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ABSTRACT
As an essential operation in data cleaning, the similarity join
has attracted considerable attention from the database com-
munity. In this paper, we study string similarity joins with
edit-distance constraints, which find similar string pairs from
two large sets of strings whose edit distance is within a given
threshold. Existing algorithms are efficient either for short
strings or for long strings, and there is no algorithm that
can efficiently and adaptively support both short strings
and long strings. To address this problem, we propose a
partition-based method called Pass-Join. Pass-Join par-
titions a string into a set of segments and creates inverted
indices for the segments. Then for each string, Pass-Join
selects some of its substrings and uses the selected substrings
to find candidate pairs using the inverted indices. We devise
efficient techniques to select the substrings and prove that
our method can minimize the number of selected substrings.
We develop novel pruning techniques to efficiently verify the
candidate pairs. Experimental results show that our algo-
rithms are efficient for both short strings and long strings,
and outperform state-of-the-art methods on real datasets.

1. INTRODUCTION
A string similarity join between two sets of strings finds all

similar string pairs from the two sets. For example, consider
two sets of strings {vldb, sigmod, . . . } and {pvldb, icde, . . . }.
We want to find all similar pairs, e.g., ⟨vldb, pvldb⟩. Many
similarity functions have been proposed to quantify the sim-
ilarity between two strings, such as jaccard similarity, cosine
similarity, and edit distance. In this paper, we study string
similarity joins with edit-distance constraints, which, given
two sets of strings, find all similar string pairs from the two
sets, such that the edit distance between each string pair
is within a given threshold. The string similarity join is an
essential operation in many applications, such as data in-
tegration and cleaning, near duplicate object detection and
elimination, and collaborative filtering.

Existing methods to address this problem can be broadly
classified into two categories. The first one uses a filter-and-
refine framework, such as Part-Enum [2], All-Pairs-Ed [3],
ED-Join [23]. In the filter step, they generate signatures
for each string and use the signatures to generate candidate
pairs. In the refine step, they verify the candidate pairs
to generate the final results. However, these approaches
are inefficient for the datasets with short strings (e.g., per-
son names and locations) [20]. The main reason is that
they cannot select high-quality signatures for short strings
and will generate large numbers of candidates which need
to be further verified. The second method (Trie-Join [20])
adopts a trie-based framework, which uses a trie structure to
share prefixes and utilizes prefix pruning to improve the per-
formance. However Trie-Join is inefficient for long strings
(e.g., paper titles and abstracts). This is because long strings
have a small number of shared prefixes.

If a system wants to support both short strings and long
strings, we have to implement and maintain two separate
codes, and tune many parameters to select the best method.
To alleviate this problem, it calls for an adaptive method
which can efficiently support both short strings and long
strings. In this paper we propose a partition-based method
to address this problem. We devise a partition scheme to
partition a string into a set of segments and prove that if a
string s is similar to string r, s must have a substring which
matches a segment of r. Based on this observation, we pro-
pose a partition-based framework for string similarity joins,
called Pass-Join. Pass-Join creates inverted indices for the
segments. For each string s, we select some of its substrings,
and search for the selected substrings in the inverted indices.
If a selected substring appears in the inverted index, each
string r on the inverted list of this substring (i.e., r contains
the substring) may be similar to s, and we take r and s as
a candidate pair. Next we verify the pair to generate the
final answers. We develop effective techniques to select sub-
strings and prove that our method can minimize the number
of selected substrings. We devise novel pruning techniques
to verify candidate pairs. To summarize, we make the fol-
lowing contributions.

(1) We devise a partition scheme to partition strings into
a set of segments. Using the partition scheme, we propose
a partition-based framework to facilitate similarity joins.

(2) We develop novel techniques to select substrings and
use them to generate candidate pairs. We prove that our
method can minimize the number of selected substrings.

(3) We propose an extension-based method to efficiently
verify a candidate pair, and develop pruning techniques and
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early-termination techniques to improve the performance.
(4) We have conducted an extensive set of experiments.

Experimental results show that our algorithms are very effi-
cient for both short strings and long strings, and outperform
state-of-the-art methods on real datasets.
The rest of this paper is organized as follows. We for-

malize our problem in Section 2. Section 3 introduces our
partition-based framework. We propose to effectively select
substrings in Section 4 and develop novel techniques to effi-
ciently verify candidates in Section 5. Experimental results
are provided in Section 6. We review related work in Sec-
tion 7 and make a conclusion in Section 8.

2. PROBLEM FORMULATION
Given two collections of strings, a similarity join finds

all similar string pairs from the two collections. In this
paper, we use edit distance to quantify the similarity be-
tween two strings. Formally, the edit distance between two
strings r and s, denoted by ed(r, s), is the minimum number
of single-character edit operations (i.e., insertion, deletion,
and substitution) needed to transform r to s. For example,
ed(“kaushic chaduri”, “kaushuk chadhui”) = 4.
In this paper two strings are similar if their edit distance

is not larger than a specified edit-distance threshold τ . We
formalize the problem of string similarity joins as follows.

Definition 1 (String Similarity Joins). Given two
sets of strings R and S and an edit-distance threshold τ , a
similarity join finds all similar string pairs ⟨r, s⟩ ∈ R × S
such that ed(r, s) ≤ τ .

Without loss of generality, we focus on self join in this
paper, that is R = S. We will discuss how to join two
distinct sets (R ≠ S) in Section 3.
For example, consider the strings in Table 1(a). Suppose

threshold τ=3. ⟨“kaushik chakrab”, “caushik chakrabar”⟩
is a similar pair as their edit distance is not larger than τ .

Table 1: A set of strings
(a) Strings (b) Sorted strings

Strings
avataresha
caushik chakrabar
kaushic chaduri
kaushik chakrab
kaushuk chadhui
vankatesh

ID Strings Length
s1 vankatesh 9
s2 avataresha 10
s3 kaushic chaduri 15
s4 kaushik chakrab 15
s5 kaushuk chadhui 15
s6 caushik chakrabar 17

3. PARTITION­BASED SIMILARITY JOINS
We first introduce a partition scheme to partition a string

into several disjoint segments (Section 3.1), and then pro-
pose a partition-based framework (Section 3.2).

3.1 Partition Scheme
Given a string s, we partition it into τ + 1 disjoint seg-

ments, and the length of each segment is not smaller than
one∗. For example, consider string s1=“vankatesh”. Sup-
pose τ = 3. We have multiple ways to partition s1 into
τ + 1 = 4 segments, such as {“va”,“nk”,“at”, “esh”}.
Consider two strings r and s. If s has no substring that

matches a segment of r, s cannot be similar to r based on
the pigeonhole principle as stated in Lemma 1. Due to space
constraints, we refer readers to our technical [16]. In other
∗
The length of string s(|s|) should be larger than τ , i.e., |s| ≥ τ + 1.

words, if s is similar to r, s must contain a substring match-
ing a segment of r. For example, consider strings in Table 2.
Suppose τ=3. String s1=“vankatesh” has four segments
{“va”, “nk”, “at”, “esh”}. As s3, s4, s5, s6 have no sub-
strings matching segments of s1, they are not similar to s1.

Lemma 1. Given a string r with τ + 1 segments and a
string s, if s is similar to r within threshold τ , s must contain
a substring which matches a segment of r.

Given a string, there could be many strategies to partition
the string into τ+1 segments. A good partition strategy can
reduce the number of candidate pairs and thus improve the
performance. Intuitively, the shorter a segment of r is, the
higher probability the segment appears in other strings, and
the more strings will be taken as r’s candidates, thus the
pruning power is lower. Based on this observation, we do
not want to keep short segments in the partition. In other
words, each segment should have nearly the same length.
Accordingly we propose an even-partition scheme. Consider
a string s with length |s|. In even partition, each segment

has a length of ⌊ |s|
τ+1
⌋ or ⌈ |s|

τ+1
⌉, thus the maximal length

difference between two segments is 1. Let k = |s| − ⌊ |s|
τ+1
⌋ ∗

(τ + 1). In even partition, the last k segments have length

⌈ |s|
τ+1
⌉, and the first τ + 1 − k ones have length ⌊ |s|

τ+1
⌋. For

example, consider s1=“vankatesh” and suppose τ = 3. We
have k = 1. s1 has four segments {“va”,“nk”,“at”, “esh”}.

Although we can devise other partition schemes, it is time
consuming to select a good partition strategy. Note that the
time for selecting a partition strategy should be included in
the similarity join time. In this paper we use the even-
partition scheme and leave the problem of selecting good
partition strategies as a future work. Note that our proposed
techniques can be extended to other partition strategies.

