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ABSTRACT
This paper studies the set similarity join problem with overlap con-
straints which, given two collections of sets and a constant c , finds
all the set pairs in the datasets that share at least c common el-

ements. This is a fundamental operation in many fields, such as

information retrieval, data mining, and machine learning. The time

complexity of all existing methods is O (n2) where n is the total

size of all the sets. In this paper, we present a size-aware algorithm

with the time complexity of O (n2−
1

c k
1

2c ) = o(n2) + O (k ), where k
is the number of results. The size-aware algorithm divides all the

sets into small and large ones based on their sizes and processes

them separately. We can use existing methods to process the large

sets and focus on the small sets in this paper. We develop several

optimization heuristics for the small sets to improve the practical

performance significantly. As the size boundary between the small

sets and the large sets is crucial to the efficiency, we propose an

effective size boundary selection algorithm to judiciously choose

an appropriate size boundary, which works very well in practice.

Experimental results on real-world datasets show that our meth-

ods achieve high performance and outperform the state-of-the-art

approaches by up to an order of magnitude.
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1 INTRODUCTION
Set similarity join with overlap constraints, which, given two col-

lections of sets (e.g., the topic set of a document) and a constant c ,
finds all the set pairs that share at least c common elements, is a
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fundamental operation in many applications, such as word embed-

ding [23], recommender systems [35], and matrix factorization [29].

Given a collection of documents, where each document contains

a bag of words, for each word we can get a set of documents con-

taining this word. Many prestige word embedding models, such as

the deep learning based models GloVe [23] and Word2Vec [20] and

the classical matrix factorization based models HAL (Hyperspace

Analogue to Language) [16] and PPMI (Positive Pointwise Mutual

Information) [6], make use of the number of documents in which a

pair of words co-occurs. The overlap set similarity join can build the

word co-occurrence matrix for these models, as the co-occurrence

of two words is the same as the overlap size of their corresponding

document sets. In addition, the recommender systems [35] often use

the overlap (e.g., “sharing c common friends” in Facebook) to explain

the recommendations for better transparency and user experience.

In terms of algorithm design, this problem is interesting from the

perspectives of both theory and practice. Theoretically speaking,

it admits a naive solution that simply compares all pairs of sets,

and finishes in O (n2) time, where n is the total size of all the sets.

Existing approaches [3, 13, 30] utilize various heuristics to improve

efficiency. However, unfortunately, all of them are still captured

by the O (n2) bound, namely, asymptotically as bad as the naive

solution. Practically speaking, it has been observed that the “realis-

tic” inputs to the problem appear much easier than the theoretical

“worst case”, which explains the community’s enthusiasm for purely

heuristic solutions so far.

This paper makes progress on both fronts simultaneously. At the

philosophical level, we show that there does not need to be a fine

line between theory and practice, as opposed to what was conceived

previously. For this purpose, we propose a framework that (i) in

theory, gives the first algorithm that escapes the quadratic trap, and

(ii) in practice, can be easily integratedwith clever heuristics to yield

new solutions that improve the efficiency of the state-of-the-art.

Specifically, our contributions can be summarized as follows.

Theoretical Guarantee:We present a size-aware algorithm that

has the time complexity of O (n2−
1

c k
1

2c ) = o(n2) + O (k ), where k
is the number of results. This is o(n2) as long as k = o(n2); on the

other hand, if k = Ω(n2), then any algorithm must incur Ω(n2)
time just to output the results. Therefore, our algorithm beats the

quadratic complexity, whenever possible.

Practical Performance: The size-aware algorithm divides all the

sets into small sets and large sets based on their sizes and processes

them separately using two different methods. The two methods

are size sensitive, i.e., one method is more efficient for small sets

and the other one is more effective for large sets. We can utilize

existing studies to process large sets, and focus on the small sets in

this paper. For the small sets, we enumerate all their subsets with

size c and take any two small sets sharing a common subset as a

result. We develop optimization techniques to avoid enumerating a
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id set size

Rs

R1 {e1, e2, e3 } 3

R2 {e1, e3, e4, e7 } 4

R3 {e1, e3, e5, e7 } 4

R4 {e2, e4, e5, e6 } 4

Rl

R5 {e2, e4, e5, e6, e8, e9, e10, e11 } 8

R6 {e11, e12, e13, e14, e15, e16, e17, e18 } 8

R7 {e11, e12, e13, e14, e15, e16, e17, e18, e19 } 9

Table 1: A collection R of sets

huge number of unnecessary subsets and improve the practical per-

formance dramatically. Furthermore, as the size boundary between

the small sets and the large sets is crucial to the efficiency, we pro-

pose an effective size boundary selection algorithm to judiciously

choose a size boundary. Our optimization techniques can improve

the practical performance dramatically. We have conducted exten-

sive experiments on real datasets and the experimental results show

that our method outperforms state-of-the-art methods by up to an

order of magnitude.

The rest of the paper is organized as follows. We formulate the

problem in Section 2. Section 3 introduces the size-aware algorithm.

We develop the optimization heuristics for the small sets in Section 4.

We propose the size boundary selection algorithm in Section 5.

Section 6 reports the experimental results. We review related work

in Section 7 and conclude in Section 8.

2 PROBLEM DEFINITION
Given two collections of sets, the set similarity join problem aims

to find all the similar set pairs from the two collections. We use the

overlap similarity to measure the similarity between two sets in

this paper. Given two sets R and S , their overlap similarity is their

intersection size, namely |R ∩ S |. Two sets are said to be similar if
and only if their overlap similarity is at least a given threshold c , i.e.,
|R ∩ S | ≥ c . Next we formally define the problem of set similarity

joins with overlap constraints.

Definition 1. Given two collections of sets R and S and a con-
stant c , the set similarity join with overlap constraints reports all the
set pairs ⟨R, S⟩ ∈ R × S such that |R ∩ S | ≥ c .

We first focus on the self-join case in this paper, i.e., R = S. Our

technical and theoretical results can be seamlessly extended to the

case of R , S, which are discussed in Appendix B. For example,

consider the dataset R in Table 1. Suppose the overlap similarity

threshold c is 2.R1 andR2 make a similar set pair as |R1∩R2 | = 2 ≥ c .
In our running example, ⟨R1,R3⟩, ⟨R2,R3⟩, ⟨R4,R5⟩ and ⟨R6,R7⟩ are
also similar pairs.

A brute-force method enumerates every set pair in R × R and

calculates their overlap size. Let n =
∑
Ri ∈R |Ri | be the total size of

all sets. The brute-force method has a time complexity of O (n2).

3 A SIZE-AWARE ALGORITHM
In this section, we present an algorithm that solves the set similarity

join problemwith running time o(n2)+O (k ), where k is the number

of pairs in the result. This is the first algorithm that beats the

quadratic time complexity of this problem whenever it is possible.

Section 3.1 will describe the overall framework of our solution, but

leave open the choice of a crucial parameter. Section 3.2 will explain

how to set that parameter to achieve the best time complexity.

We will discuss how to improve the practical performance of this

algorithm in Sections 4 and 5.

Algorithm 1: SizeAwareAlgorithm
Input: R: the dataset {R1,R2, . . . ,Rm }; c: threshold;
Output: A = {⟨Ri ,Rj ⟩

���|Ri ∩ Rj | ≥ c};

x = GetSizeBoundary(R, c);1

divide R into small sets Rs and large sets Rl by x ;2

foreach large set Ri ∈ Rl do3

foreach Rj ∈ R do4

if |Ri ∩ Rj | ≥ c then insert ⟨Ri ,Rj ⟩ into A5

foreach small set Rj ∈ Rs do6

foreach c-subset rc of Rj do7

append Rj to L[rc ];8

foreach inverted list L[rc ] in L do9

add every set pair in L[rc ] into A;10

return A;11

3.1 The Framework
We will use the term c-subset to refer to any set of c elements

(drawn from the sets in R and S). It is easy to see that, two sets are

similar if and only if they share a common c-subset. The observation
motivates us to build an inverted index on all the c-subsets to

aggregate those sets sharing common c-subsets, and compute the

join result by examining each inverted list in turn. Thus, we avoid

the enumeration of dissimilar set pairs, i.e., set pairs that do not

share any common c-subsets. This approach, however, works well
only for sets with small sizes, as they have a small number of c-
subsets. On the other hand, the number of large sets cannot be very

large, such that we can afford to apply even a “brute-force” method

on them. Next, we develop these ideas into a formal algorithm.

Given a collection R of sets R1,R2, . . . ,Rm and an overlap simi-

larity threshold c , we divide all the sets into two categories based

on their sizes. The first category Rl contains all the sets with sizes

at least x—the selection of the size boundary x will be discussed

later—which we refer to as the large sets. The second category Rs
contains all the sets with sizes smaller than x , which we refer to

as the small sets. Obviously, any similar set pair in R × R can be

found in either Rl × R or Rs × Rs .

We obtain the similar set pairs in Rl ×R and Rs ×Rs in different

ways:

• For Rl × R, simply enumerate every set pair in Rl × R, and

calculate their intersection size.

• To find all the similar set pairs from Rs × Rs , we first build

a c-subset inverted index L for all the c-subsets in the small

sets. The inverted list L[rc ] consists of all the small sets that

contain the c-subset rc . Then, we access each inverted list,

and add every set pair in it into the result set (i.e., for any

two distinct sets R and R′ in the inverted list, add ⟨R,R′⟩ to
the result). This produces all the similar set pairs in Rs ×Rs .

The pseudo-code of the above algorithm is shown in Algorithm 1.

It takes a collection of sets R={R1,R2, . . . ,Rm } and a constant

threshold c as input, and outputs all the similar set pairs. It first

calculates the size boundary x , and then divides all the sets inR into

two categories, the small sets Rs and the large sets Rl , based on x
(Lines 1 to 2). For each set pair ⟨Ri ,Rj ⟩ in Rl ×R , it adds the pair to
the result set A if their intersection size is at least c (Lines 3 to 5).

Next, for each small set Rj ∈ Rs , it enumerates all its c-subsets,



R1 R2 R3 R4 R5 R6 R7
R5 1 1 1 4 - - -

R6 0 0 0 0 1 - -

R7 0 0 0 0 1 8 -

Figure 1: Rl × R
!"#$%#&%'(

!
"

!
#

!
$

!
%

$%)*$"+,-($.("'(

e
$
e
"

e
$
e
%

e
"
e
'

e
"
e
#

e
%
e
(

e
%
e
'

e
%
e
#

e
%
e
"

e
$
e
)

e
$
e
'

e
$
e
#

e
'
e
)

e
'
e
(

e
#
e
)

e
#
e
(

e
#
e
'

e
"
e
)

$%)*$"+,-($.("'(

*+,-./e
"

*+,-./e
#

*+,-./e
'

Figure 2: The c-subset inverted index for small sets.

and inserts them to the inverted index L (Lines 6 to 8). For each

inverted list in L, it adds every set pair in it to A (Lines 9 to 10).

