the smallest value in ub;11

return G;12

end13

Algorithm 7: GENERATENEXTLARGESTGROUP(G)

Input: G: a set of transformation graphs.

Output: ℓbest: the list of graphs in G containing the best

path ρbest that shared by the largest number of

graphs in G.

begin1

let τ be the largest lower bound in G;2

sort the graphs in G by upper bounds descendingly;3

foreach graph G ∈ G do4

if τ ≥ Gup then Break;5

ρ = ρmax = φ ;6

initial ℓmax with τ random graphs s.t. |ℓmax|=τ ;7

SEARCHPIVOT(G, ρ, G, n1, ρmax, ℓmax);8

if ρmax 6= φ then9

update Glo, Gup, and τ all as |ℓmax|;10

ρbest = ρmax;11

ℓbest = ℓmax;12

else13

Gup = τ ;14

return ℓbest;15

end16

by more than τ graphs. For this purpose, it initializes ℓmax

with τ random graphs such that the local threshold |ℓmax| =
τ (Lines 6-8). In this way, only if the maintained path ρ is

shared by more than τ graphs (i.e., |ℓ| > τ ), SEARCHPIVOT

will be recursively invoked and ℓmax will be updated . Then,

if SEARCHPIVOT finds a pivot path ρmax, it updates ρbest
and ℓbest as ρmax and ℓmax respectively. The lower bound

Glo, upper bound Gup, and the largest lower bound τ are

all updated to |ℓmax| (Lines 10-12). Note that SEARCHPIVOT

may update the lower bounds of the other graphs. However,

in this case, τ is still the largest lower bound as none of the

updated lower bounds can exceed |ℓmax|. If SEARCHPIVOT

does not find the pivot path, it means the pivot path in G cannot

be shared by more than τ graphs. Thus we update Gup as τ

(Line 14). Similarly, in this case, none of the updated lower

bound can be larger than τ and τ remains the largest lower

bound. Finally, when the stop condition is satisfied, ρmax must

be the best pivot path and ℓmax must be the largest group and

thus get returned (Line 15).

Theorem 1: Let Σ1, · · · ,Σm be the ordered replacement

groups generated by the algorithm UNSUPERVISEDGROUP-

ING, where |Σ1| < · · · < |Σm|. The algorithm GENER-

ATENEXTLARGESTGROUP will return Σi at its ith invocation.

VII. IMPLEMENTATION DETAILS

A. Applying Approved Groups

Once a replacement ϕ is approved, we backtrack all the

value pairs that generate ϕ and make the change (i.e., replace

one value with the other one). For this purpose, for each

candidate replacement lhs → rhs, we build a replacement

set, denote as L[lhs → rhs], to keep all the places where

the replacement is generated from. In addition, after updating a

value, the replacements generated from the value may change.

For example, consider the three values v1 = r1[Name],
v2 = r2[Name], and v3 = r3[Name] in Table 1. They will

generate 6 replacements. Suppose the replacement v1 → v2
is approved and v1 is replaced by v2. Then, the replacement

v1 → v3 will become v2 → v3. Moreover, the replacement

v2 → v1 no longer exists. Thus we also need to update the

replacement sets after making changes to values.

Building Replacement Sets. Let vij be the cell value at the ith

row and jth column in the given clusters. For each value pair

vij and vik in the same cluster, except generating two candidate

replacements vij → vik and vik → vij , we also append an entry

(i, j) to L[vij → vik ] and another entry (i, k) to L[vik → vij ].

Updating Replacement Sets. For each approved replacement

lhs → rhs, if the users decide to replace lhs with rhs,

for each entry (i, j) in L[lhs → rhs], we replace the value

vij (it must be lhs) with rhs. In addition, for each value vik
within the same cluster as vij , we update the replacement sets

as follows. We remove the entry (i, j) from L[lhs → vik ]
and the entry (i, k) from L[vik → lhs ], if vik is not identical

to lhs. Moreover, we add the entry (i, j) to L[rhs → vik ]
and the entry (i, k) to L[vik → rhs ], if vik is not identical

to rhs. Note if a replacement set becomes empty in this

process, which indicates the corresponding replacement no

longer exists, we remove the corresponding replacement from

Φ. Since rhs must be an existing value in the give clusters, no

new candidate replacements will be generated in this process.