3.2 Partition­based Framework
We have an observation that if a strings s does not have

a substring that matches a segment of r, we can prune the
pair ⟨s, r⟩. We can use this feature to prune large numbers
of dissimilar pairs. To this end, we propose a partition-
based framework for string similarity joins, called Pass-
Join. Figure 2 illustrates our framework.

For ease of presentation, we first introduce some nota-
tions. Let Sl denote the set of strings with length l and Si

l

denote the set of the i-th segments of strings in Sl. We build
an inverted index for each Si

l , denoted by Li
l. Given an i-th

segment w, let Li
l(w) denote the inverted list of segment w,

i.e., the set of strings whose i-th segments are w. Pass-Join
uses the inverted indices to do similarity joins as follows.

Pass-Join first sorts strings based on their lengths in as-
cending order. For the strings with the same length, it sorts
them in alphabetical order. Then Pass-Join visits strings in
order. Consider the current string s with length |s|. Pass-
Join finds s’s similar strings among the visited strings using
the inverted indices. To efficiently find such strings, we cre-
ate indices only for visited strings to avoid enumerating a
string pair twice. Based on length filtering [7], we check
whether the strings in Li

l (|s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ + 1)
are similar to s. Without loss of generality, consider inverted
index Li

l. Pass-Join finds s’s similar strings in Li
l as follows.

• Substring Selection: If s is similar to a string in Li
l ,

s should contain a substring which matches a segment
in Li

l. A straightforward method enumerates all of
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Figure 1: An example of our partition-based framework
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Figure 2: Partition-based framework

s’s substrings, and for each substring checks whether
it appears in Li

l. Actually we do not need to con-
sider all substrings of s. Instead we only select some
substrings (denoted by W(s,Li

l)) and use the selected
substrings to find similar pairs. We discuss how to
generate W(s,Li

l) in Section 4. For each selected sub-
string w ∈ W(s,Li

l), we check whether it appears in
Li

l. If so, for each r ∈ Li
l(w), ⟨r, s⟩ is a candidate pair.

• Verification: To verify whether a candidate pair
⟨r, s⟩ is an answer, a straightforward method computes
their real edit distance. However this method is rather
expensive, and we develop effective techniques to do
efficient verification in Section 5.

After finding similar strings for s, we partition s into
τ + 1 segments and insert the segments into inverted index
Li

|s|(1≤i≤τ+1). Then we visit strings after s and iteratively
we can find all similar pairs. Note that we can remove the
inverted index Li

k for k < |s|−τ . Thus we maintain at most
(τ + 1)2 inverted indices Li

l for |s|−τ≤l≤|s| and 1≤i≤τ+1.
To join two distinct sets R and S, we first sort the strings

in the two sets respectively. Then we index the segments of
strings in a set, e.g., S. Next we visit strings of R in order.
For each string r∈R with length |r|, we use the inverted
indices of strings in S with lengths between [|r|−τ, |r|+τ ]
to find similar pairs. We can remove the indices for strings
with lengths smaller than |r|−τ . In this paper we focus on
the case that the index can be fit in the memory. We leave
dealing with a very large dataset as a future work.
For example, consider strings in Table 1. Suppose τ = 3.

We find similar pairs as follows (Figure 1). For the first
string s1 = “vankatesh”, we partition it into τ + 1 seg-
ments and insert the segments into the inverted indices for

Algorithm 1: Pass-Join (S, τ)
Input: S: A collection of strings

τ : A given edit-distance threshold
Output: A = {(s ∈ S, r ∈ S) | ed (s, r) ≤ τ}
begin1

Sort S first by string length and second in2

alphabetical order;
for s ∈ S do3

for Li
l (|s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ + 1) do4

W(s,Li
l) = SubstringSelection(s, Li

l);5

for w ∈ W(s,Li
l) do6

if w is in Li
l then7

Verification(s,Li
l(w), τ);

Partition s and add its segments into Li
|s|;8

end9

Function SubstringSelection(s, Li
l)

Input: s: A string; Li
l: Inverted index

Output: W(s,Li
l): Selected substrings

begin1

W(s,Li
l) = {w | w is a substring of s};2

end3

Function Verification(s, Li
l(w), τ)

Input: s: A string; Li
l(w): Inverted list; τ : Threshold

Output: A = {(s ∈ S, r ∈ S) | ed (s, r) ≤ τ}
begin1

for r ∈ Li
l(w) do2

if ed(s, r) ≤ τ then A ← ⟨s, r⟩;3

end4

Figure 3: Pass-Join algorithm

strings with length 9, i.e., L1
9,L2

9,L3
9,L4

9. Next for s2 =
“avataresha”, we enumerate its substrings, and check whether
each substring appears in Li

|s2|−τ , · · · ,Li
|s2|(1≤i≤τ+1). Here

we find “va” in L1
9, “at” in L3

9, and “esh” in L4
9. For segment

“va”, as L1
9(va) = {s1}. The pair ⟨s2, s1⟩ is a candidate pair.

We verify the pair and it is not an answer as the edit distance
is larger than τ . Next we partition s2 into four segments and
insert them into L1

|s2|,L
2
|s2|,L

3
|s2|,L

4
|s2|. Similarly we repeat

the above steps and find all similar pairs.
We give the pseudo-code of our algorithm in Figure 3.

Pass-Join sorts strings first by length and then in alpha-
betical order (line 2). Then, Pass-Join visits each string in
sorted order (line 3). For each inverted index Li

l(|s| − τ ≤
l ≤ |s|, 1 ≤ i ≤ τ + 1), Pass-Join selects the substrings of
s (line 4) and checks whether each selected substring w is in
Li

l (line 5). If yes, for any string r in the inverted list of w
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in Li
l , i.e., Li

l(w), the string pair ⟨r, s⟩ is a candidate pair.
Pass-Join verifies the pair (line 7). Finally, Pass-Join par-
titions s into τ + 1 segments, and inserts the segments into
the inverted index Li

|s|(1 ≤ i ≤ τ + 1) (line 8). Here func-
tion SubstringSelection selects all substrings and func-
tion Verification computes the real edit distance of two
strings to verify the candidates using dynamic-programming
algorithm. To improve the performance, we propose effec-
tive techniques to improve the substring-selection step in
Section 4 and the verification step in Section 5.

Complexity: We first analyze the space complexity. Our
indexing structure includes segments and inverted lists of
segments. We first give the space complexity of segments.
For each string in Sl we generate τ + 1 segments. Thus the
number of segments is at most (τ+1)×|Sl|, where |Sl| is the
number strings in Sl. As we can use an integer to encode a
segment, the space complexity of segments is

O
(

max
lmin≤j≤lmax

j∑
l=j−τ

(τ + 1)× |Sl|
)
,

where lmin and lmax respectively denote the minimal string
length and the maximal string length.
Next we give the complexity of inverted lists. For each

string in Sl, as the i-th segment of the string corresponds
to an element in Li

l, |Sl| = |Li
l|. The space complexity of

inverted lists(i.e., the sum of the lengths of inverted lists) is

O
(

max
lmin≤j≤lmax

j∑
l=j−τ

τ+1∑
i=1

|Li
l | = max

lmin≤j≤lmax

j∑
l=j−τ

(τ+1)×|Sl|
)
.

Then we give the time complexity. To sort the strings,
we can first group the strings based on lengths and then
sort strings in each group. Thus the sort complexity is
O
(∑

lmin≤l≤lmax
|Sl|log(|Sl|)

)
. For each string s, we select

its substring set W(s,Li
l) for |s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ +1.

The selection complexity isO
(∑

s∈S
∑|s|

l=|s|−τ

∑τ+1
i=1 X (s,L

i
l)
)
,

where X (s,Li
l) is the selection time complexity forW(s,Li

l),
which isO(τ) (Section 4). The selection complexity isO

(
τ3|S|

)
.

For each substring w∈W(s,Li
l), we verify whether strings

in Li
l(w) are similar to s. The verification complexity is

O
(∑

s∈S
∑|s|

l=|s|−τ

∑τ+1
i=1

∑
w∈W(s,Li

l
)

∑
r∈Li

l
(w) V(s, r)

)
, where

V(s, r) is the complexity for verifying ⟨s, r⟩, which is O(τ ∗
min(|s|, |r|))(Section 5). In the paper we propose to reduce
the size ofW(s,Li

l) and improve the verification cost V(s, r).