Finally, the algorithm returns A (Line 11).

Example 1. Consider the datasetR in Table 1, and suppose that the
threshold is c = 2. As explained in the next section, the size boundary
is x = 5. Thus, we have Rs = {R1,R2,R3,R4} and Rl = {R5,R6,R7}.
As shown in Figure 1, we enumerate every set pair in Rl × R, and
calculate their intersection size, which yields two similar pairs ⟨R4,R5⟩
and ⟨R6,R7⟩. Then, we build the inverted index for all the 2-subsets
found in the small sets. The index is shown in Figure 2, where a black
block indicates the existence of this c-subset in the corresponding
small set. The inverted list L[{e1, e3}] has three sets R1, R2 and R3,
according to which we obtain three similar pairs ⟨R1,R2⟩, ⟨R1,R3⟩,
and ⟨R2,R3⟩. Similarly, a similar pair is spawned from the inverted
list L[{e1, e7}], and another from L[{e3, e7}]. However, these two
pairs have appeared earlier, and hence, are duplicates. In total, the
join result consists of 5 pairs.

IntuitionBehind the SizeAwareAlgorithm. Existing approaches
build an inverted index I for the elements in the sets. As will be dis-

cussed in Section 6.1, each inverted list I[e] is scanned |I[e]| times

where |I[e]| is the inverted list length. Thus they need O ( |I[e]|2)
time to process each inverted list I[e]. Notice that, as there are n
elements in total, the number of large sets cannot exceed

n
x . Thus

the large sets contribute at most
n
x to the inverted list length. On

the contrary, there is no bound for the number of small sets and

they could contribute up to O (n) to the inverted list length which

results in a time complexity ofO (n2). This is why existing methods

fail to perform effectively over small sets. This is also why we can

afford using any existing methods to process large sets while have

to design a new method for the small sets.

Remark. Obviously it is expensive to enumerate all c-subsets in
every small set, especially when the small sets have large sizes. To

address this issue, we propose various techniques to avoid enu-

merating a large number of them in Section 4 and our method

has both theoretical and practical guarantees. In addition, any ex-

isting method can be plugged in our framework to process the

large sets for better practical performance. In particular, we use

ScanCount [30] as described in Section 6.1 in our implementation.

3.2 Size Boundary Selection in Theory
It remains to clarify the setting of the size boundary x (which

divides the small sets from the large ones). We will adopt an analytic

approach: bounding the running time of our algorithm as a function

of x , and then finding the best x to minimize the cost.

Running Time as a Function of x : Let us first analyze the time

complexity of finding the similar pairs in Rl × R. Recall that our

algorithm calculates the intersection size |R ∩ R′ | for every pair

of ⟨R,R′⟩ ∈ Rl × R. To do so efficiently, we create a hash table on

every large set R ∈ Rl so that whether an element e belongs to R
can be determined in constant time. Then, |R∩R′ | can be computed

in O ( |R′ |) time, by probing the hash table of R with every element

in R′. In other words, the computation of |R ∩ R′ | for the same R′

but all R ∈ Rl can be accomplished in O ( |R′ | · nx ) time. Therefore,

the size |R ∩ R′ | of all ⟨R,R′⟩ ∈ Rl × R can be obtained in time∑
R′∈R

O ( |R′ | ·
n

x
) = O

(
n2

x

)
.

We now proceed to discuss the time complexity of finding similar

pairs in Rs ×Rs . There are two steps: (i) the first enumerates all the

c-subsets to build the inverted index, and (ii) the second generates

similar pairs from the inverted lists. A small setR has

(
|R |
c

)
c-subsets.

Since |R | ≤ x (as R is a small set), the total number of c-subsets
from all small sets is at most:∑

R∈Rs

(
|R |

c

)
≤

∑
R∈Rs

|R |c ≤ xc−1
∑
R∈Rs

|R | ≤ xc−1n.

The enumeration cost in the first step is asymptotically the same

as the above number, i.e., the cost is bounded by O (xc−1n).
The cost of the second step comes from generating all the set

pairs in each inverted list. Let L1, L2, . . . , Ll be all the inverted

lists in L, and |Li | be the length of Li . The time complexity of the

second step is O (
∑l
i=1 |Li |

2). As the total length of all the inverted

lists is exactly the number of c-subsets in all the small sets, it holds

that

∑l
i=1 |Li | ≤ xc−1n. Moreover, for any inverted listLi , we have

|Li |( |Li |−1)
2

≤ k (remember that k is the total number of similar set

pairs in R × R) because the number of similar set pairs generated

in Li obviously cannot exceed k . It thus follows that |Li | = O (
√
k ).

Hence, the second step runs in time

O (
l∑
i=1
|Li |

2) = O (
√
k

l∑
i=1
|Li |) = O (x

c−1n
√
k ).

Choosing x When k is Known: Let us first make an (unrealistic)

assumption that we know in advance the value of k (the assumption

will be removed shortly). In this scenario, the best value of x results

directly from the earlier analysis. Specifically, as shown above, the

overall running time of our algorithm is

O

(
n2

x
+ xc−1n

√
k

)
.

To minimize the time complexity, we set x = (n/
√
k )1/c . In this

case, the time complexity of our algorithm is

O

(
n2−

1

c k
1

2c

)
. (1)

As an example, consider the dataset in Table 1 again with the thresh-

old c = 2. Here, n =
∑
7

i=1 |Ri | = 40, and k = 5. Hence, we set

x = (40/
√
5)

1

2 ≈ 5.

Whenk is Not Known—The Doubling Trick:Nowwe return to

the reality where one does not have the precise value of k . Interest-
ingly, even in this case, it is still possible to achieve the same time



complexity as (1) with a technique often known as the doubling
trick, which is a commonly used technique in theory for analyzing

the complexity. The main idea is to guess k starting from a small

value. Then, we run the algorithm as if our guess was accurate. If it
is, then the algorithm indeed achieves the desired cost; otherwise,

we are able to detect the fact that our guess is too low. In the former

case, the join problem has already been solved, whereas in the latter,

we double our guess for k and repeat. The algorithm eventually

terminates; and when it does so, it is guaranteed that (i) our final

guess is at most twice the real k , and that (ii) the total execution

time is dominated by that of the last run (with the final guess).
1

Next, we give the details of the above solution. The solution has

multiple rounds. In each round we guess a k and execute the size

aware algorithm (Algorithm 1). Let
ˆk be our guess ofk in the current

round. If the guess is accurate, we know from the earlier analysis

that, the size aware algorithm must terminate by performing at

most α · n2−
1

c ˆk
1

2c “micro steps” (α is the hidden constant in the

big-O of (1)), each of which takes O (1) time, and can be tracked

easily—more specifically, a micro step in our algorithm is one probe

in a hash table in processing Rl × R, or the enumeration of one set

pair in processing Rs × Rs . Therefore, as soon as 1 + α · n2−
1

c ˆk
1

2c

micro steps have been performed, we know that our guess
ˆk is

smaller than the real k . Hence, the size aware algorithm can now

terminate itself—in which case, we say that the current round has

finished. Then, we double
ˆk and perform another round until our

guess
ˆk ≥ k . Note in each round it takes O (n2−

1

c ˆk
1

2c ) time.

To achieve the desired complexity (1), we start with
ˆk = 1. At

its termination, the value of
ˆk is at most 2k (otherwise, the algo-

rithm would have terminated in the previous round). Therefore,

the overall running time of all the rounds is bounded by

O
*.
,

log
2
(2k )∑

i=0
n2−

1

c (2i )
1

2c +/
-
= O

(
n2−

1

c k
1

2c

)
.

We thus have proved:

Theorem 1. There exists an algorithm with the time complexity
O (n2−

1

c k
1

2c ) for the set similarity join with overlap constraints prob-
lem, where n is the total size of all the sets, constant c is the similarity
threshold, and k is the number of similar set pairs in the result.

Beating the Quadratic Barrier: The value of k ranges from 0

to

(n
2

)
. As explained in Section 1, we achieve sub-quadratic time

whenever this is possible. That is, for k = o(n2), it always holds

that O (n2−
1

c k
1

2c ) = o(n2), whereas for k = Ω(n2), any algorithm

must spend Ω(n2) time just to output all the similar pairs.

Remark: Note we make no assumptions about the distribution of

the set sizes. In the extreme case where all the sets have exactly

the same size ℓ, either all of them are classified as small sets, or all

of them are classified as large sets, depending on the comparison

between ℓ and (n/
√
k )1/c (i.e., the size boundary). In both cases,

the time complexity is as claimed—our proof holds in general.

Having proved the theoretical guarantee of our algorithm, in

the subsequent sections, we will strive to improve its practical per-
formance dramatically with careful optimization heuristics. Focus

1
Note the doubling trick is only for the complexity analysis. In practice, we use the

approach later proposed in Section 5 to determine the size boundary.

will be placed on processing Rs × Rs , as any existing approach

can be used to process Rl × R. As a serious challenge, our current

algorithm needs to enumerate all the c-subsets of a small set, the

number of which can be huge, thus causing significant overhead.

We will remedy this issue with novel ideas, as presented below.

4 HEAP-BASED METHODS ON SMALL SETS
In this section, we focus on building the inverted index Lslim for c-
subsets in Rs that can generate all the results in Rs ×Rs , which we

shall call a slimmed inverted index, instead of the full inverted index
L. It is possible to skip some unnecessary c-subsets in Rs when
we construct a slimmed inverted index, which includes unique c-
subsets and redundant c-subsets.We propose heap-basedmethods to

skip unique and redundant c-subsets in Section 4.1 and Section 4.2

respectively. As it is expensive to maintain the heap, especially

when the heap is wide, we propose a blocking-based method to

shrink the heap in Section 4.3.

4.1 Skipping Unique c-subsets
For each small set, the size-aware algorithm needs to enumerate

all its c-subsets to build the full inverted index L and generate

the results based on it. If a c-subset is unique, i.e., it appears only
once in all the small sets, we can avoid generating it and get a

slimmed inverted index that can generate all the results as the

unique c-subset cannot produce any result.

Definition 2 (Uniqe c-subset). A c-subset rc is called a unique
c-subset if |L[rc ]| = 1.

As there are a large number of unique c-subsets, it is important

to avoid generating them. For example, in Figure 2, R4 has 6 c-
subsets and all of them are unique c-subsets. Thus we do not need

to generate them. Given a set R, it has
(
|R |
c

)
c-subsets and it is

prohibitively expensive to generate all of them. Fortunately, most

of them are unique c-subsets and next we discuss how to skip them.