Similarly, in the case the users decide to replace rhs with

lhs, we conduct the above process in the other way around.

B. Refine Groups by Structures

We observe that using current DSL some replacements

that share a common transformation may look very different

syntactically. In this case, it is hard for the users to make a

single decision. To alleviate this problem, we propose to refine

the groups by their structures. The candidate replacements

in Φ are grouped together only if they share both the same

transformation and the same structure.



In general, the structure of a replacement is acquired by

uniquely mapping the two sides of the replacement to two

sequences of pre-defined character classes (e.g., numeric and

lowercase character classes).

Formally, the structure of a replacement ϕ, denoted by

STRUC(ϕ), is based on decomposing each side of a replace-

ment into a sequence of terms, drawn from the following:

• Regex-based terms:

(1) Digits: Td = [0-9]+ (2) Lowercase letters: Tl = [a-z]+

(3) Whitespaces: Tb = \s+ (4) Capital letters: TC = [A-Z]+

• Single character terms:

(5) The character cannot be expressed by regex-based terms,

e.g., T− for the character ‘-’

Clearly, each character in any string will fall in one and only

one of the above terms, such that the string can be uniquely

represented. Next we show how to map a replacement to its

structure. Initially, the structure of s, STRUC(s), is empty. We

sequentially visit each character s[i] in s for i ∈ [1, |s|]. If

s[i] does not belong to any of the categories 1–4 above, i.e.,

s[i] is a single character term, we append Ts[i] to STRUC(s);
otherwise, suppose s[i] belongs to the category x (x ∈ [1, 4]),
we append Tx (Td,Tl,TC or Tb depending on x) to STRUC(s)
and skip all the consecutively subsequent characters in the

same category. Finally, we obtain the structure STRUC(s) of

s. For example, the structures of s = 9 and t = 9th are

respectively STRUC(s) = Td and STRUC(t) = TdTl.

Definition 4: Two replacements ϕ1 : lhs1 → rhs1

and ϕ2 : lhs2 → rhs2 are structurally equivalent, de-

noted by STRUC(ϕ1) ≡ STRUC(ϕ2), iff. STRUC(lhs1) =
STRUC(lhs2) and STRUC(rhs1) = STRUC(rhs2).

As it is less time consuming to get the structure of a

replacement than calculating the pivot path, we first group the

replacements in Φ by their structures. Specifically, for each

replacement ϕ in Φ, we compute its structure STRUC(ϕ). All

replacements in Φ are then partitioned into disjoint groups

based on structure equivalence. For example, the two replace-

ments 9 → 9th and 3 → 3rd will be grouped together, as

they have the same structure Td → TdTl. By the end, we

have a set of structure groups Φ1,Φ2, · · · , which is a partition

of Φ. Then for each structure group Φi, we invoke UNSU-

PERVISEDGROUPING(Φi) as discussed in Section 5 to refine

it into disjoint groups. To support the incremental grouping

technique as discussed in Section 6, for each replacement

ϕ ∈ Φi, we use the structure group size |Φi| to initialize

its upper bound. Then, whenever the first time a replacement

in a structure group Φi is visited in Algorithm 7, we invoke

PREPROCESSING(Φi) to build graphs and inverted index and

recalculate tighter upper bounds. The rest remains the same.

VIII. EXPERIMENTS

The goal of the experiments is to evaluate the effectiveness

and efficiency of our proposed unsupervised methods for

standarizing variant values and golden record construction.

Datasets. We used the following three real-world datasets.

TABLE V
THE DATASET DETAILS

AUTHORLIST ADDRESS JOURNALTITLE

avg/min/max cluster size 26.9/1/159 5.8/1/1196 1.8/1/203
# of distinct value pairs 51,538 80,451 81,350

variant value pairs % 26.5% 18% 74%
conflict value pairs % 73.5% 82% 26%

• AUTHORLIST3 contains 33,971 book records with 1,265

clusters identified by the ISBN. Typical attributes include

book name, author list, ISBN, and publisher. We used the

author list attribute in the experiment, which contains 51,538

distinct value pairs. See more dataset details in Table V.