4. IMPROVING SUBSTRING SELECTION
For any string s ∈ S and a length l (|s| − τ ≤ l ≤ |s|), we

select a substring set W(s, l) = ∪τ+1
i=1W(s,Li

l) of s and use
substrings inW(s, l) to find the candidates of s. We need to
guarantee completeness of the method using W(s, l) to find
candidate pairs. That is any similar pair must be found as
a candidate pair. Next we give the formal definition.

Definition 2 (Completeness). A substring selection
method satisfies completeness, if for any string s and a length
l(|s| − τ ≤ l ≤ |s|), ∀ r with length l which is similar to s
and visited before s, r must have an i-th segment rm which
matches a substring sm ∈ W(s,Li

l) where 1 ≤ i ≤ τ + 1.

A straightforward method is to add all substrings of s into
W(s, l). As s has |s| − i + 1 substrings with length i, the

total number of s’s substrings is
∑|s|

i=1(|s|−i+1)= |s|∗(|s|+1)
2

.

For long strings, there are large numbers of substrings and
it is rather expensive to enumerate all substrings.

Intuitively, the smaller size of W(s, l), the higher perfor-
mance. Thus we want to find substring sets with smaller
sizes. In this section, we propose several methods to select
the substring set W(s, l). As W(s, l) = ∪τ+1

i=1W(s,Li
l) and

we want to use index Li
l to do efficient filtering, next we

focus on how to generate W(s,Li
l) for Li

l.

Length-based Method: As segments in Li
l have the same

length, denoted by li, the length-based method selects all
substrings of s with length li, denoted by Wℓ(s,Li

l). Let
Wℓ(s, l) = ∪τ+1

i=1Wℓ(s,Li
l). The length-based method sat-

isfies completeness, as it selects all substrings with length
li. The size of Wℓ(s,Li

l) is |Wℓ(s,Li
l)|=|s|−li+1, and the

number of selected substrings is |Wℓ(s, l)|=(τ+1)(|s|+1)−l.
Shift-based Method: However the length-based method
does not consider the positions of segments. To address this
problem, Wang et al. [22] proposed a shift-based method to
address the entity identification problem. We can extend
their method to support our problem as follows. As seg-
ments in Li

l have the same length, they have the same start
position, denoted by pi, where p1 = 1 and pi=p1+

∑i−1
k=1 lk

for i > 1. The shift-based method selects s’s substrings with
start positions in [pi−τ, pi+τ ] and with length li, denoted
by Wf (s,Li

l). Let Wf (s, l) = ∪τ+1
i=1Wf (s,Li

l). The size of
Wf (s,Li

l) is |Wf (s,Li
l)|=2τ + 1. The number of selected

substrings is |Wf (s, l)|=(τ+1)(2τ+1).
The basic idea behind the method is as follows. Suppose

a substring sm of s with start position smaller than pi − τ
or larger than pi + τ matches a segment in Li

l. Consider a
string r ∈ Li

l(sm). We can partition s(r) into three parts:
the matching part sm(rm), the left part before the matching
part sl(rl), and the right part after the matching part sr(rr).
As the start position of rm is pi and the start position of sm
is smaller than pi − τ or larger than pi + τ , the length dif-
ference between sl and rl must be larger than τ . If we align
the two strings by matching sm and rm (i.e., transforming
rl to sl, matching rm with sm, and transforming rr to sr),
they will not be similar, thus we can prune substring sm.
Hence the shift-based method satisfies completeness.

However, the shift-based method still involves many un-
necessary substrings. For example, consider two strings s1
= “vankatesh” and s2 = “avataresha”. Suppose τ = 3
and “vankatesh” is partitioned into four segments {va, nk,
at, esh}. s2 = “avataresha” contains a substring “at”
which matches the third segment in “vankatesh”, the shift-
based method will select it as a substring. However we can
prune it and the reason is as follows. Suppose we parti-
tion the two strings into three parts based on the match-
ing segment. For instance, we partition “vankatesh” into
{“vank” , “at”, “esh”}, and “avataresha” into {“av”, “at”,
“aresha”}. Obviously the minimal edit distance (length dif-
ference) between the left parts (“vank” and “av”) is 2 and
the minimal edit distance (length difference) between the
right parts (“esh” and “aresha”) is 3. Thus if we align the
two strings using the matching segment “at”, they will not
be similar. In this way, we can prune the substring “at”.

4.1 Position­aware Substring Selection
Notice that all the segments in Li

l have the same length li
and the same start position pi. Without loss of generality,
we consider a segment rm ∈ Li

l. Moreover, all the strings in
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inverted list Li
l(rm) have the same length l (l ≤ |s|), and we

consider a string r that contains segment rm. Suppose s has
a substring sm which matches rm. Next we give the possible
start positions of sm. We still partition s(r) into three parts:
the matching part sm(rm), the left part sl(rl), and the right
part sr(rr). If we align r and s by matching rm = sm, that
is we transform r to s by first transforming rl to sl with
dl = ed(rl, sl) edit operations, then matching rm with sm,
and finally transforming rr to sr with dr = ed(rr, sr) edit
operations, the total transformation distance is dl + dr. If
s is similar to r, dl + dr ≤ τ . Based on this observation,
we give sm’s minimal start position (pmin) and the maximal
start position (pmax) as illustrated in Figure 4.

Minimal Start Position: Suppose the start position of
sm, denoted by p, is not larger than pi. Let △ = |s| − |r|
and △l = pi − p. We have dl = ed(rl, sl) ≥ △l and dr =
ed(rr, sr) ≥ △l + △, as illustrated in Figure 4(a). If s is
similar to r (or any string in Li

l(rm)), we have

△l + (△l +△) ≤ dl + dr ≤ τ.

That is △l ≤ ⌊ τ−△
2
⌋ and p = pi −△l ≥ pi − ⌊ τ−△

2
⌋. Thus

pmin≥pi − ⌊ τ−△
2
⌋. As pmin≥1, pmin=max(1, pi − ⌊ τ−△

2
⌋).

Maximal Start Position: Suppose the start position of
sm, p, is larger than pi. Let△ = |s|−|r| and△r = p−pi. We
have dl = ed(rl, sl) ≥ △r and dr = ed(rr, sr) ≥ |△r−△| as
illustrated in Figure 4(b). If △r ≤ △, dr ≥ △−△r. Thus
△ = △r+(△−△r) ≤ dl + dr ≤ τ , and in this case, the
maximal value of△r is△; otherwise if△r>△, dr ≥ △r−△.
If s is similar to r (or any string in Li

l(rm)), we have

△r + (△r −△) ≤ dl + dr ≤ τ.

That is △r ≤ ⌊ τ+△
2
⌋, and p = pi +△r ≤ pi + ⌊ τ+△

2
⌋. Thus

pmax≤pi+⌊ τ+△
2
⌋. As the segment length is li, based on the

boundary, we have pmax ≤ |s|− li+1. Thus pmax=min(|s|−
li + 1, pi + ⌊ τ+△

2
⌋).

For example, consider string r = “vankatesh”. Suppose
τ = 3 and “vankatesh” is partitioned into four segments,
{va, nk, at, esh}. For string s = “avataresha”, we have
△ = |s| − |r| = 1. △l ≤ ⌊ τ−△

2
⌋ = 1 and △r ≤ ⌊ τ+△

2
⌋ = 2.
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Figure 5: Multi-match-aware substring selection

For the first segment “va”, p1 = 1. pmin = max(1, p1 −
⌊ τ−△

2
⌋) = 1 and pmax = 1 + ⌊ τ+△

2
⌋ = 3. Thus we only

need to enumerate the following substrings “av”, “va”, “at”
for the first segment. Similarly, we need to enumerate sub-
strings “va”, “at”, “ta”, “ar” for the second segment, “ta”,
“ar”, “re”, “es” for the third segment, and “res”, “esh”,
“sha” for the fourth segment. We see that the position-
based method can reduce many unnecessary substrings over
the shift-based method (reducing the number from 28 to 14).

For Li
l, the position-aware method selects substrings with

start positions in [pmin, pmax] and with length li, denoted
by Wp(s,Li

l). Let Wp(s, l)=∪τ+1
i=1Wp(s,Li

l). The size of
Wp(s,Li

l) is |Wp(s,Li
l)|=τ + 1 and the number of selected

substrings is |Wp(s, l)|=(τ+1)2. The position-aware method
satisfies completeness as formalized in Theorem 1.

Theorem 1.The position-aware substring selection method
satisfies completeness.