Skip Unique c-subsets. We first give the basic idea of skipping

unique c-subsets. We fix a global order for the c-subsets in all the

small sets and visit the c-subsets in ascending order. As shown

in Figure 3, consider a c-subset rc in a small set R. Let r′c be the

smallest c-subset that is larger than rc in Rs \ {R} (i.e., not in R).
Then all the c-subsets between rc and r′c (the gray ones in the

figure) must only appear in R and must be unique c-subsets (this is
based on the definition of r′c ). Thus we can skip the c-subsets in R
which are larger than rc and smaller than r′c . Next we discuss how
to utilize this idea to skip unique c-subsets.

Global Ordering. We fix a global order for all the elements in the

small sets and sort the elements in each small set by this global order.

Then we can order the c-subset based on the order of elements, i.e.,

first by the smallest element, then by the second smallest element

and finally by the largest element. For example, consider the four

small sets in Table 1 and suppose that we order the elements by

their subscripts, i.e., the order of e1, e2, . . . , e7. Then the order of

the 2-subsets is shown in Figure 2 from left to right.

Heap-based Method. We first give a naive heap-based method to

construct the entire inverted index L. For each small set, we visit

its c-subsets in ascending order and denote the smallest unvisited

c-subset as its min-subset. A min-heapH is used to manage all the



r
c

r
c

the global order of c-subsets
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the smallest c-subset that is larger than r
c
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R Rs \ {R}Rs \ {R}

Figure 3: Skip the unique c-subsets.

min-subsets of the small sets. We popH to get the globally smallest

min-subset, which is denoted as rmin
c . Suppose that rmin

c comes

from the set R. We append R to the inverted list L[rmin
c ], mark

rmin
c as visited and reinsert the next min-subset of R to the heap.

Iteratively, we can build all the inverted lists and get the entire

inverted index L.

Next we construct a slimmed inverted index by excluding the

inverted lists of the unique c-subsets fromL. For this purpose, every
time we pop the heap and get the smallest min-subset rmin

c from a

small set R, we can again compare rmin
c with the min-subset that

currently tops the heap, which is denoted as r
top
c . If r

top
c , rmin

c ,

instead of reinserting the next min-subset of R to the heap, we can

jump directly to the smallest c-subset in R that is no smaller than

r
top
c and reinsert it to the heap as the skipped c-subsets must only

appear in R and must be unique c-subsets (recall the basic idea

above, in which case rmin
c corresponds to rc and r

top
c corresponds

to r′c ). We can achieve this by a binary search as the elements and

c-subsets in R are ordered. The details of the binary search are

described in Appendix A.

The pseudo code of the HeapSkip method is shown in Algo-

rithm 2. Instead of enumerating every c-subset in each small set,

it first fixes a global order for all the elements and builds a min-

heap H by inserting all the min-subsets of the small sets to H

(Lines 1 to 2). It keeps popping H until it is empty (Lines 3 to 9).

Suppose that the smallest popped out min-subset rmin
c comes from

R, it appends R to the inverted list Lslim[r
min
c ] and compares rmin

c
with r

top
c which is the current top element ofH . If rmin

c and r
top
c

are different, it binary searches the first c-subset in R that is no

smaller than r
top
c and reinserts it toH (Lines 6 to 7); otherwise it

reinserts the next min-subset in R intoH (Line 9). Finally, it returns

a slimmed inverted index Lslim (Line 10).

Example 2. Consider the dataset R in Table 1 and suppose the
threshold is c = 2. There are 4 small sets, R1, R2, R3, and R4. As
illustrate in Figure 2, HeapSkip first orders the elements in them
by their subscripts. Then it inserts the min-subsets {e1, e2}, {e1, e3},
{e1, e3}, and {e2, e4} of the four small sets into a min-heapH . Next
it pops H and has rmin

c = {e1, e2} from R1 and r
top
c = {e1, e3}.

It appends R1 to the inverted list Lslim[{e1, e2}]. As rmin
c , r

top
c ,

it binary searches the first c-subset in R1 that is no smaller than
r
top
c . It gets {e1, e3} and reinserts this c-subset toH . Then it popsH
and has rmin

c = {e1, e3} from R1 and r
top
c = {e1, e3}. It appends R1

to Lslim[{e1, e3}]. As rmin
c = r

top
c , it reinserts the next min-subset

{e2, e3} of R1 toH . Iteratively, it can build a slimmed inverted index
Lslim. Note it can skip the unique c-subsets {e2, e5} and {e2, e6} of
R4 by binary searching the smallest c-subset in R4 that is no smaller

Algorithm 2: HeapSkip
Input: Rs : all the small sets; c: threshold;
Output: Lslim: a slimmed inverted index for Rs ;

Fix a global order for all the elements in Rs ;1

Insert all the min-subsets of small sets to a heapH ;2

whileH is not empty do3

popH to get rmin
c and suppose it is from R;4

append R to Lslim[r
min
c ];5

if rtopc , rmin
c then6

binary search for the first c-subset in R that is no7

smaller than r
top
c and reinsert it intoH ;

else8

reinsert the next min-subset in R intoH ;9

return Lslim10

than r
top
c = {e3, e4} when rmin

c = {e2, e4} comes from R4. Similarly
it can also skip the c-subset {e4, e6} of R4 when rmin

c = {e4, e5} and
r
top
c = {e4, e7}.

4.2 Skipping Redundant c-subsets
For small sets, the size-aware algorithm may produce duplicate

results as some set pairs may share multiple common c-subsets. If a
c-subset only generates duplicate results, we can skip enumerating

it and still get a slimmed inverted index. Obviously, given two c-
subsets rc and r

′
c , if L[rc ] ⊆ L[r

′
c ], then rc is redundant, because

the result generated by rc (i.e., L[rc ] × L[rc ]) is a subset of that
generated by r′c (i.e., L[r

′
c ] × L[r

′
c ]).

Definition 3 (Redundant c-subset). A c-subset rc is a redun-
dant c-subset of another c-subset r′c if L[rc ] ⊆ L[r

′
c ].

Note that the duplicate results are generated whenever |L[rc ]∩
L[r′c ]| ≥ 2. However, it is expensive to eliminate all the duplicate re-

sults. In fact, it remains expensive to detect all redundant c-subsets,
as it requires to enumerate every two c-subsets and checks whether
the inverted list of one c-subset is a subset of the other. To address

this issue, we propose an efficient algorithm that can detect all

adjacent redundant c-subsets.

Definition 4 (Adjacent Redundant c-subset). The c-subset rc
is an adjacent redundant c-subset of another c-subset r′c if r

′
c ≺ rc ,

where ≺ denotes the order of c-subsets, and the c-subsets between r′c
and rc , including rc , are all redundant c-subsets of r′c .

For example, in Figure 2, we have L[{e1e3}] = {R1,R2,R3},
L[{e1e4}] = {R2}, L[{e1e5}] = {R3}, L[{e1e7}] = {R2,R3}, and
L[{e2e3}] = {R1}. Thus, based on the definition, {e1e4}, {e1e5},
{e1e7}, and {e2e3} are all adjacent redundant c-subsets of {e1e3}. If
we skip them, we can build a smaller slimmed inverted index.

Skip Adjacent Redundant c-subsets.We first give the basic idea

of skipping adjacent redundant c-subsets. As shown in Figure 4, we

still visit the c-subsets in ascending order. Let r′′c be the smallest

c-subset that is larger than rc in Rs \L[rc ] (i.e., sets not containing
rc ). We find that all the c-subsets in the small sets in L[rc ] that
are larger than rc and smaller than r′′c (the gray ones in the figure,

e.g., r′c ) are adjacent redundant c-subsets of rc as their inverted

lists are all sub-lists of L[rc ]. Next we discuss how to utilize this

idea to skip adjacent redundant c-subsets.
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Figure 4: Skip the adjacent redundant c-subsets.

Heap-based Method. We still fix the order of the c-subsets by
the order of elements, access the c-subsets of each set in order,

utilize a min-heapH to manage the min-subsets, and iteratively

pop the min-heap to build the inverted lists. Every time we pop

H and get rmin
c from a set R, we first append R to Lslim[r

min
c ].

Then we compare rmin
c with r

top
c . However, if rmin

c = r
top
c , we do

not reinsert the next min-subset of R to H . Only if rmin
c , r

top
c

we reinsert the min-subsets of all the sets in Lslim[r
min
c ] toH by

binary searching the first c-subsets that are no smaller than r
top
c . In

this way, we can skip those c-subsets larger than rmin
c and smaller

than r
top
c which must be adjacent redundant c-subsets of rmin

c as

the inverted lists of these c-subsets are all sub-lists of Lslim[r
min
c ]

(recall the basic idea above, in which case rmin
c corresponds to rc

and r
top
c corresponds to r′′c ).

The pseudo code of the HeapDedup method is shown in Algo-

rithm 3. HeapDedup improves on HeapSkip by lazily reinserting

the min-subsets. Instead of reinserting a min-subset to the min-

heap every time, HeapDedup reinserts a batch of min-subsets to

the min-heap by binary searching the min-subsets no smaller than

r
top
c when rmin

c , r
top
c (Lines 1 to 3) and does nothing when

rmin
c = r

top
c .

Example 3. Consider the four small sets R1, R2, R3 and R4 in
Table 1 and suppose that the threshold is c = 2. As illustrate in Figure 2,
HeapDedup first inserts the min-subsets {e1, e2}, {e1, e3}, {e1, e3} and
{e2, e4} of the four small sets into a min-heapH . Next it popsH , gets
rmin
c = {e1, e2} from R1 and reinserts the next rmin

c {e1, e3} of R1
to H . Then it pops H again and has rmin

c = {e1, e3} from R1 and
r
top
c = {e1, e3}. It appends R1 to Lslim[{e1, e3}]. As rmin

c = r
top
c ,

it keeps popping H and has rmin
c = {e1, e3} from R2 and r

top
c =

{e1, e3}. It appends R2 to Lslim[{e1, e3}]. As rmin
c = r

top
c , it pops

H and has rmin
c = {e1, e3} from R3 and r

top
c = {e2, e4}. It appends

R3 to Lslim[{e1, e3}]. As rmin
c , r

top
c , for the sets R1, R2, and R3 in

Lslim[{e1, e3}], it binary searches the first min-subsets in them that
are no smaller than r

top
c . It gets {e3, e4} and {e3, e5} for R2 and R3

and reinserts them toH . It reaches the end of R1 and does not reinsert
any c-subset for R1 toH . Iteratively it can build a slimmed inverted
index without adjacent redundant c-subsets.