• JOURNALTITLE4 contains 55,617 records concerning scien-

tific journals. Attributes include journal title and ISSN. We

clustered the journals by their ISSN numbers, resulting in

31,023 clusters. We used the journal title attribute in the

experiment, which contains 80,451 distinct value pairs.

• ADDRESS5 contains 17,497 funding application records.

Attributes include the applicant who started the application

and the legal name, address, and Employer Identity Number

(EIN) of the organization which applied for the funding. We

clustered the applications by the EIN and used the address

attribute in the experiment, which resulting in 3,038 clusters

and 81,350 distinct value pairs.

Setup. We implemented our methods in C++, compiled using

g++4.8, and conducted experiments on a server with 64 Intel

Xeon CPU E7-4830 @2.13GHz and 128 GB memory.

Metrics. To evaluate the efficiency of our unsupervised meth-

ods, we report the runtime for generating the groups. To

evaluate the effectiveness, we report the precision, recall,

and Matthews correlation coefficient (MCC) of standardizing

variant values. Specifically, we first randomly sampled 1000

non-identical value pairs for each dataset and manually labeled

each value pair as variant value pairs (i.e., they refer to the

same value) or conflict value pairs (i.e., they refer to different

values). We then ran our algorithm on the three datasets. After

confirming a certain number of replacement groups generated

by our methods and applying the approved ones to update the

clusters, we checked the 1000 sample value pairs. Then true

positives are the variant value pairs that become identical after

updating, false negatives are the variant value pairs that remain

non-identical after updating, false positives are the conflict

value pairs that become identical after updating, and true

negative are the conflict value pairs that remain non-identical

after updating. We count the numbers of true positives (TP),

false negatives (FN), false positives (FP), and true negatives

(TN) and have precision as TP
TP+FP

, recall as TP
TP+FN

, and

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

MCC returns a value in [−1, 1]. The larger the better. We

did not use the F1-score as the sizes of the positive class

and negative class were quite different, which has bias to the

precision or recall [18]. The MCC is known to be a balanced

metric even if the classes are of very different sizes [4].

3http://www.lunadong.com/fusionDataSets.htm
4https://rayyan.qcri.org/
5https://catalog.data.gov/
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A. Effectiveness of Standardizing Data

We implemented two methods for standardizing variant

values. (i) Single does not group the candidate replace-

ments – each candidate replacement will be a group by itself.

(ii) Group groups the candidate replacements in Φ by our

proposed unsupervised methods: candidate replacements share

the same pivot path (which corresponds to a transformation

program) and structure will be grouped together.

We used Trifacta as our baseline method. Trifacta is a

commercial data wrangling tool derived from DataWran-

gler [19]. It can apply some syntactic data transformations

for data preparation, such as the regex-based replacing and

substring extracting. Specifically, for each of the three datasets,

we asked a skilled user to spend 1 hour on standardizing the

dataset using Trifacta. Note that the user spent less than 20

minutes evaluating the groups in Single and Group in any

of the experiments. Eventually, the user wrote 30-40 lines of

wrangler code. For example, the following two lines of code

were written to deal with groups C and E in Table 4.

REPLACE with: ‘’ on: ‘({any}+)’ and REPLACE with: ‘$2

$3. $1’ on: ‘({alpha}+), ({alpha}+) ({alpha}.)’

The first rule removes all the contents between a pair of

parentheses, including the parentheses themselves, such as

“(edt)” and “(author)”. The second rule changes the

name formats. Note that many string transformation learning

methods and tools have been proposed in recent years. How-

ever, all of them are semi-supervised and cannot be used or

adapted for our problem. See more details in Section IX.

Figures 6, 7, and 8 show the results, where the x-axis

represents the number of groups confirmed by a human and y-

axis represents the corresponding precision, recall, and MCC

of standardizing variant values as previously defined. The

dotted lines are the results of the baseline Trifacta. With regard

to recall, Group consistently achieved the best performance.