4.2 Multi­match­aware Substring Selection
We have an observation that string s may have multiple

substrings that match some segments of string r. In this
case we can discard some of these substrings. For example,
consider r = “vankatesh” with four segments, {va, nk, at,
esh}. s = “avataresha” has three substrings va, at, esh
matching the segments of r. We can discard some of these
substrings. To this end, we propose a multi-match-aware
substring selection method.

Consider Li
l. Suppose string s has a substring sm that

matches a segment in Li
l. If we know that s must have a sub-

string after sm which will match a segment in Lj
l (j > i), we

can discard substring sm. For example, s = “avataresha”
has a substring “va” matching a segment in r = “vankatesh”.
Consider the three parts rm = sm = “va”, rl = ϕ and sl =
“a”, and rr = “nkatesh” and sr = “taresha”. As dl ≥ 1, if
s and r are similar, dr ≤ τ−dl ≤ τ−1 = 2. As there are still
3 segments in rr, thus sr must have a substring matching a
segment in rr based on the pigeon-hole principle. Thus we
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can discard the substring “va” and use the next substring
to find similar pairs. Next we generalize our idea.
Suppose s has a substring sm with start position p match-

ing a segment rm ∈ Li
l. We still consider the three parts of

the two strings: sl, sm, sr and rl, rm, rr as illustrated in Fig-
ure 5. Let △l = |pi − p|. dl = ed(rl, sl) ≥ △l. As there
are i − 1 segments in sl, if each segment only has 1 error
when transforming rl to sl, we have △l ≤ i − 1. If △l ≥ i,
dl = ed(rl, sl) ≥ △l ≥ i, dr = ed(rr, sr) ≤ τ − dl ≤ τ − i
(if s is similar to r). As rr contains τ + 1 − i segments, sr
must contain a substring matching a segment in rr based
on the pigeon-hole principle, which can be proved similar to
Lemma 1. In this way, we can discard sm, since for any
string r ∈ Li

l(rm), s must have a substring that matches
a segment in the right part rr, and thus we can identify
strings similar to s using the next matching segment. In
summary, if △l = |p − pi| ≤ i − 1, we keep the substring
with start position p for Li

l. That is the minimal start po-
sition is ⊥l

i = max
(
1, pi − (i − 1)

)
and the maximal start

position is ⊤l
i = min

(
|s| − li + 1, pi + (i− 1)

)
.

For example, consider string r=“vankatesh” with four
segments, {va, nk, at, esh}, and string s=“avataresha”.
For the first segment, we have ⊥l

i=1-0=1 and ⊤l
i=1+0=1.

Thus the selected substring is only “av” for the first segment.
For the second segment, we have ⊥l

i=3-1=2 and ⊤l
i=3+1=4.

Thus the selected substrings are “va”, “at”, and “ta” for
the second segment. Similarly for the third segment, we have
⊥l

i=5-2=3 and ⊤l
i=5+2=7, and for the fourth segment, we

have ⊥l
i=7-3=4 and ⊤l

i=7+3=10.
The above observation is made from the left-side perspec-

tive. Similarly, we can use the same idea from the right-side
perspective. As there are τ+1−i segments on the right part
rr, there are at most τ +1− i edit errors on rr. If we trans-
form r to s from the right-side perspective, position pi on r
should be aligned with position pi+△ on s as shown in Fig-
ure 5(b). Suppose the position p on s matching position pi
on r. Let△r = |p−(pi+△)|. We have dr = ed(sr, rr) ≥ △r.
As there are τ +1− i segments on the right part rr, we have
△r ≤ τ + 1 − i. Thus the minimal start position for Li

l is
⊥r

i = max
(
1, pi +△ − (τ + 1 − i)

)
and the maximal start

position is ⊤r
i = min

(
|s| − li + 1, pi +△+ (τ + 1− i)

)
.

Consider the above example. Suppose τ = 3 and △ = 1.
For the fourth segment, we have ⊥r

i = 7+1− (3+1−4) = 8
and ⊤r

i = 7+1+(3+1−4) = 8. Thus the selected substring
is only “sha” for the fourth segment. Similarly for the third
segment, we have ⊥r

i = 5 and ⊤r
i = 7. Thus the selected

substrings are “ar”, “re”, and “es” for the third segment.
More interestingly, we can use the two techniques simul-

taneously. That is for Li
l, we only select the substrings

with the start positions between ⊥i = max(⊥l
i,⊥r

i ) and
⊤i = min(⊤l

i,⊤r
i ) and with length li, denoted byWm(s,Li

l).
Let Wm(s, l)=∪τ+1

i=1Wm(s,Li
l). The number of selected sub-

strings is |Wm(s, l)|=⌊ τ
2−△2

2
⌋+τ+1 as stated in Lemma 2.

Lemma 2. |Wm(s, l)| = ⌊ τ
2−△2

2
⌋+ τ + 1.

Moreover we prove that the multi-match-aware selection
method satisfies completeness as stated in Theorem 2.

Theorem 2. The multi-match-aware substring selection
method satisfies completeness.

Consider the above example. For the first segment, we
have ⊥i = 1 − 0 = 1 and ⊤i = 1 + 0 = 1. We select

“av” for the first segment. For the second segment, we have
⊥i = 3 − 1 = 2 and ⊤i = 3 + 1 = 4. We select substrings
“va”, “at”, and “ta” for the second segment. For the third
segment, we have ⊥i = 5 + 1 − (3 + 1 − 3) = 5 and ⊤i =
5+1+(3+1−3) = 7. We select substrings “ar”, “re”, and
“es” for the third segment. For the fourth segment, we have
⊥i = 7+1− (3+1−4) = 8 and ⊤i = 7+1+(3+1−4) = 8.
Thus we select the substring “sha” for the fourth segment.
The multi-match-aware method only selects 8 substrings.

4.3 Comparison of Selection Methods
We compare the selected substring sets of different meth-

ods. LetWℓ(s, l),Wf (s, l),Wp(s, l),Wm(s, l) respectively de-
note the sets of selected substrings that use the length-
based selection method, the shift-based selection method,
the position-aware selection method, and the multi-match-
aware selection method. Based on the size analysis of each
set, we have |Wm(s, l)| ≤ |Wp(s, l)| ≤ |Wf (s, l)| ≤ |Wℓ(s, l)|.
Next we prove Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l) as
formalized in Lemma 3.

Lemma 3. For any string s and a length l, we have
Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l).

Moreover, we can prove that Wm(s, l) has the minimum
size among all substring sets generated by the methods that
satisfy completeness as formalized in Theorem 3.

Theorem 3. The substring set Wm(s, l) generated by the
multi-match-aware selection method has the minimum size
among all the substring sets generated by the substring se-
lection methods that satisfy completeness.

Theorem 3 proves that the substring set Wm(s, l) has the
minimum size. Next we introduce another concept to show
the superiority of our multi-match-aware selection method.

Definition 3 (Minimality). A substring set W(s, l)
generated by a method with the completeness property satis-
fies minimality, if for any substring setW ′(s, l) generated by
a method with the completeness property, W(s, l)⊆W ′(s, l).

Next we prove that if l ≥ 2(τ+1) and |s| ≥ l, the substring
set Wm(s, l) generated by our multi-match-aware selection
method satisfies minimality as stated in Theorem 4. The
condition l ≥ 2(τ + 1) makes sense where each segment
is needed to have at least two characters. For example, if
10 ≤ l < 12, we can tolerate τ = 4 edit operations. If
12 ≤ l < 14, we can tolerate τ = 5 edit operations.

Theorem 4. If l ≥ 2(τ+1) and |s| ≥ l,Wm(s, l) satisfies
minimality.

4.4 Substring­selection Algorithm
Based on above discussion, we improve SubstringSelec-

tion algorithm by avoiding unnecessary substrings. For Li
l ,

we use the multi-match-aware selection method to select
substrings, and the selection complexity is O(τ). Figure 6
gives the pseudo-code of the selection algorithm.

For example, consider the strings in Table 1. We create
inverted indices as illustrated in Figure 1. Consider string
s1 = “vankatesh” with four segments, we build four in-
verted lists for its segments {va, nk, at, esh}. Then for s2 =
“avataresha”. We use multi-match-aware selection method
to select its substrings. Here we only select 8 substrings for
s2 and use the 8 substrings to find similar strings of s2 from
the inverted indices. Similarly, we can select substrings and
find similar string pairs for other strings.
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Algorithm 2: SubstringSelection(s,Li
l)

Input: s: A string; Li
l: Inverted index

Output: W(s,Li
l): Selected substrings

begin1

for p ∈ [⊥i,⊤i] do2

Add the substring of s with start position p and3

with length li (s[p, li]) into W(s,Li
l);

end4

Figure 6: SubstringSelection algorithm

5. IMPROVING THE VERIFICATION
In our framework, for string s and inverted index Li

l , we
generate a set of its substrings W(s,Li

l). For each substring
w ∈ W(s,Li

l), we need to check whether it appears in Li
l . If

w ∈ Li
l, for each string r ∈ Li

l(w), ⟨r, s⟩ is a candidate pair
and we need to verify the candidate pair. In this section we
propose effective techniques to do efficient verification.