4.3 Blocking c-subsets
For each small set, the heap-based methods need to maintain a

min-subset in the min-heap. Thus the heap size is |Rs |, which is

rather large and leads a high heap adjusting cost (the time cost

Algorithm 3: HeapDedup
Input: Rs : all the small sets; c: threshold;
Output: Lslim: a slimmed inverted index for Rs ;

// replace lines 6 to 9 of Algorithm 2

if rtopc , rmin
c then1

foreach R in Lslim[r
min
c ] do2

binary search the first c-subset in R that is no smaller3

than r
top
c and reinsert it toH ;

else4

continue; // lazy reinsertion5

for each heap adjusting operation is c × log |Rs | as each c-subset
comparison takes c cost).

To address this issue, we propose to block the c-subsets by their

smallest elements. As shown in Figure 5, consider the blockBe with

smallest element e . As the other c-subsets either have the smallest

elements larger than e or smaller than e , they must be different from

the c-subsets in the block Be . Thus we can independently utilize

the heap-based methods to build a part of the slimmed inverted

index for the c-subsets in Be with a smaller heap (as we do not need

to maintain the min-subsets for those small sets without c-subsets
in Be , such as Ra and Rb in the figure). Next we formalize our idea.

We first fix a global order for all the elements. Then we build an

inverted index I for all the elements in Rs to facilitate blocking

the c-subsets. The inverted list I[e] of the element e consists of

all the small sets containing e . As all the c-subsets in a block Be
must contain the element e while all the small sets having element

e are in I[e], the c-subsets in the block Be are from and only from

the sets in I[e]. Thus for each inverted list I[e], we apply the

heap-based method on all the sets in I[e] to construct the inverted

list Lslim[rc ] for every c-subset rc ∈ Be . Note we only need to

access those c-subsets with the smallest element e in the sets in

I[e]. To achieve this, we can perform a simulation by removing

those elements no larger than e in the sets in I[e] and decreasing

the threshold by 1 when applying the heap-based methods.
2

The pseudo code of the BlockDedup is shown in Algorithm 4. It

first fixes a global order for elements and then builds the element

inverted index I (Lines 1 to 2). Next for each inverted list I[e] ∈
I, it generates a temporary set Rtmp of sets by removing all the

elements no larger than e in the sets in I[e] (Line 4)
3
. Then it

applies the HeapDedup method on Rtmp with the threshold c − 1 to
build a part of the slimmed inverted index Lslim (Line 5). Note the

blocking-based method can also work with HeapSkip here and is

named as BlockSkip in the experiment. Finally it returns a slimmed

inverted index Lslim (Line 6).

Example 4. Consider the small sets in Table 1 and suppose that
the threshold c = 2. In Figure 2, we can group all their c-subsets to
5 blocks. The c-subsets with e1, e2, e3, e4, and e5 as their smallest
element respectively. The block of e3 contains three c-subsets, {e3, e4},
{e3, e5, }, and {e3, e7}. Note the c-subset {e1, e3} is not belong to this
block as its minimum element is e1 rather than e3. The block of e3
only has c-subsets from two small sets, R2 and R3. We can utilize the

2
In our implementation, we do not remove the elements and copy all the sets. Instead

we omit the elements no larger than e when accessing the c-subsets in heap-based

methods.

3
If the size of a set is smaller than c − 1 after removing the elements no larger than e ,
we do not need to add it into Rtmp . Instead, we drop it.
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Figure 5: Block c-subsets with smallest element e.

heap-based methods on this block with a smaller heap size of 2 to
build a part of a slimmed inverted index.

5 SIZE BOUNDARY SELECTION IN PRACTICE
The complexity analysis in Section 3 gives us the insight that we

need to process the small and large sets separately. It gives the

size boundary by equating the time complexities of the small and

large sets. However there is a gap between the time complexity and

the actual time cost. In practice, the number of the enumerated c-
subsets is much smaller than xc−1n due to the pruning techniques in
Section 4 and the upper bounds used in analyzing the total number

of c-subsets under the worst case in Section 3. Moreover, the lengths

of the inverted lists of the c-subsets are much shorter than

√
k in

practice and the time cost for generating the results is far smaller

than xc−1n
√
k . Thus the time complexity largely overestimates

the time cost for processing the small sets and the suggested size

boundary ( n√
k
)
1

c is too small in practice.

Nextwe give the basic idea of our size boundary selectionmethod.

Based on the time complexity analysis, with the increasing of the

size boundary x , the time complexity of the small sets O (xc−1n
√
k )

growsmore andmore sharply while the time complexity of the large

sets O ( n
2

x ) falls less and less precipitously. Thus we can increase

the size boundary from the smallest set size in R and estimate the

time costs for the small sets and the large sets. We stop increasing

the boundary when the time cost for small sets grows more than

the decrease of the time cost for large sets, and partition all the sets

by the current size boundary. To this end, we show how to estimate

the time costs for the small sets and the large sets in Section 5.1 and

propose an effective size boundary selection method in Section 5.2.

5.1 Estimating the Time Costs
Next we estimate the costs for processing large sets and small sets.

Estimating the time cost for large sets: In our implementation,

we use the ScanCount [13] method to process the large sets. For

the large sets, we build an inverted index I for all the elements in

the sets in R . For each large set R ∈ Rl , we scan the corresponding

inverted lists of its elements and count the occurrences of the other

sets in the inverted lists. All the sets with occurrence times no

smaller than c are similar to R. We can estimate the time cost

for processing the large set R by adding up the lengths of all its

inverted lists. Thus the time cost for all the large sets is proportional

to

∑
R∈Rl

∑
e ∈R |I[e]|. We can get this cost by scanning the entire

dataset for one pass.

Estimating the time cost for small sets. For the small sets, the

size-aware method uses a heap to manage the min-subsets, accesses

Algorithm 4: BlockDedup
Input: Rs : all the small sets; c: threshold;
Output: Lslim: a slimmed inverted index for Rs ;

Fix a global order for all the elements in Rs ;1

Build an inverted index I for all the elements in Rs ;2

foreach I[e] in I do3

Rtmp = sets in I[e]with elements ≤ e removed;4

Lslim = Lslim ∪ HeapDedup(Rtmp ,c − 1);5

// Lslim = Lslim ∪ HeapSkip(Rtmp, c − 1) for

BlockSkip

return Lslim6

the c-subsets of each small set by binary searching, and generates

the results by scanning the c-subset inverted index. Thus there are

three major costs, the heap adjusting cost, the binary searching

cost, and the result generation cost. Next we estimate them.

We first estimate the result generation cost. Obviously the result

generation cost is proportional to the number of c-subsets shared by
the small sets as each set pair generated from the c-subset inverted
index corresponds to a c-subset shared by the set pair and any

small set pair sharing a c-subset corresponds to two entries in the

inverted list of this c-subset. Thus we can randomly sample y small

set pairs from all theY =
(
|Rs |
2

)
small set pairs. Suppose that for the

ith sampling set pair, they share pi common elements; then they

share

(pi
c

)
c-subsets. Based on the law of the large numbers, we can

estimate the result generation cost as proportional to
Y
y

∑y
i=1

(pi
c

)
as the total number of small set pairs Y is large.

Next we estimate the heap adjusting cost and the binary search

cost. The size-aware method blocks the c-subsets based on their

smallest elements and utilizes the heap-based methods to process

each block. There are a large number of distinct elements, and the

number of blocks is also large (the number of blocks is the same

as the number of distinct elements). We can randomly sample a

number of blocks to estimate the heap adjusting cost and the binary

searching cost for all the blocks. More specifically, for each sample

block, we run the heap-based method. For each heap adjusting

operation, we estimate its cost as proportional to c logh where h is

the current heap size. For each binary search operation, we estimate

its cost as proportional to c log t where t is the size of the set on
which we do a binary search. Suppose that we randomly sample z
blocks out of all Z = |I | blocks and have the heap adjusting cost

for the ith block is proportional to Hi and the binary search cost is

proportional to Ti ; then based on the law of large numbers, we can

estimate that the heap adjusting cost and binary searching cost for

all the blocks are proportional to
Z
z

∑z
i=1 (Hi +Ti ) as the number

of blocks Z is quite large.

5.2 The Size Boundary Selection Method
In this section, we propose a size boundary selection method. Based

on Section 3.2, the time complexities of the small sets and the

large sets are respectively O (xc−1n
√
k ) and O ( n

2

x ). The slope of

xc−1n
√
k is always positive and monotonically increasing

4
w.r.t. the

size boundary x while the slope of
n2

x is always negative and also

4
When c = 2, though the slope is a constant, the size boundary selection method

proposed presently still works.



Algorithm 5: GetSizeBoundary
Input: R: the dataset; c: the threshold;
Output: x : a size boundary for dichotomizing R;

Set x as the larger of the smallest set size in R and c;1

Estimate the time cost for Rxs asZ′ and for Rxl as Y ′;2

while x is no larger than the largest set size in R do3

Estimate the time costZ for the small sets Rx+1s ;4

Estimate the time cost Y for the large sets Rx+1l ;5

if benefit = Y ′ − Y ≤ cost = Z−Z′ then break6

x = x + 1, Y ′ = Y andZ′ = Z;

return x7

monotonically increasing w.r.t. the size boundary x . This means

with the increasing of the size boundary x , the time complexity

of the small sets grows first slowly and then sharply while the

time complexity of the large sets falls first precipitously and then

slowly. Based on this idea, we propose a cost model which uses

the decrease of the time cost for the large sets as the benefit and

the increase of the time cost for the small sets as the cost. More

specifically, we first set the size boundary x as the smallest set size

in R or the threshold c , whichever is larger and try to increase x by

1 each time. Let Rxs and Rxl respectively be the sets of small sets

and large sets achieved by the size boundary x . Then we estimate

the time costs for Rxs , R
x+1
s , Rxl , and R

x+1
l as proportional toZ′,

Z, Y ′, and Y . Next we compare the benefit, which is proportional

to Y ′ − Y , with the cost, which is proportional toZ −Z′. If the

benefit is larger than the cost, we increase the size boundary x by

1 and repeat this procedure. Otherwise, we stop increasing x and

dichotomize R by this size boundary. Note this method makes no

assumptions about the distribution of the set sizes. If all the sets

have the same size, it will classify all the sets either as small or

large, depending on the estimations.

The pseudo-code of the cost-based method is shown in Algo-

rithm 5. It takes a dataset R and a threshold c as input and outputs

a size boundary x for dichotomizing R. It first sets x to the larger

one of the smallest set size in R and c (Line 1). Then it estimates the

time costsZ′ and Y ′ for Rxs and Rxl (Line 2), and the time costs

Z and Y for Rx+1s and Rx+1l (Lines 4 to 5). If the benefit Y ′ − Y

is smaller than the costZ −Z′, it stops and returns x as the size

boundary (Line 6). Otherwise it increases x by 1, sets Y ′ to Y and

Z′ toZ (Line 6) and repeats the estimation until x is larger than

the largest set size in R (Line 3).