Specifically, Group surpassed the recall of Trifacta and Single

by up to 0.3 and 0.5 respectively. For example, on the

JOURNALTITLE dataset, the recall of Group, Trifacta, and

Single were respectively 0.66, 0.38, and 0.12. This is because,

compared with the one-by-one verification in Single, the batch

confirmation in Group is more effective in standardizing more

data. For Trifacta, the users had to observe the data and write

code. The code only covers a fraction of the data, whereas our

unsupervised method judiciously presents the most frequent

and ‘profitable’ groups for the user to verify.

All the methods achieved very high precision as they all

had a human in the loop. Specifically, Single achieved 100%

precision, while Group and Trifacta achieved precision above

99% and 97%. This is because the one-by-one checking of

Single is more fine-grained than the batch verification of

Group, while Trifacta applied the code globally, which may

introduce some errors. Nevertheless, the batch verification in

Group and the human-written code in Trifacta were very
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Fig. 9. The group generation time for different menthods

effective with regard to precision. Overall, Group achieved

the best MCC. It outperformed Trifacta and Single by up to

0.2 and 0.4 respectively. For example, on JOURNALTITLE, the

MCC of Group, Trifacta, and Single was respectively 0.57,

0.34, and 0.18, for the same reasons as discussed above.

Note that for all three datasets, the user spent less than

20 minutes in confirming the groups. Though Single took a

little less human time than Group, its performance was much

worse than that of Group as discussed above. In total, the user

approved 70, 39, and 22 groups in Group out of the 200, 100,

and 100 groups presented in AUTHORLIST, ADDRESS, and

JOURNALTITLE. The denied groups were mostly because of

the logic. For example, one group in AUTHORLIST transposes

the authors’ order and thus got denied.

The evaluation is based on only one user. In the future, we

will conduct larger scale experiments. Existing methods [3],

[15], [17] for string transformation are all semi-supervised, i.e.,

they need user-provided examples. Moreover, they are limited

in learning the string transformation from homogeneous data,

one at a time. In contrast, our method is unsupervised. We

generate a large number of potentially dirty examples (candi-

date replacements) from the heterogeneous data and learns the

string transformations (replacement groups) all at once. As the

input data in entity consolidation usually come from different

sources with different formats and thus are heterogeneous, the

semi-supervised methods cannot be used or adapted for entity

consolidation and we did not compare with them.

B. Efficiency of the Grouping Algorithms

In this section, we evaluate the efficiency of our grouping

methods. We implemented three methods. (i) OneShot uses

the vanilla UNSUPERVISEDGROUPING method to generate

groups as discussed in Section V-A. (ii) EarlyTerm improves

OneShot by the two early termination techniques as discussed

in Section V-B. (iii) Incremental uses our incremental group-

ing method to generate groups as discussed in Section VI.

We reported the group generation time for these methods.

Figure 9 shows the results. In the figure, the two dotted

lines for OneShot and EarlyTerm show their upfront costs.

The solid line for Incremental gives the runtime of GENER-

ATENEXTLARGESTGROUP at each invocation.

We can see from the figure that Incremental achieved the

best performance. It improved the upfront cost of EarlyTerm

by up to 3 orders of magnitude, while EarlyTerm outper-

formed OneShot by 2-10 times. For example, for the AU-

THORLIST dataset, the upfront cost for OneShot, EarlyTerm,

and Incremental were respectively 4900 seconds, 1800 sec-

onds, and 1.6 seconds. This is because the two optimizations

TABLE VI
PRECISION IMPROVEMENT FOR MC

AUTHORLIST ADDRESS JOURNALTITLE

before .51 .32 .335
after .65 .47 .840

in EarlyTerm can avoid a lot of unnecessary invocations

of SEARCHPIVOT in finding the pivot path compared to

OneShot. In addition, Incremental only generates the largest

group at each time and thus can skip many unnecessary

candidate replacements in Φ. Note that all these three methods

had the same effectiveness for standardizing variant values as

they are guaranteed to produce the same groups.
C. Improvement on Entity Consolidation

In this section, we evaluate the effectiveness of our algo-

rithm in assisting truth discovery. For this purpose, we col-

lected ground truth for 100 random clusters for each dataset.