5.1 Length­aware Verification
Given a candidate pair ⟨r, s⟩, a straightforward method to

verify the pair is to use a dynamic-programming algorithm
to compute their real edit distance. If the edit distance is
not larger than τ , the pair is an answer. We can use a matrix
M with |r| + 1 rows and |s| + 1 columns to compute their
edit distance, in which M(0, j) = j for 0 ≤ j ≤ |s|, and for
1 ≤ i ≤ |r| and 0 ≤ j ≤ |s|,

M(i, j) = min
(
M(i−1, j)+1,M(i, j−1)+1,M(i−1, j−1)+δ

)
where δ = 0 if the i-th character of r is the same as the j-th
character of s; otherwise δ = 1. The time complexity of the
dynamic-programming algorithm is O(|r| ∗ |s|).
Actually, we do not need to compute their real edit dis-

tance and only need to check whether their edit distance is
not larger than τ . An improvement based on length prun-
ing [20] is proposed which only computes the values M(i, j)
for |i − j| ≤ τ , as shown in the shaded cells of Figure 7(a).
The basic idea is that if |i− j| > τ , M(i, j) > τ , and we do
not need to compute such values. This method improves the
time complexity V(s, r) to O

(
(2∗τ+1)∗min(|r|, |s|)

)
. Next,

we propose a technique to further improve the performance
by considering the length difference between r and s.
We first use an example to illustrate our idea. Consider

string r = “kaushuk chadhui” and string s = “caushik
chakrabar”. Suppose τ = 3. Existing methods need to
compute all the shaded values in Figure 7(a). We have an
observation that we do not need to compute M(2, 1), which
is the edit distance between “ka” and “c”. This is because
if there is a transformation from r to s by first transforming
“ka” to “c” with at least 1 edit operation (length differ-
ence) and then transforming “ushuk chadhui” to “aushik
chakrabar” with at least 3 edit operations (length differ-
ence), the transformation distance is at least 4 which is
larger than τ = 3. In other words, even if we do not compute
M(2, 1), we know that there is no transformation including
M(2, 1) (the transformation from “ka” to “c”) whose edit
distance is not larger than τ . Actually we only need to com-
pute the highlighted values as illustrated in Figure 7(b).
To address this problem, we propose a length-aware ver-

ification method. Without loss of generality, let |s| ≥ |r|
and △ = |s| − |r| ≤ τ (otherwise their edit distance must
be larger than τ). We call a transformation from r to s in-
cluding M(i, j), if the transformation first transforms the
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Figure 7: An example for verification

first i characters of r to the first j characters of s with
d1 edit operations and then transforming the other char-
acters in r to the other characters in s with d2 edit opera-
tions. Based on length difference, we have d1 ≥ |i − j| and
d2 ≥ |(|s| − j)− (|r| − i)| = |△+ (i− j)|. If d1 + d2 > τ , we
do not need to compute M(i, j), since the distance of any
transformation including M(i, j) is larger than τ . To check
whether d1 + d2 > τ , we consider the following cases.

(1) If i ≥ j, we have d1 + d2 ≥ i − j + △ + i − j. If
i− j+△+ i− j > τ , that is j < i− τ−△

2
, we do not need to

compute M(i, j). In other words, we only need to compute
M(i, j) with j ≥ i− τ−△

2
.

(2) If i < j, d1 = j − i. If j − i ≤ △, d1 + d2 ≥ j − i+△−
(j − i) = △. As △ ≤ τ , there is no position constraint. We
need to compute M(i, j); otherwise if j − i > △, we have
d1 + d2 ≥ j − i+ j − i−△. If j − i+ j − i−△ > τ , that is
j > i + τ+△

2
, we do not need to compute M(i, j). In other

words, we only need to compute M(i, j) with j ≤ i+ τ+△
2

.

Based on this observation, for each row M(i, ∗), we only
compute M(i, j) for i−⌊ τ−△

2
⌋ ≤ j ≤ i+ ⌊ τ+△

2
⌋. For exam-

ple, in Figure 8, we only need to compute the values in black
circles. Thus we can improve the time complexity V(s, r)
from O

(
(2τ+1)∗min(|r|, |s|)

)
to O

(
(τ+1) ∗min(|r|, |s|)

)
.
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Figure 8: Length-aware verification

Early Termination: We can further improve the perfor-
mance by doing an early termination. Consider the values
in row M(i, ∗). A straightforward early-termination method
is to check each value in M(i, ∗), and if each value is larger
than τ , we can do an early termination. This is because
the values in the following rows M(k > i, ∗) must be larger
than τ based on the dynamic-programming algorithm. This
pruning technique is called prefix pruning. For example in
Figure 7(a), if τ = 3, after we have computed M(13, ∗), we
can do an early termination as all the values in M(13, ∗)
are larger than τ . But in our method, after we have com-
puted the values in M(6, ∗), we can conclude that the edit
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distance between the two strings is at least 4 (larger than
τ = 3). Thus we do not need to compute M(i > 6, ∗) and
can terminate the computation as shown in Figure 7(b). To
this end, we propose a novel early-termination method.
For ease of presentation, we first introduce several nota-

tions. Given a string s, let s[i] denote the i-th character
and s[i : j] denote the substring of s from the i-th charac-
ter to the j-th character. Notice that M(i, j) denotes the
edit distance between r[1 : i] and s[1 : j]. We can estimate
the lower bound of the edit distance between r[i : |r|] and
s[j : |s|] using their length difference

∣∣(|s|−j)−(|r|−i)
∣∣. We

use E(i, j) = M(i, j) +
∣∣(|s| − j)− (|r| − i)

∣∣ to estimate the
edit distance between s and r, which is called expected edit
distance of s and r with respect to M(i, j). If each expected
edit distance for M(i, j) in M(i, ∗) is larger than τ , the edit
distance between r and s must be larger than τ , thus we
can do an early termination. To achieve our goal, for each
value M(i, j), we maintain the expected minimal edit dis-
tance E(i, j). If each value in E(i, ∗) is larger than τ , we
can do an early termination as formalized in Lemma 4.

Lemma 4. Given strings s and r, if each value in E(i, ∗)
is larger than τ , the edit distance of r and s is larger than τ .

For example, in Figure 7(b), we show the expected edit
distances in the left-bottom corner of each cell. When we
have computed M(6, ∗) and E(6, ∗), all values in E(6, ∗) are
larger than 3, thus we can do an early termination. In this
way, we can avoid many unnecessary computations. Note
that our proposed verification techniques can be applied to
any other algorithms to verify a candidate pair in terms of
edit distance (e.g., ED-Join and NGPP).

5.2 Extension­based Verification
Consider a selected substring w of string s. If w appears

in the inverted index Li
l, for each string r in the inverted list

Li
l(w), we need to verify the pair ⟨s, r⟩. As s and r share

a common segment w, we can use the shared segment to
efficiently verify the pair. To achieve our goal, we propose
an extension-based verification algorithm.
As r and s share a common segment w, we partition them

into three parts based on the common segment. We partition
r into three parts, the left part rl, the matching part rm = w,
and the right part rr. Similarly, we get three parts for string
s: sl, sm = w, and sr. Here we align s and r based on the
matching substring rm and sm, and we only need to verify
whether r and s are similar in this alignment. Thus we first
compute the edit distance dl = ed(rl, sl) between rl and
sl using the above-mentioned method. If dl is larger than
τ , we terminate the computation; otherwise, we compute
the edit distance dr = ed(sr, rr) between sr and rr. If
dl + dr is larger than τ , we discard the pair; otherwise we
take it as an answer. Note that this method will not involve
false negatives. This is because based on Lemma 1, if s
and r are similar, s must have a substring that matches a
segment of r. In addition, based on dynamic-programming
algorithm, there must exist a transformation by aligning rm
with sm and ed(s, r) = dl + dr. As our method selects all
possible substrings and considers all such common segments,
our method will not miss any results. On the other hand, as
we find the answers with dl+dr ≤ τ and ed(s, r) ≤ dl+dr ≤
τ , our method will not involve false positives. To guarantee
correctness of our extension-based method. We first give a
formal definition of correctness.
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Figure 9: Extension-based verification

Definition 4 (Correctness). Given a candidate pair
⟨s, r⟩, a verification algorithm is correct, if it satisfies (1) If
⟨s, r⟩ passes the algorithm, ⟨s, r⟩ must be a similar pair; and
(2) If ⟨s, r⟩ is a similar pair, it must pass the algorithm.