Example 5. Consider the dataset R in Table 1 and suppose that the
threshold is c = 3. The complexity analysis suggests the size boundary
as ( 40√

3

)
1

3 = 2.8 and then all the sets are large sets. Our method first

sets the boundary size x as the smallest set size 3. R3s is empty and R3l
has all the sets. The time costZ′ for R3s is 0 while the cost Y

′ for R3l
is 67. R4s contains R1 and R

4

l has the other sets. The time costZ for
R4s is still 0 while the cost Y for R4l is 64. As the benefit Y ′ − Y = 3

is larger than the costZ−Z′ = 0, we increase x to 4 and setY ′ = 64

andZ′ = 0. Then R5s = {R1,R2,R3,R4} and R
5

l = {R5,R6,R7}. The
cost Y for R5l is 42 while the cost Z for R5s is 55. As the benefit
Y−Y ′ = 22 is smaller than the costZ′−Z = 55, we stop increasing
x and set x = 4.

Table 2: The dataset details
|R | n avg, min, max |R | |I | avg, min, max |I[e] |

DBLP 1M 10M 10.1 1 304 183K 55228 1 183226

CLICK 0.99M 8M 8.1 1 2,498 41K 194 1 601374

ORKUT 1M 77M 77.1 1 27,317 2.9M 2822 1 10785

ADDRESS 1M 7M 7 7 7 657K 10.65 1 223321

6 EXPERIMENTS
This section evaluates the efficiency and scalability of our methods.

6.1 Setup
We implemented all our proposed techniques and conducted exper-

iments on four real-world datasets DBLP
5
, CLICK

6
, ORKUT

7
, and

ADDRESS
8
. DBLP is a bibliography dataset from DBLP where each

title is a set and each word is an element. CLICK is an anonymized

click-stream dataset from a Hungarian on-line news portal where

each set is a user and each click record is an element. ORKUT is

a social network dataset from Orkut, where each set corresponds

to a user and each element is a friend of the user. The friendship

relation is undirected such that if two users are friends, they appear

in each other’s set. We randomly selected 1 million sets from DBLP

and ORKUT and almost 1 million sets from CLICK as our datasets.

ADDRESS is a collection of addresses crawled from the CSV tables

on www.data.gov, where each element is a whitespace-delimited

word. We randomly chose 1 million sets with exactly 7 elements to

verify that our method worked well for the sets with the same sizes.

In the experiment, our size boundary selection method classified all

the sets inADDRESS as small sets. We did not use a dataset in which

the sets are of the same size and are all classified as large since

SizeAware will use an existing method to process them. In this

case SizeAware is the same as the existing method and the results

are less interesting. The detailed information of all the datasets are

shown in Table 2. We show their size distributions in Appendix E.

We compared our size-aware algorithm with the following state-

of-the-art approaches for set similarity join with overlap constraints.

ScanCount [13]: It first builds an inverted index I for all the sets in

a given dataset R , where each entry is an element in the sets and is

associated with an inverted list, which keeps all the sets that contain

the element. Let I[e] denote the inverted list of the element e . I[e]
consists of all the sets containing e . For example, for the datasetR in

Table 1, we haveI[e2] = (R1,R4,R5). For each setR, the ScanCount
method scans all the corresponding inverted lists of its elements

and counts the occurrence of each set in these inverted lists. Then

it outputs all the sets with occurrences no smaller than c as similar

sets of R. Let |I[e]| denote the length of the inverted list I[e]. For
each set in I[e], the set contains element e and this method needs

to scan I[e]. As I[e] has |I[e]| elements, I[e] is scanned |I[e]|
times. Thus the time complexity is O (

∑
I[e]∈I |I[e]|

2) = O (n2).
Note that our SizeAware uses this method to process large sets.

DivideSkip [13]: Same as the ScanCount method, DivideSkip
also builds an inverted index for the elements in the sets. However,

for each set R, instead of scanning all the corresponding inverted

lists of its elements, DivideSkip first scans some relatively shorter

inverted lists to generate candidates and then binary searches the

other longer inverted lists to get the finally results
9
. This method

still has the worst-case time complexity of O (n2).

5
http://dblp.uni-trier.de/

6
http://fimi.cs.helsinki.fi/data/

7
https://snap.stanford.edu/data/com-Orkut.html

8
http://www.data.gov

9
It divides the short and long inverted lists based on a heuristic [13].

www.data.gov
http://dblp.uni-trier.de/
http://fimi.cs.helsinki.fi/data/
https://snap.stanford.edu/data/com-Orkut.html
http://www.data.gov
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(a) DBLP (set size ≤ 30 only)
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Figure 6: Evaluating the Heap-based Methods
All-Pairs [3]: All-Pairs first fixes a global order for all the dis-
tinct elements in R , such as the alphabetical order or the frequency

order. Then it sorts the elements in each set by this global order

and generates the prefix of each set, where the prefix of the set R
consists of its first |R | − c + 1 elements. It can guarantee that two

sets are similar only if their prefixes share at least one common

element. Next All-Pairs builds an inverted index for all the ele-

ments in the prefixes. For each set R, it unions all the inverted lists

of the elements in the prefix of R as candidates and verifies them by

calculating their real similarity to R. Its time complexity is O (n2).10

AdaptJoin [30]: PPJoin [33] first proposes a fixed-length prefix

scheme where the l-prefix scheme takes the first |R | − c + l ele-
ments of the set R as its prefix. PPJoin proves that two sets are

similar only if their l-prefixes share at least l common elements.

AdaptJoin further proposes an adaptive prefix scheme to improve

the fixed length prefix scheme. It develops a cost model to select

an appropriate prefix scheme for each set. It builds an incremental

inverted index for all the elements with position information, i.e.,

the inverted list of an element consists of all the sets containing

this element and its positions in the sets. For the set R with l-prefix
scheme, AdaptJoin retrieves all the inverted lists of the elements

in its prefix, scans those elements in the prefix of some sets using

the position, outputs all the sets sharing at least l common elements

in their prefixes as candidates, and verifies them. Nevertheless, its

worst-case time complexity is still O (n2).
Note ScanCount and DivideSkip were original designated for

search queries. We adapted them to do joins by conducting a search

query for each set. For all the experiments, we varied c from 4 to 12

for DBLP and CLICK, 4 to 20 for ORKUT, and 2 to 6 for ADDRESS.

The thresholds were 40% to 120% of the average set size on DBLP,

50% to 150% on CLICK, 5% to 25% on ORKUT, and 30% to 85% on

ADDRESS, which are wide in relation to the average set size.

We implemented All-Pairs by ourselves and obtained the source
code from the corresponding authors for the rest. All the methods

were implemented in C++ and compiled using g++ 4.8.4 with -O3

flag. All experiments were conducted on a machine with Ubuntu

10
A proof sketch is presented in Appendix C.

14.04 LTS, an Intel(R) Xeon(R) CPU E7-4830 @ 2.13GHz processor,

and 256 GB memory.

6.2 Evaluating The Heap-based Methods
The first set of experiments aimed to identify the best heap-based

method for processing small sets. For this purpose, we used all the

sets with sizes no larger than 30, 25, and 30 from DBLP, CLICK, and

ORKUT to conduct the experiment, which results in 998618, 934203,

and 359124 small sets respectively. As all the sets in ADDRESS are

quite small, we used all of them in this set of experiments.

We implemented the following five methods: (1) Naive, which
enumerates all c-subsets for each small set; (2) HeapSkip, which
utilizes a min-heap to skip unique c-subsets; (3) HeapDedup, which
utilizes a min-heap to skip both unique c-subsets and adjacent

redundant c-subsets; (4) BlockSkip, which first blocks the c-subsets
and then utilizes a min-heap for each block to skip unique c-subsets;
(5) BlockDedup, which first blocks the c-subsets and then utilizes a

min-heap for each block to skip both unique c-subsets and adjacent
redundant c-subsets.

We first varied the threshold and reported the number of enu-

merated c-subsets (which is equal to the number of heap popping

operations). Figure 6(a)-(d) gives the results. We observed that

BlockDedup and HeapDedup enumerated the least number of c-
subsets, and reduced that of Naive by up to 6 orders of magnitudes.

For example, on ORKUT dataset when c = 12, the numbers of enu-

merated c-subsets for Naive, HeapSkip, BlockSkip, HeapDedup,
and BlockDedup were respectively 2.2 trillion, 123 million, 122

million, 4.3 million, and 3.5 million. The reason behind the effec-

tiveness of BlockDedup and HeapDedup is two-fold. First, they can

skip all the adjacent redundant c-subsets. Second, their lazy in-

sertion technique can skip more unique c-subsets than HeapSkip
and BlockSkip. We can also see that BlockDedup and BlockSkip
enumerated a little fewer c-subsets than HeapDedup and HeapSkip.
This is because after blocking, some small sets could be directly

dropped as they have less than c elements that are larger than the

one used for blocking. For ADDRESS dataset, as the set sizes are

quite small, the number of c-subsets for each set is limited (no larger

than 35 for any c ∈ [2, 6]), which leads the gap between different
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(d) DBLP (large sets)

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20  25  30  35

E
l
a
p
s
e
d
 
T
i
m
e
(
s
)

Size Boundary x

c=4
c=6
c=8

c=10
c=12

(e) CLICK (large sets)

 70

 75

 80

 85

 90

 95

 100

 0  10  20  30  40  50  60

E
l
a
p
s
e
d
 
T
i
m
e
(
s
)

Size Boundary x

c=4
c=8

c=12
c=16
c=20

(f) ORKUT (large sets)

 0

 500

 1000

 1500

 2000

 1  10  100

E
l
a
p
s
e
d
 
T
i
m
e
(
s
)

Size Boundary x

c=4
c=6
c=8

c=10
c=12

(g) DBLP (total running time)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  5  10  15  20  25  30  35

E
l
a
p
s
e
d
 
T
i
m
e
(
s
)

Size Boundary x

c=4
c=6
c=8

c=10
c=12

(h) CLICK (total running time)

 0

 1000

 2000

 3000

 4000

 5000

 0  10  20  30  40  50  60

E
l
a
p
s
e
d
 
T
i
m
e
(
s
)

Size Boundary x

c=4
c=8

c=12
c=16
c=20

(i) ORKUT (total running time)

Figure 7: Evaluating the Size Boundary Selection Method

methods much smaller than those of the other datasets. Neverthe-

less, we still observed that the heap-based methods beat the naive

method, and HeapDedup and BlockDedup enumerated less number

of c-subsets than HeapSkip and BlockSkip.
We alsomeasured the total running time for the heap-basedmeth-

ods by varying the thresholds. The results are shown in Figure 6(e)-

(h). We have the following observations. Firstly, BlockDedup and
HeapDedup respectively outperformed BlockSkip and HeapSkip all
the time as the former had less number of heap popping operations.