For AUTHORLIST, we used the same manually created ground

truth as the previous work [10]. For JOURNALTITLE and

ADDRESS, we manually searched for the ISSN in www.issn.cc

and the EIN in www.guidestar.org to create the ground truth

for each cluster. We used the dataset without any normalization

except converting all characters to lowercase.

We first used the majority consensus (MC) to generate the

golden values for each cluster and then compared the golden

values with the ground truth. If they refer to the same entity,

we increase TP (true positive) by 1; otherwise, we increase FP

(false negative) by 1. Note that if there are two values with the

same frequency, MC could not produce a golden value. Next

we processed the original dataset with our algorithm and re-

ran MC to create the golden values. We reported the precision

before and after using our techniques. Table VI shows the

results. We observe that our method indeed helped improve

the precision of MC. In particular, on JOURNALTITLE, MC

produced a precision of 33.5% before using our algorithm.

After processing JOURNALTITLE with our algorithm, MC

produced a precision of 84%, which is an improvement of

over 40%. This is attributed to our effective variant value

standardizing method, which correctly consolidated most of

the duplicate values. On the other datasets, the improvement

was less dramatic but still significant.

IX. RELATED WORK

String Transformations. FlashFill [15] and BlinkFill [23]

proposed to use program synthesis techniques [24] to learn

a consistent transformation in a pre-defined DSL from a

few user-provided input-output examples. DataXFormer [2]

proposes to search string transformations from web tables,

webforms, and knowledge bases based on the user-provided

examples. Similarly, He et al. [17] developed a search engine



to find transformation programs from large scale codebases.

Arasu et al. propose to learn string transformation rules from

given examples [3]. DataWrangler [19] (a.k.a. Trifacta) has

limited string transformation functionality such as regex-based

replacing, string splitting, substring extraction, etc. Tao et

al. [26] studied synonym discovering in similarity join.

Entity Consolidation. Entity consolidation aims at merging

duplicate records [6], [11]. Entity consolidation is typically

user-driven. For example, Swoosh [5] provides a unified

interface that relies on the users to define the Merge function to

specify how to merge two duplicate records. The conventional

wisdom for entity consolidation is to use a Master Data

Management (MDM) product [1]. MDM systems include a

match-merge component, which is based on a collection of

human-written rules. However, it is well understood that MDM

solutions do not scale to complex problems, especially ones

with large numbers of clusters and records.

Truth Discovery and Data Fusion. Truth discovery and data

fusion [27], [22], [10], [12], [30], [21] can be used for entity

consolidation. Given a set of claims made by multiple sources

on a specific attribute, truth discovery and data fusion decide

whether each claimed value is true or false and compute the

reliability of each source. Solutions to these problems include

models that use prior knowledge about the claims or source

reputation [30], methods that consider the trustworthiness of

a source as a function of the belief in its claims and the belief

score of each claim as a function of the trustworthiness of the

corresponding sources [22], [21], methods that consider other

aspects such as source dependencies and truth evolution [10],

[12]. In addition, there are approaches that try to resolve

data conflicts by optimizing data quality criteria, such as data

currency [14] and data accuracy [7], which selects the most

recent value and the most accurate value, respectively. These

works solve a different problem. They can be used to compute

golden records. However, standardizing the variant values to

the same canonical format using our method before applying

them can improve their performance.

X. CONCLUSIONS

In this paper, we proposed an unsupervised string transfor-

mation learning method for entity consolidation. Instead of

directly applying existing solutions for entity consolidation,

we first standardize the variant data. Specifically, we first enu-

merate the attribute value pairs in the same cluster. Then, we

employ an unsupervised method to group value pairs that can

be transformed in the same way. Finally we confirm the groups

with a human and apply transformations in the approved

groups to standardize the variant data. Experiments on real-

world datasets show that our solution can effectively standard-

ize variant values and significantly improve the performance

versus a state of the art data wrangling tool. However, more

research are needed for this work. Some open problems are

to deal with data types other than strings and other languages,

support data updates, and utilize source information.
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