We then prove that our extension-based verification method
satisfies correctness as stated in Theorem 5.

Theorem 5. Our extension-based verification method sat-
isfies correctness.

Actually, we can further improve the verification algo-
rithm. For the left parts, we can give a tighter threshold
τl ≤ τ . The basic idea is as follows. As the minimal edit dis-
tance between the two right segments rr and sr is

∣∣|rr|−|sr|∣∣.
Thus we can set τl = τ −

∣∣|rr| − |sr|∣∣. If the edit distance
between rl and sl is larger than threshold τl, we can ter-
minate the verification; otherwise we continue to compute
dr = ed(rr, sr). Similarly for the right parts, we can also
give a tighter threshold τr ≤ τ . As dl has been computed,
we can set τr = τ − dl as a threshold to verify whether rr
and sr are similar. If dr is larger than threshold τr, we can
terminate the verification.

For example, if we want to verify s5 = “kaushuk chadhui”
and s6 = “caushik chakrabar”. s5 and s6 share a segment
“ cha”. We have s5l = “kaushuk” and s6l = “caushik”,
and s5r = “dhui” and s6r = “krabar”. Suppose τ = 3. As∣∣∣|s5r | − |s6r |∣∣∣ = 2, τl = τ − 2 = 1. We only need to verify

whether the edit distance between s5l and s6l is not larger
than τl = 1. After we have computed M(6, ∗), we can do an
early termination as each value in E(6, ∗) is larger than 1, as
shown in Figure 7. Note that as τl = 1 and |s5l | − |s6l | = 0,
⊥i = ⊤i = 0. Thus we only need to compute M(i, i).

We discuss how to deduce a tighter bound for τl and τr.
Consider the i-th segment. If dl ≥ i, we can terminate the
verification based on the multi-match-aware method. Thus
we have τl = i − 1. Combining with the above pruning
condition, we have τl=min(τ −

∣∣|rr| − |sr|∣∣, i− 1). As
∣∣|rr| −

|sr|
∣∣=∣∣(|r|−pi−li)−(|s|−p−li)∣∣=|p−pi−△| ≤ τ+1−i (based

on the multi-match-aware method), τ −
∣∣|rr| − |sr|∣∣ ≥ i− 1.

We set τl=i−1. Similarly we have τr=min(τ−dl, τ+1−i).
As dl ≤ τl ≤ i−1, τ−dl≥τ−(i−1). Thus we set τr = τ+1−i.

5.3 Sharing Computations
Given a selected substring w, there may be large numbers

of strings in Li
l(w) similar to string s. When computing the

edit distance of the left parts sl and rl (and that of the right
parts sr and rr), we can share the computations if they have
common prefixes. Next we discuss how to share computa-
tions. As the strings in Li

l(w) are sorted in alphabetical

8



Algorithm 3: Verification(s,Li
l(w), τ)

Input: s: A string; Li
l(w): Inverted list; τ : Threshold

Output: R = {(s ∈ S, r ∈ S) | ed (s, r) ≤ τ}
begin1

τl = i− 1;2

τr = τ + 1− i;3

for r ∈ Li
l(w) do4

dl = VerifyStringPair(sl, rl, τl);5

if dl ≤ τl then6

dr = VerifyStringPair(sr, rr, τr);7

if dr ≤ τr then R← ⟨r, s⟩;8

end9

Function VerifyStringPair(s, r, τ ′)

Input: s: A string; r: A string; τ ′: A threshold
Output: d = min(τ ′ + 1, ed(s, r))
begin1

Using the length-aware verification with the threshold τ ′2

and sharing the computations on common prefixes;
if Early Termination then d = τ ′ + 1;3

else d = ed(s, r);4

end5

Figure 10: Verification algorithm

order, we visit strings in Li
l(w) in order. Suppose the first

string is r1 and its three parts are r1l , r1m , r1r . We compute
the edit distance between r1l and sl using the dynamic-
programming algorithm. We store the matrix for r1l and
sl. For the next string r2 with left part r2l , we use the
stored matrix to compute the edit distance between r2l and
sl. We first compute the longest common prefix between r2l
and r1l , denoted by c. When computing the edit distance
between sl and r2l , we use the stored matrix on sl and c
which has already been computed for sl and r1l . Then for
the characters after c in r2l , we continue the computation
using the kept matrix. Thus we avoid many unnecessary
computations. Notice that we do not need to maintain mul-
tiple matrixes and only keep a single matrix for the current
string. We use the same idea on the right parts(sr, rr).

5.4 Verification Algorithm
Based on our proposed techniques, we improve the Ver-

ification algorithm. Consider a string s, a selected sub-
string w, and an inverted list Li

l(w). For r ∈ Li
l(w), we

use the extension-based method to verify the candidate pair
⟨s, r⟩ as follows. We first compute τl = i−1 and τr = τ+1−i.
Then for each r ∈ Li

l(w), we compute the edit distance (dl)
between rl and sl using the tighter bound τl. If dl > τl, we
terminate the verification; otherwise we verify whether sr
and rr are similar with threshold τr. When computing the
edit distance between sl and rl(sr and rr), we use the length-
aware verification and share the computations on common
prefixes. Figure 10 illustrates the pseudo-code.

5.5 Correctness and Completeness
We prove correctness and completeness of our algorithm

as formalized in Theorem 6.

Theorem 6. Our algorithm satisfies (1) completeness: Given
any similar pair ⟨s, r⟩, our algorithm must find it as an an-
swer; and (2) correctness: A pair ⟨s, r⟩ found in our algo-
rithm must be a similar pair.

6. EXPERIMENTAL STUDY
We have implemented our method and conducted an ex-

tensive set of experimental studies on three real datasets:
DBLP Author†, DBLP Author+Title, and AOL Query Log‡.
DBLP Author is a dataset with short strings, DBLP Au-
thor+Title is a dataset with long strings, and the Query
Log is a set of query logs. Table 2 shows the detailed infor-
mation of the datasets. Note that the Author+Title dataset
is the same as that used in ED-Join and the Author dataset
is the same as that used in Trie-Join. Figure 11 shows the
string length distributions of different datasets.

Table 2: Datasets
Datasets Cardinality Avg Len Max Len Min Len
Author 612781 14.826 46 6

Query Log 464189 44.75 522 30
Author+Title 863073 105.82 886 21

We compared our algorithms with state-of-the-art meth-
ods, ED-Join [23] and Trie-Join [20]. As ED-Join and
Trie-Join outperform other methods, e.g., Part-Enum [2]
and All-Pairs-Ed [3] (also experimentally proved in [23, 20]),
in the paper we only compared our method with the two
best studies. We downloaded their binary codes from their
homepages, ED-Join § and Trie-Join ¶.

All the algorithms were implemented in C++ and com-
piled using GCC 4.2.4 with -O3 flag. All the experiments
were run on a Ubuntu machine with an Intel Core 2 Quad
X5450 3.00GHz processor and 4 GB memory.

6.1 Evaluating Substring Selection
In this section, we evaluate substring selection techniques.

We implemented the following four methods. (1) The length-
based selection method, denoted by Length, which selects
the substrings with the same lengths as the segments. (2)
The shift-based method, denoted by Shift, which selects the
substring by shifting [−τ, τ ] positions as discussed in Sec-
tion 4. (3) Our position-aware selection method, denoted
by Position. (4) Our multi-match-aware selection method,
denoted by Multi-match. We first compared the total num-
ber of selected substrings. Figure 12 shows the results.

We can see that the Length-based method selected large
numbers of substrings. The number of selected substring
of the Position-based method was about a tenth to a fourth
of that of the Length-based method and a half of the Shift-
based method. The Multi-match-based method further re-
duced the number of selected substrings to about a half of
that of the Position-based method. For example, on Au-
thor dataset, for τ = 1, the Length-based method selected
19 million substrings, the Shift-based method selected 5.5
million substrings, the Position-based method reduced the
number to 3.7 million, and the Multi-match-based method
further deceased the number to 2.4 million. Based on our
analysis in Section 4, for strings with l, the length-based
method selected (τ+1)(|s|+1)−l substrings, the shift-based
method selected (τ + 1)(2τ + 1) substrings, the position-
based method selected (τ + 1)2 substrings, and the multi-

match-aware method selected ⌊ τ
2−△2

2
⌋+τ+1 substrings. If

|s|=l=15 and τ = 1, the number of selected substrings of the
four methods are respectively 17, 6, 4, and 2. Obviously the
experimental results consisted with our theoretical analysis.