Secondly, BlockDedup and BlockSkip respectively beat HeapDedup
and HeapSkip in all the cases as the former had a smaller unit heap

popping cost. Thirdly, BlockDedup consistently achieved the best

performance as it not only required fewer popping operations but

also had a smaller unit heap popping cost. The following experi-

ments utilized BlockDedup as the designated method to process

the small sets, due to its best overall efficiency. We also measured

the elapsed time for Naive method. However, for DBLP, CLICK,

and ORKUT, Naive reported the out-of-memory error after a long

time (>1000s) in almost all the cases. Thus we only reported the

results on ADDRESS dataset, as shown in Figure 6(h). We can see

that on the only dataset that Naive can handle, BlockDedup still

outperformed Naive by several times when c ∈ [3, 6]. However,

Naive beat BlockDedup when c = 2. This is because the sets in

by complexity by our method the best

x time (sec) x time (sec) accuracy x time (sec)

DBLP, c = 4 4 2042.5 30 174.5 112.6% 36 172

DBLP, c = 6 4 1894.9 34 85.99 80.9% 30 85.56

DBLP, c = 8 4 1455.6 32 38.41 98.2% 32 38.41

DBLP, c = 10 3 873.2 29 20.07 83.8% 31 19.71

DBLP, c = 12 3 392.6 29 11.04 112.7% 31 10.78

CLICK, c = 4 4 1000 30 358.12 89.1% 28 357.5

CLICK, c = 6 3 516.4 23 270.29 131.9% 24 269.4

CLICK, c = 8 3 329.1 24 224.44 80.1% 23 222

CLICK, c = 10 2 238.2 21 193.4 91.6% 21 193.4

CLICK, c = 12 2 182.3 25 182.96 78.6% 21 162.7

ORKUT, c = 4 5 149.4 8 149.5 97.0% 4 149.4

ORKUT, c = 8 3 146.9 11 146.8 115.8% 13 146.7

ORKUT, c = 12 2 145.1 15 144.8 97.3% 16 144.7

ORKUT, c = 16 2 142.9 18 142.7 84.9% 13 142.1

ORKUT, c = 20 2 139.7 22 139.4 91.6% 22 139.4

Table 3: The selected size boundaries

ADDRESS are very small, which leads a small total number of c-
subsets. In addition, the chance for BlockDedup to skip c-subsets
decreased when c becomes small while BlockDedup needs more

time to enumerate a c-subset than Naive as it used a heap to do so.

6.3 Evaluating The Size Boundary Selection
The experiments in this subsection focused on the behavior of our

size-boundary selection method. Note for ADDRESS dataset, as all
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Figure 8: Comparison with Existing Methods: Overlap Threshold
the sets have exactly the same size, our size boundary selection

method classified all of them as small sets. The experiment results

were less interesting for ADDRESS than the other three datasets

and thus we omitted them here. We first enumerated a number of

size boundaries and evaluated the processing time for small sets and

large sets in the size-aware algorithm. Figures 7(a)-(c) present the

processing time on the small sets, Figures 7(d)-(f) show the results

for the large ones, and Figures 7(g)-(i) give the total running time.

As the size boundary increased, the cost reduction for the large

sets was considerable initially but then became insignificant later;

while for the small sets, the cost growth was slow at the beginning,

and then dramatically accelerated. For example, on DBLP dataset

when c = 12, on size boundary 7, 17, 27, and 37, the elapsed time

for small sets was 0.03s, 0.98s, 4.4s, and 11.1s respectively and 390s,

111s, 7.8s, and 2.2s for large sets. This is consistent with our time

complexity analysis in Section 3.2. Due to this tradeoff between

small and large sets, the overall cost of the size-aware algorithm

first decreased and then increased. For example, on DBLP dataset

when c = 12, the elapsed time for size boundary 12, 21, 31, 61, and

101 was respectively 377s, 35s, 10.8s, 25.4s, and 270s.

Table 3 shows the size boundaries that (i) were produced by the

time complexity analysis, (ii) were chosen by our size-boundary

selection method, and (iii) actually gave the best performance. We

also reported the running time under each size boundary. We can

see that our size boundary selection method was quite effective, and

picked fairly good values that were close to the optimal ones. For

example, on DBLP when c = 8, our size boundary selection method

selected x = 32 as the boundary which achieved the optimal perfor-

mance (38.41s) among all the enumerated boundaries. However, the

time complexity analysis suggested x = 4 as the boundary which

led a much worse running time of 1455s. This evidenced that the

cost model in our method is accurate. Note the sixth column gives

the estimation accuracy for the small sets, which was the ratio of

the estimated costs to the real costs for processing small sets. We

can see the cost estimation is accurate. The cost estimation for large

sets is always accurate as it does not use sampling techniques.

6.4 Comparison with Existing Methods:
Overlap Threshold

We compared our size-aware algorithm with four existing methods

DivideSkip, All-Pairs, AdaptJoin, and ScanCount by varying

the threshold c . Figure 8 reports the total running time as a function

of c . Our size-aware method always achieved the best performance

and outperformed the others by up to an order of magnitude. For ex-

ample, onDBLP dataset when c = 4, the elapsed time for ScanCount,
DivideSkip, AdaptJoin, All-Pairs, and SizeAware was respec-

tively 2585s, 3358s, 2612s, 3509s, and 161s. The main reason for

this is the existing methods spent considerable time scanning the

element inverted lists, while our size-aware method avoided this by

separately processing the small sets and the large sets. Moreover,

the size boundary selection method can select a good size boundary

for the size-aware algorithm. In addition, with the increase of the

threshold c , the running time decreased because there were fewer

answers and fewer sets with sizes no smaller than c . We have the

same observation on ADDRESS, because SizeAware generates the

results directly from the c-subsets, whose total number is small as

the sets inADDRESS are very small. However, scanning the element

inverted index took a long time for existing methods. Moreover,

when all the sets have the same size, the overlap similarity is equiv-

alent to Jaccard similarity (see details in Appendix D). We compared

SizeAwarewith some additional existing methods for set similarity

join with Jaccard constraint on ADDRESS dataset in Appendix E.

6.5 Comparison with Existing Methods:
Scalability

The last set of experiments studied the scalability of our method.

We varied the dataset sizes from 1 million to 3 million for DBLP

dataset, 250,000 to around 1 million for CLICK, 1 million to 3 million

for ORKUT, and 1 million to 3 million for ADDRESS dataset. The

elapsed time of SizeAware under different thresholds is reported
in Figure 9. We can see that our methods achieved sub-quadratic

scalability, which is consistent with our time complexity analy-

sis. For example, on DBLP dataset, when the threshold c = 4, the

elapsed time for 1 million, 1.5 million, 2 million, 2.5 million, and

3 million sets was respectively 200s, 362s, 569s, 788s, and 1044s.

This is because SizeAware processes small sets and large sets sep-

arately using two methods that are scalable to sets with different

sizes. In addition, the size boundary selection method can properly

dichotomize the input dataset. We also evaluated the scalability of

SizeAware in R-S join case and report the results in Appendix E.

We also compared our scalability with the existing work. Fig-

ures 10 gives the results.We varied the dataset sizes and reported the

elapsed time for different methods under specific thresholds.We can

see that our method achieved the best scalability. For example, on

ORKUT dataset, under the threshold c = 12, when there were 1 mil-

lion sets, the elapsed time for ScanCount, DivideSkip, AdaptJoin,
All-Pairs, and SizeAware was respectively 1130s, 520s, 1600s,

520s, and 150s; while it was 9885s, 4585s, 15500s, 4400s, and 875s

when there were 3 million sets. The elapsed time increased 8.75,

8.82, 9.69, 8.46, and 5.83 times when the dataset size increased 3

times. This is because all existing methods had a quadratic worst-

case time complexity and their filtering techniques had little effect

when the threshold was relatively small compared to the set sizes.

7 RELATEDWORK
Set Similarity Join and SearchwithOverlapConstraints.Broder
et al. [5] proposed to build an inverted index for the elements and

enumerate every set pair in each inverted list to find the set pairs
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Figure 9: Scalability under Different Overlap Thresholds
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Figure 10: Comparison with Existing Methods: Scalability
with enough overlap. This is different from our method for small

sets where we resort to element subsets with size c . Sarawagi et
al. [25] proposed a threshold sensitive list merge algorithm for set

similarity join. Li et al. [13] improved the list merge algorithm and

adapted it to set similarity search. Chaudhuri et al. [7] proposed

the prefix filter technique and used it as a primitive operator in a

database system for similarity join. Bayardo et al. [3] proposed a

similar approach for solving the same problem under in-memory

setting. Wang et al. [30] improved the prefix filter by proposing

a cost model to create adaptive prefix filters. Teflioudi et al. [29]

studied the inner product join problem which takes vectors instead

of sets as the input and utilizes the vector inner product in the join

constraint (instead of the overlap as in our problem).

Similarity Join and Search with Other Constraints. Similar-

ity join and search with other constraints, such as Jaccard, Co-

sine, Hamming, Edit Distance and Containment, are extensively

studied [2, 3, 7–9, 15, 19, 31, 33]. Xiao et al. [33] proposed PPJoin
and PPJoin+ for set similarity join with Jaccard, Cosine and Dice

constraints which improve the prefix filter by considering the ele-

ment positions. Bouros et al. [4] designed GroupJoin to group the

same prefixes to share computation. Wang et al. [31] developed SKJ
which can skip scanning a part of the inverted lists. Mann et al. [17]

proposed PEL to improved the length filter using the position in-

formation. Deng et al. [9, 32] proposed a partition-based method.

Arasu et al. [2] developed a partition-and-enumeration method for

the set similarity join with Jaccard and Hamming constraints. All

of them use the filter-and-refine framework [9]. Melnik et al. [19]

proposed partition-based algorithms for set containment join. Note

our work is different from the set containment join works [24, 34]

as they aim to find set pairs with the containment relationship. Li et

al. [14] proposed a partition-based method for string similarity join

with the edit distance constraint. Deng et al. [8] proposed a pivotal

prefix filter for string similarity search. [12, 18] conducted experi-

mental evaluations on the similarity join problem. We discuss more

details about the relationship between the set similarity join with

overlap constraint and the other constraints and experimentally

compare SizeAware with them in Appendixes D and E.

Approximate Similarity Join and Search Algorithms. There
is a rich literature [1, 21, 22, 26–28] on approximate algorithms

for set similarity join and search. Most of them are related to lo-

cality sensitive hashing (LSH) [10, 11]. The idea behind LSH is to

partition the input sets into buckets such that the more similar

two sets are, the higher probability they are hashed to the same

bucket. Pagh [22] proposed the LSH for hamming distance without

false negatives. The traditional LSH cannot support the non-metric

space distance function. To address this issue, Shrivastava et al. [27]

proposed an asymmetric LSH which pre-processes the vectors by

asymmetric transformation to make them fit in the classic LSH

technique. However, it is non-trivial to extend these techniques

to support the threshold-based overlap set similarity join query,

because the overlap between two similar sets can be vanishingly

small compared to the size of the sets and the tricks like picking a

random element and expecting it to be in both sets do not work.

8 CONCLUSION
In this paper, we study the set similarity join problem with overlap

constraints. We propose a size-aware algorithm with the time com-

plexity of O (n2−
1

c k
1

2c ) where n is the total size of all the sets and k
is the number of results. We divide all the sets into small sets and

large sets and process them separately. For the small sets, we enu-

merate all their c-subsets and take any set pair sharing at least one

c-subset as a result. To avoid enumerating unnecessary c-subsets,
we develop a heap-based method to avoid the unique c-subsets that
cannot generate any result and the redundant c-subsets that only
generate duplicate results. We propose to block the c-subsets to
reduce the heap size and the heap-adjusting cost. We design an

effective method to select an appropriate size boundary. Experimen-

tal results show that our algorithm outperforms state-of-the-art

studies by up to an order of magnitude.
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A BINARY SEARCHING FOR C-SUBSETS
Given the rmin

c from R and the r
top
c , when rmin

c , r
top
c we re-

quire to find the smallest c-subset in R that is not smaller than

r
top
c . We can achieve this by binary searching R. Suppose that

R = {e ′
1
, e ′

2
, · · · , e ′

|R | } and r
top
c = e1e2 · · · ec where ei < ej and

e ′i < e ′j for any i < j. For each element ei in increasing order,

we binary search the smallest element e ′ai in R that is not smaller

than ei until we first meet ei , e ′ai . Then we reinsert the c-subset
e ′a1e

′
a2 · · · e

′
ai e
′
ai+1 · · · e

′
ai+c−i into the heap where e ′a1 = e1, e

′
a2 =

e2, · · · , e
′
ai−1 = ei−1 and e

′
ai , ei and e

′
ai+1 · · · e

′
ai+c−1 are the ele-

ments right after e ′ai in R.

B ADAPTATION FOR R-S JOIN
In this section, we extend our theoretical results and techniques to

the R-S join case (where R , S).
The size-aware algorithm for the R-S join. Given two collec-

tions of sets R and S and a threshold c , the size-aware algorithm
divides all the sets into large sets Rl and Sl and small sets Rs and

Ss with the size boundary x and processes them separately. For

each large set R ∈ Rl (or S ∈ Sl ), it compares R (or S) with every

set in S (or R). As there are totally at most
n
x large sets where n is

the total size of all the sets, the time complexity of processing the

large sets is O ( n
2

x ). For each small set, the size-aware algorithm

enumerates all its c-subsets. As the size of a small set is no larger

than x and the number of c-subsets for a small set R ∈ Rs (or

S ∈ Ss ) is within |R |
c
(or |S |c ), the number of all c-subsets cannot

exceed xc−1n and the time complexity of enumerating c-subsets
is O (xc−1n). Next it generates all the results from the c-subset in-
verted index. Suppose that the c-subset inverted lists generated by

Rs and Ss are respectively L1,L2, . . .Ll and L
′
1
,L′

2
. . .L′l where

Li and L
′
i associated with the same c-subset. The time complexity

of generating the results is

O (
l∑
i=1
|Li | × |L

′
i |).

As the number of results generated from any inverted list cannot

exceed k , we have

min(
|Li |( |Li | − 1)

2

,
|L′i |( |L

′
i | − 1)

2

) ≤ k .

It thus follows thatmin( |Li |, |L
′
i |) = O (

√
k ). Moreover, as the total

size of all inverted lists, which is exactly the number of all c-subsets,
cannot be larger than xc−1n, we have

l∑
i=1

max( |Li |, |L
′
i |) ≤

l∑
i=1

( |Li | + |L
′
i |) ≤ xc−1n.

Thus the time complexity of generating the results is

O (
l∑
i=1
|Li | × |L

′
i |) = O

( l∑
i=1

min( |Li |, |L
′
i |) ×max( |Li |, |L

′
i |)

)
= O

(√
k

l∑
i=1

max( |Li |, |L
′
i |)

)
= O (xc−1n

√
k ).



Algorithm 6: SizeAwareRSJoin
Input: R: a dataset; S: another dataset;
c : a threshold.
Output: A = {⟨R, S⟩���|R ∩ S | ≥ c,R ∈ R, S ∈ S}.

x = GetSizeBoundary(R,S, c);1

divide R and S into small sets Rs and Ss and large sets Rl2

and Sl by the size boundary x ;
Using ScanCount to find all the similar set pairs in Rl × S and3

Sl × R and add them into A;

⟨Lslim,L
′
slim⟩ = BlockDedup(Rs ,Ss , c );4

foreach rc s.t. Lslim[rc ] , ϕ & L′slim[rc ] , ϕ do5

add every set pair in Lslim[rc ] × L
′
slim[rc ] into A;6

return A;7

Algorithm 7: HeapDedup(Rs , Ss , c)
Input: Rs : a collection of small sets; c: a threshold;
Ss : another collection of small sets.

Output: ⟨Lslim,L
′
slim⟩: slimmed inverted indexes.

Insert all the min-subsets in Rs and Ss to heapsH andH ′;1

PopH andH ′ to get the smallest c-subsets rmin
c and smin

c ;2

while neitherH norH ′ is empty do3

Suppose rmin
c and smin

c are from R and S respectively;4

if rmin
c > smin

c then5

append S to L′slim[s
min
c ], binary search S for the first6

c-subset that is no smaller than rmin
c , reinsert it into

H ′, and popH ′ to get the next smin
c ;

else if rmin
c < smin

c then7

append R to Lslim[r
min
c ], binary search R for the first8

c-subset that is no smaller than smin
c , reinsert it into

H , and popH to get the next rmin
c ;

else if rmin
c = smin

c then9

while rmin
c , r

top
c do10

append R to Lslim[r
min
c ], popH to get next rmin

c ;11

while smin
c , s

top
c do12

append S to L′slim[s
min
c ], popH ′ to get next smin

c ;13

return ⟨Lslim,L
′
slim⟩;14

The rest is the same as the self-join case and the time complexity

of the size-aware algorithm is still

O (n2−
1

c k
1

2c ) = o(n2) + O (k ).

The pseudo codes of the size-aware algorithm for the R-S join

case is shown in Algorithm 6. It first utilizes the size boundary

selection method to choose a size boundary x (Line 1). Then it

divides the two datasets using x (Line 2). It uses ScanCount to find

the results in Rl × S and Sl × R and add them to the result set A

(Lines 3). Next it utilizes the BlockDedup method to generate the

slimmed inverted indexes Lslim and L′slim for Rs and Ss respec-

tively (Line 4). Finally, for each c-subset rc , it adds every pair in

Lslim[rc ] × L
′
slim[rc ] to A and returns A (Lines 5 to 7).

The HeapSkipmethod for the R-S join. Suppose L and L′ are

the c-subset inverted indexes constructed from Rs and Ss . For any

c-subset rc , if L[rc ] = ϕ or L′[rc ] = ϕ, it cannot generate any

Algorithm 8: BlockDedup(Rs , Ss , c)
Input: Rs : a collection of small sets; c: a threshold;
Ss : another collection of small sets.

Output: ⟨Lslim,L
′
slim⟩: slimmed inverted indexes.

Fix a global order for all the elements in Rs and Ss ;1

Build element inverted indexes I and I ′ for Rs and Ss ;2

foreach element e s .t . I[e] , ϕ and I ′[e] , ϕ do3

Rtmp = sets in I[e]with elements ≤ e removed;4

Stmp = sets in I
′
[e]with elements ≤ e removed;5

⟨Lslim,L
′
slim⟩ = ⟨Lslim,L

′
slim⟩ ∪ HeapDedup(Rtmp , Stmp ,6

c − 1);

return ⟨Lslim,L
′
slim⟩;7

result and we call it a unique c-subset. To skip the unique c-subsets,
we fix a global order for all the c-subsets and access the c-subsets in
each set in order. We build two min-heapsH andH ′ to maintain

the min-subsets of the sets in Rs and Ss respectively. We popH

and H ′ and get the smallest min-subsets rmin
c and smin

c in H

and H ′. Suppose that they come from R and S respectively. We

compare rmin
c with smin

c . If rmin
c = smin

c , we first append R to

L[rmin
c ] and S to L′[smin

c ] and then reinsert the next min-subsets

in R and S to H and H ′ respectively. If rmin
c > smin

c , we first

append S to L′[smin
c ] and then reinsert the smallest c-subset that

is no smaller than rmin
c in S toH ′ by binary searching. Otherwise

smin
c > rmin

c , we first append R to L[rmin
c ] and then reinsert the

smallest c-subset that is no smaller than smin
c in R toH by binary

searching. We repeat this untilH orH ′ is empty.

The HeapDedupmethod for theR-S join. If the two inverted lists
L[rc ] and L

′
[rc ] of a c-subset rc are sub-lists of those of another

c-subset r′c , i.e., L[rc ] ⊆ L[r
′
c ] and L

′
[rc ] ⊆ L

′
[r′c ], rc can only

generate duplicate results and we call it a redundant c-subset. To
skip the adjacent redundant c-subsets, we delay the reinsertion of

min-subsets to the heaps when rmin
c = smin

c . More specifically,

when rmin
c = smin

c , we keep popping H (H ′) until rmin
c , r

top
c

(smin
c , s

top
c ) where r

top
c (s

top
c ) is the c-subset currently topsH

(H ′). Then for each set in L[rmin
c ] (L′[smin

c ]), we reinsert the

smallest c-subsets in it that is no smaller than s
top
c (r

top
c ) to H

(H ′) by binary searching. This is because the c-subsets between

rmin
c and s

top
c in R and between smin

c and r
top
c in S do not appear

in the other sets except those in L[rmin
c ] and L′[smin

c ] and must

be redundant c-subsets. The rest is the same as the self-join case.