†
http://www.informatik.uni-trier.de/∼ley/db

‡
http://www.gregsadetsky.com/aol-data/

§
http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html

¶
http://dbgroup.cs.tsinghua.edu.cn/wangjn/
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Figure 12: Numbers of selected substrings
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Figure 13: Elapsed time for generating substrings

We also compared the elapsed time to generate substrings.
Figure 13 shows the results. We see that the Multi-match-
based method outperformed the Position-based method which
in turns was better than the Shift-based method and the
Length-based method. This is because the elapsed time de-
pended on the number of selected substrings and the Multi-
match-based selected the smallest number of substrings.

6.2 Evaluating Verification
In this section, we evaluate our verification techniques.

We implemented four methods. (1) The naive method, de-
noted by 2τ + 1, which computed 2τ + 1 values in each row
and used the naive early-termination technique (if all values
in a row are larger than τ , we terminate). (2) Our length-
aware method, denoted by τ+1, which computed τ+1 values
in each row and used the expected edit distance to do early
termination. (3) Our extension-based method, denoted by
Extension, which used the extension-based framework. It
also computed τ+1 rows and used the expected edit distance
to do early termination. (4) We used the extension-based
method with sharing computations on common prefixes, de-
noted by SharePrefix. Figure 14 shows the results.
We see that the naive method had the worst performance,

as it needed to compute many unnecessary values in the ma-
trix. Our length-aware method was 2-5 times faster than the
naive method. This is because our length-aware method can
decrease the complexity from 2τ + 1 to τ + 1 and used ex-
pected edit distances to do early termination. The extension-
basedmethod achieved higher performance and was 2-4 times

faster than the length-aware method. The reason is that the
extension-based method can avoid the duplicated computa-
tions on the common segments and it also used a tighter
bound to verify the left parts and the right parts. The
SharePrefix method achieved the best performance, as it can
avoid many unnecessary computations for strings with com-
mon prefixes. For example, on the Author dataset, for τ = 4
the naive method took 10, 000 seconds, the length-aware
method decreased the time to 4000 seconds, the extension-
basedmethod reduced it to 2000 seconds, and the SharePrefix
method further improved the time to about 700 seconds. On
the Query Log dataset, for τ = 8, the elapsed time of the
four methods were respectively 3500 seconds, 1500 seconds,
600 seconds, and 450 seconds.

6.3 Comparison with Existing Methods
In this section, we compare our method with state-of-the-

art methods ED-Join [23] and Trie-Join [20]. As Trie-
Join had multiple algorithms, we reported the best results.
For ED-Join, we tuned its parameter q and reported the
best results. As Trie-Join was efficient for short strings,
we downloaded the same dataset from Trie-Join homepage
(i.e., Author with short strings) and used it to compare with
Trie-Join. As ED-Join was efficient for long strings, we
downloaded the same dataset from ED-Join homepage (i.e.,
Author+Title with long strings) and used it to compare with
ED-Join. Figure 15 shows the results, where the elapsed
time included the indexing time and the join time.

On the Author dataset with short strings, Trie-Join out-
performed ED-Join, and our method was much better than
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Figure 14: Elapsed time for verification
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Figure 15: Comparison with state-of-the-art methods
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Figure 16: Scalability

them, especially for τ ≥ 2. The main reason is as follows.
ED-Join must use a smaller q for a larger threshold. In this
way ED-Join will involve large numbers of candidate pairs,
since a smaller q has rather lower pruning power [23]. Trie-
Join used the prefix filtering to find similar pairs using a trie
structure. If a small number of strings shared prefixes, Trie-
Join had low pruning power and was expensive to traverse
the trie structure. Instead our framework utilized segments
to prune large numbers of dissimilar pairs. The segments
were selected across the strings and not restricted to prefix
filtering. For instance, for τ=4, Trie-Join took 2500 sec-
onds. Pass-Join improved it to 700 seconds. ED-Join was
rather slow and even larger than 10,000 seconds.
On the Author+Title dataset with long strings, our method

significantly outperformed ED-Join and Trie-Join, even in
2-3 orders of magnitude. This is because Trie-Join was
rather expensive to traverse the trie structures with long
strings, especially for large thresholds. ED-Join needed to
used a mismatch technique to do pruning which was ineffi-
cient while our filtering algorithm is very efficient. In addi-
tion, our verification method was more efficient than existing
ones. For instance, for τ = 8, Trie-Join took 15,000 sec-
onds, ED-Join decreased it to 5000 seconds, and Pass-Join
improved the time to 130 seconds.
In addition, we compared index sizes on three datasets,

as shown in Table 3. We can observe that existing meth-
ods involve larger indices than our method. For example,
on the Author+Title dataset, ED-Join had 335 MB index,

Trie-Join used 90 MB, and our method only took 2.1 MB.
There are two main reasons. Firstly for each string with
length l, ED-Join generated l − q + 1 grams where q is the
gram length, and our method only generated τ+1 segments.
Secondly for a string with length l, we only maintained the
indices for strings with lengths between l−τ and l, and ED-
Join kept indices for all strings. Trie-Join needed to use
a trie structure to maintain strings, which had overhead to
store the strings (e.g., pointers to children and indices for
searching children with a given character).

Table 3: Index sizes (MB)
Data Sets Data Sizes ED-Join

(q = 4)
Trie-Join Pass-Join

(τ = 4)

Author 8.7 25.34 16.32 1.92
Query Log 20 72.17 69.65 4.96
Author+Title 88 335.24 90.17 2.1

6.4 Scalability
In this section, we tested the scalability of our method.

We varied the number of strings in the dataset and tested
the elapsed time. Figure 16 shows the results. We can see
that our method achieved nearly linear scalability. For ex-
ample, for τ = 4, on the Author dataset, the elapsed time for
400,000 strings, 500,000 strings, and 600, 000 strings were
respectively 360 seconds, 530 seconds, and 700 seconds.

7. RELATED WORK
There have been many studies on string similarity joins [7,

2, 3, 6, 18, 23, 24, 19]. The approaches most related to
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ours are Trie-Join [20], All-Pairs-Ed [3], ED-Join [23], and
Part-Enum [2]. All-Pairs-Ed is a q-gram-based method. It
first generates q-grams for each string and then selects the
first qτ + 1 grams as a gram prefix based on a pre-defined
order. It prunes the string pairs with no common grams and
verifies the survived string pairs. ED-Join improves All-
Pairs-Ed using location-based and content-based mismatch
filter by decreasing the number of grams. It has been shown
that ED-Join outperforms All-Pairs-Ed [3]. Trie-Join uses
a trie structure to do similarity joins using prefix filtering.
Part-Enum proposed an effective signature scheme called
Part-Enum to do similar joins for hamming distance. It
has been proved that All-Pairs-Ed and Part-Enum are worse
than ED-Join and Trie-Join [20]. Thus we only compared
with ED-Join and Trie-Join.
Gravano et al. [7] proposed gram-based methods and used

SQL statements for similarity joins inside relational databases.
Sarawagi et al. [18] proposed inverted index-based algorithms
to solve similarity-join problem. Chaudhuri et al. [6] pro-
posed a primitive operator for effective similarity joins. Arasu
et al. [2] developed a signature scheme which can be used
as a filter for effective similarity joins. Xiao et al. [25] pro-
posed ppjoin to improve all-pair algorithm by introducing
positional filtering and suffix filtering. Xiao et al. [24] stud-
ied top-k similarity joins, which can directly find the top-k
string pairs without a given threshold.
In addition, Jacox et al. [11] studied the metric-space sim-

ilarity join. As this method is not as efficient as ED-Join
and Trie-Join [20], we did not compare with it in the pa-
per. Chaudhuri et al. [6] proposed the prefix-filtering signa-
ture scheme for effective similarity join. Recently, Wang et
al. [21] devised a new similarity function by tolerating to-
ken errors in token-based similarity and developed effective
algorithms to support similarity join on such functions.
The other related studies are approximate string search-

ing [5, 14, 8, 9, 26], which given a query string and a set
of strings, finds all similar strings of the query string in the
string set. Navarro studied the approximate string matching
problem [17], which given a query string and a text string,
finds all substrings of the text string that are similar to
the query string. These two problems are different from our
similarity-join problem, which given two sets of strings, finds
all similar string pairs. There are some studies on selectiv-
ity estimation of approximate string queries [10, 12, 13] and
approximate entity extraction [1, 4, 22, 15].