The pseudo-code of the HeapDedupmethod forR-S join is shown

in Algorithm 7. It takes two collections of small sets Rs and Ss as

input and outputs two slimmed inverted indexesLslim andL′slim for

Rs and Ss respectively. It first initializes two min-heapsH andH ′

for Rs and S and pops out the smallest min-subsets rmin
c and smin

c
from H and H ′ (Lines 1 to 2). Suppose that rmin

c and smin
c are

come from R and S respectively. It keeps comparing rmin
c and smin

c
until eitherH orH ′ is empty (Line 3). If rmin

c > smin
c , it first ap-

pends S to L′slim[s
min
c ], then binary searches S for the first c-subset

that is no smaller than rmin
c , next reinserts it toH ′, and finally pops

H ′ to get the next smin
c (Line 6). If rmin

c < smin
c , it first appends

R to Lslim[r
min
c ], then binary searches R for the first c-subset that

is no smaller than smin
c , next reinserts it toH , and finally popsH

to get the next rmin
c (Line 8). If rmin

c = smin
c , it keeps poppingH



until rmin
c , r

top
c and builds the inverted listLslim[r

min
c ] (Line 11).

Similarly it keeps popping H ′ until smin
c , s

top
c and builds the

inverted list L′slim[s
min
c ] (Line 13). In this way, it can construct two

slimmed inverted indexes.

The blocking-basedmethods for theR-S join. For theR-S join

case, we still block all the c-subsets based on the smallest ele-

ments. We build two element inverted indexes I and I ′ for the

two datasets. Then for each element e , if I[e] , ϕ and I ′[e] , ϕ,
we can independently apply the heap-based methods on the sets in

I[e] and I ′[e] by only inserting those c-subsets with the smallest

element as e to the heaps.

The pseudo-code of the BlockDedup method for R-S join is

shown in Algorithm 7. It first fixes a global order for all the elements

and builds two inverted indexes I and I ′ for the elements in Rs
and Ss respectively (Lines 1 to 2). Then for each element e such
that I[e] , ϕ and I ′[e] , ϕ, it builds two temporary collections of

sets Rtmp and Stmp by removing the elements no larger than e in
I[e] and I ′[e] respectively (Lines 4 to 5). It utilizes the HeapDedup
method to construct the parts of the slimmed inverted indexes for

the two temporary sets with the threshold c − 1 (Line 6). Finally it

can get two slimmed inverted indexes and return them (Line 7).

The boundary size selection method for the R-S join. The
boundary size selection method for the R-S join is basically the

same as that for the self-join case. The time cost for the large set

is proportional to

∑
R∈Rl

∑
e ∈R |I

′
[e]| +

∑
S ∈Sl

∑
e ∈S |I[e]|. We

randomly sample small set pairs from Rs ×Ss to estimate the result

generation cost. We randomly sample blocks to estimate the heap

adjusting cost and the binary searching cost. We have the same

observation as that of the self-join case on the trends of the time

complexities of small sets and large sets with the increase of the

size boundary x . Thus the cost model is all the same. We first set

the size boundary x as the smallest set size in both datasets or c ,
whichever is larger and try to increase x by 1 each time. We use

the increasing of the time cost for small sets as the cost and the

decreasing of the time cost for large sets as the benefit. We stop

increasing x when the benefit is smaller than the cost.

C THE TIME COMPLEXITY OF PREFIX FILTER
Here is an example to show that the prefix filter has a worst case

time complexity of O (n2). Suppose there is a constant number p
of distinct elements in the sets, all the elements have the same

frequency
n
p , and the sizes of all the sets are larger than c . There

exists at least one element (the first element in the global order used

by All-Pairs) whose corresponding inverted list has a length of
n
p

and is scanned
n
p times. Thus the complexity is O ( np ×

n
p ) = O (n

2).

D RELATIONSHIP WITH THE OTHER
SIMILARITY FUNCTIONS

Just like all the similarity problems, set similarity join can also be

studied under other functions, such as Jaccard similarity, Cosine

similarity, Dice similarity, edit distance, and the normalized overlap

similarity. Every metric has its pros and cons, such that no met-

ric serves as a one-size-fits-all approach that cures all the issues

coming up in practice. For example, in some applications, the set

sizes may differ a lot, in which case most metrics will give low

similarities to the “lop-sided” set pairs (where one set out-sizes the

other significantly), whereas the overlap similarity is known to be

much less sensitive to such an issue.

Nevertheless, when all the sets in the given dataset have the

same sizes (e.g., the sets in ADDRESS), the overlap similarity can be

transformed to Jaccard similarity, Cosine similarity, Dice similarity,

and the normalized overlap similarity and vice versa. For example,

suppose all the set sizes are m. Then the set pairs with overlap

similarity no smaller than c are exactly the set pairs with Jaccard

similarity no smaller than
c

2m−c . This is because for any sets r and
s in the given dataset, we have

Jaccard(r , s ) =
|r ∩ s |

|r ∪ s |
=

|r ∩ s |

|r | + |s | − |r ∩ s |
=

|r ∩ s |

2m − |r ∩ s |

and thus |r∩s | ≥ c iff Jaccard(r , s ) ≥ c
2m−c . In this case, SizeAware

and the methods for set similarity joins under the other similarity

functions can be used to solve each other’s problems. We compared

SizeAware with five existing methods for set similarity joins under

Jaccard similarity constraint on ADDRESS in Appendix E.

In general, when the set sizes are not all the same in the given

dataset, all the alternative similarity functionsmentioned earlier can

actually be transformed to overlap similarity (but not vice versa),

after which our SizeAware algorithm can be used to solve the set

similarity join under those metrics as well. The transformation can

be achieved using an existing technique called AdaptJoin [30]. For
each set R, given a constant l , the fixed-length prefix schema of

AdaptJoin takes the first |R | − f ( |R |) + l elements as prefixes, and

guarantees that two sets are similar only if their prefixes share at

least l elements, where f ( |R |) is a function that depends on the

similarity metric. By taking all the l-prefixes as input and setting

the overlap threshold c = l , our size-aware algorithm can efficiently

identify the candidates for the set similarity join problem. The

candidates can then be fed into a verification step to produce the

final results. In practice, we can use the advance length filter [17],

prefix filter [33], and position filter [31] to process the large sets

and the sets R with f ( |R |) < c . We can also use the estimation in

AdaptJoin to select a good c .
The reverse transformation, on the other hand, does not always

appear to be possible when the set sizes are not all the same. This

fundamental nature of overlap similarity provides further motiva-

tion for our algorithmic study of this metric.

E MORE EXPERIMENTS
The Set Size Distributions. The set size distributions of DBLP,
CLICK, and ORKUT are shown in Figure 11.

Memory Usage. We also compared the memory usage with ex-

isting methods and Table 4 gives the numbers. We can see that

the memory usage of SizeAware is comparable to the existing ap-

proaches. In our heap-based methods, the smallest c-subsets rc
are first popped out from the heap and the inverted list L[rc ] is
constructed. We can enumerate the results in this inverted list and

drop it immediately as it will never be used again later in the algo-

rithm. Thus it only needs a small amount of memory to keep the

results, the element inverted index I, and the heap. However, the

heap-based methods may generate duplicate results. In our imple-

mentation, we keep the whole slimmed inverted index for efficient

result deduplication.
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Figure 11: Set Size Distributions
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Figure 12: Scalability: R-S Join
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Figure 13: Comparison with Existing Methods for Jaccard Set Similarity Join
ScanCount DivideSkip AdaptJoin AllPair SizeAware

DBLP, c = 8 180 MB 199 MB 308 MB 309 MB 579 MB

CLICK, c = 8 142 MB 2251 MB 304 MB 241 MB 940 MB

ORKUT, c = 12 1578 MB 1835 MB 2974 MB 2592 MB 3584 MB

ADDRESS, c = 4 202 MB 4400 MB 364 MB 336 MB 534 MB

DBLP c = 4 c = 6 c = 8 c = 10 c = 12

SizeAware 2712 MB 1448 MB 579 MB 393 MB 320 MB

Table 4: The Memory Usage
The Scalability of R-S Join. We report the scalability of our

SizeAware method for R-S join in this section. We still varied

the sizes of the datasets from 1 million to 3 millions for DBLP,

ORKUT, and ADDRESS and from 250 thousand to almost 1 million

for CLICK. We equally and randomly divided all the datasets into

two parts for the R-S join case and reported the elapsed time. The

results are shown in Figure 12. We can see that the scalability of our

method on R-S join case was fairly good. For example, for DBLP

dataset, when the threshold c = 4, the elapsed time for 1 million, 1.5

million, 2 million, 2.5 million, and 3 million sets were respectively

102 seconds, 180 seconds, 278 seconds, 405 seconds, and 518 sec-

onds, which is consistent with our time complexity analysis. This

is because the effectiveness of our proposed heuristics. In addition,

the size boundary selection method can choose a good boundary

for the SizeAware algorithm.

Comparingwith Jaccard Set Similarity JoinMethods.We com-

pared SizeAware with six existing methods for set similarity join

under Jaccard similarity constraint on the specialADDRESS dataset,

which are AdaptJoin [30], GroupJoin [4], PPJoin [33], PPJoin+ [33],
PEL [17], SKJ [31] (see Section 7 for the details of these methods).

Figure 13(a) gives the results. Note PPJoin and PPJoin+ ran out of

memory when c = 2 (which is the same as the threshold δ = 0.16

for Jaccard similarity). We can see that SizeAware consistently out-
performed the existing methods in all cases by up to 1-2 orders of

magnitude. For example, when c = 3 (that is δ = 0.27), the elapsed

time for AdaptJoin, SKJ, PPJoin, PPJoin+, GroupJoin, PEL, and
SizeAware was 1898s, 1318s, 2840s, 3024s, 1412s, 1608s, and 59s

respectively. The reason was two-fold. First, when all the set sizes

are exactly the same, the most effective length filter in all the ex-

isting work does not work. Second, all the existing methods use a

filter-and-refine framework, which first generates candidates by

some filtering conditions and then verifies the survived pairs. How-

ever, on ADDRESS dataset, the corresponding thresholds of the

Jaccard similarity are low which limits the pruning power of the

filtering conditions and makes the existing methods performed

rather bad. Our SizeAware algorithm, however, directly generated

all the result pairs without generating candidates. In other words,

our method does not require a verification step, which is one of the

reasons behind its efficiency. We also implemented the extensions

for SizeAware as discussed in Appendix D to support Jaccard sim-

ilarity and compared it with the six methods above on the other

three datasets which have different set sizes. We varied the Jaccard

similarity threshold from 0.8 to 0.95 and reported the elapsing time.

Figure 13(b)-13(d) shows the results. Our SizeAware algorithm con-

sistently outperformed the other methods. This is attributed to

our proposed SizeAware algorithm and heap-based methods for

reducing the filtering time and the cost-model in AdaptJoin for

choosing the right value of c .
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