8. CONCLUSION
In this paper, we have studied the problem of string sim-

ilarity joins with edit-distance constraints. We propose a
partition-based method to do efficient similarity joins. We
first sort strings and then visit strings in order. We build
inverted indices for the visited strings. For each string, we
select some of its substrings and utilize the selected sub-
strings to find similar string pairs using the inverted in-
dices. We develop a position-aware method and a multi-
match-aware method to select substrings. We prove that
the multi-match-aware selection method can minimize the
number of selected substrings. We also develop efficient
techniques to verify candidate pair based on length differ-
ence. We propose an extension-based method and share
the computations on common prefixes to further improve
the verification performance. Experiments show that our
method outperforms state-of-the-art studies on both short
strings and long strings.
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APPENDIX
A. PROOF OF LEMMA 1

Lemma 1. Given a string r with τ + 1 segments and a
string s, if s is similar to r within threshold τ , s must contain
a substring which matches a segment of r.

Proof. We prove it by contradiction. Suppose string s
contains no substring which matches a segment of string
r. In other words, any segment of r will not match any
substring of s. Thus for any transformation T from r to s,
in each segment of r there at least exists an edit operation.
That is in any transformation T there are at least τ +1 edit
operations. This contradicts that s is similar to r. Thus s
must contain a substring which matches a segment of r.

B. PROOF OF THEOREM 1

Theorem 1. The position-aware substring selection method
satisfies completeness.

Proof. For any string s, consider a string r with length
l(|s| − τ ≤ l ≤ |s|) which is similar to s and visited before s.
Consider any transformation T from s to r with |T | ≤ τ edit
operations. Based on Lemma 1, s must have a substring sm
matching a segment rm of r in the transformation T . We
split r (s) into three parts: the left part before the matching
segment rl (sl), the matching segment rm (sm), and the right
part after the matching segment rr (sr). Suppose rm is the
i-th segment of r. Thus r ∈ Li

l(rm). Next we prove that
sm ∈ Wp(s,Li

l) ⊆ Wp(s, l).
Firstly as sm = rm, |sm| = |rm| = li. Suppose the start

position of sm in s is p. Next we only need to prove that
p ∈ [pmin, pmax]. As [pmin, pmax] = [1, |s| − li + 1] ∩ [pi −
⌊ τ−△

2
⌋, pi + ⌊ τ+△

2
⌋], we only need to prove that p ∈ [1, |s| −

li + 1] and p ∈ [pi − ⌊ τ−△
2
⌋, pi + ⌊ τ+△

2
⌋].

Case 1: p ∈ [1, |s|− li+1]. Obviously, based on the bound-
ary, for any substring, the minimal start position is 1. As
the length of sm is li, the maximal start position is |s|−li+1.
Thus p must be in [1, |s| − li + 1].

Case 2: p ∈ [pi − ⌊ τ−△
2
⌋, pi + ⌊ τ+△

2
⌋]. We prove it by

contradiction. Suppose p ̸∈ [pi − ⌊ τ−△
2
⌋, pi + ⌊ τ+△

2
⌋]. As

T transforms sl to rl, matches sm with rm, and transforms
sr to rr. We have τ ≥ |T | ≥ ed(sl, rl) + ed(sm, rm) +

ed(sr, rr) ≥ |pi − p|+ 0 +
∣∣∣(|r| − pi)− (|s| − p)

∣∣∣.
If p < pi − ⌊ τ−△

2
⌋, we have

|T | ≥ |pi − p|+
∣∣(|r| − pi)− (|s| − p)

∣∣
≥ (⌊τ −△

2
⌋+ 1) + (△+ ⌊τ −△

2
⌋+ 1)

≥ (2⌊τ −△
2
⌋+ 1) + (△+ 1)

≥ τ −△+ (△+ 1) ≥ τ + 1 > τ

If p > pi + ⌊ τ+△
2
⌋, we have

|T | ≥ |pi − p|+
∣∣(|r| − pi)− (|s| − p)

∣∣
≥ (⌊τ +△

2
⌋+ 1) + (⌊τ +△

2
⌋+ 1−△)

≥ (2⌊τ +△
2
⌋+ 1) + (1−△)

≥ τ +△+ (1−△) ≥ τ + 1 > τ

In both cases, we have |T | > τ which contradicts with
|T | ≤ τ . Thus p ∈ [pi − ⌊ τ−△

2
⌋, pi + ⌊ τ+△

2
⌋].

Based on Case 1 and Case 2, p ∈ [pmin, pmax]. Thus for
any string r with length l(|s| − τ ≤ l ≤ |s|) which is similar
to s and visited before s, r must have an i-th segment rm
that matches a substring sm ∈ Wp(s,Li

l).

C. PROOF OF THEOREM 2
We first give a lemma to prove that the multi-match-aware

selection method from the left-side perspective satisfies com-
pleteness.

Lemma 2.1. The multi-match-aware selection method from
the left-side perspective satisfies completeness.

Proof. For any string s, consider a string r with length
l(|s| − τ ≤ l ≤ |s|) which is similar to s and visited before
s. Consider any transformation T from r to s with |T | ≤ τ
edit operations. Based on Lemma 1, s must have a substring
sm matching a segment rm of r in the transformation T .
We assume that rm is the last segment of r which matches
a substring sm of s in transformation T . Without loss of
generality, suppose the start position of sm in s is p and
rm is the i-th segment of r. Thus r ∈ Li

l(rm). Based on
Theorem 1, we have |sm| = li and p ∈ [1, |s| − li + 1].

As [⊥l
i,⊤l

i] = [1, |s| − li +1]∩ [pi− (i− 1), pi +(i− 1)], we
only need to prove that p ∈ [pi − (i− 1), pi + (i− 1)].

We prove it by contradiction. Suppose p ̸∈ [pi − (i −
1), pi + (i − 1)], we have ed(sl, rl) ≥ |p − pi| ≥ i. As T
transforms sl to rl, matches sm with rm, and transforms
sr to rr, we have τ ≥ |T | ≥ ed(sl, rl) + ed(sr, rr) ≥ i +
ed(sr, rr), thus ed(sr, rr) ≤ τ − i. On the other hand,
as there are τ + 1 − i segments in rr, there must exist a
segment in rr which matches a substring of sr based on
Lemma 1. This contradicts with the assumption that rm is
the last segment of r which matches a substring of s. Thus
p ∈ [pi − (i− 1), pi + (i− 1)].

Therefore for any string r with length l(|s| − τ ≤ l ≤ |s|)
which is similar to s and visited before s, r must have an
i-th segment rm matching a substring sm ∈ Wr(s,Li

l).

Similarly, we can prove that the multi-match-aware se-
lection method from the right-side perspective also satis-
fies completeness based on Lemma 2.1. Next we prove that
the multi-match-aware selection method satisfies complete-
ness. For each inverted index Li

l, this method selects a set
Wm(s,Li

l) which is composed of the substrings of s with
start positions in [⊥i,⊤i] and with length li, where ⊥i =
max(⊥l

i,⊥r
i ) and⊤i = min(⊤l

i,⊤r
i ), ⊥l

i = max
(
1, pi−(i−1)

)
and ⊤l

i = min
(
|s|− li+1, pi+(i−1)

)
, and ⊥r

i = max
(
1, pi+

△−(τ+1−i)
)
and ⊤r

i = min
(
|s|−li+1, pi+△+(τ+1−i)

)
.

Then the method unions the sets to generateWm(s, l). That
is Wm(s, l)=∪τ+1

i=1Wm(s,Li
l).

Theorem 2. The multi-match-aware substring selection
method satisfies completeness.

Proof. For any string s, consider a string r with length
l(|s| − τ ≤ l ≤ |s|) which is similar to s and visited before s.
Consider any transformation T from r to s with |T | ≤ τ edit
operations. For any substring sm of s matching a segment
rm of r in T , based on Theorem 1, sm’s start position p
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must be in [1, |s| − li + 1], and |sm| = li (suppose rm is the
i-th segment of r).
Next, we only need to prove that in the transformation T ,

there exists an i-th segment rm for r matching a substring
of s such that p ∈ [max

(
pi − (i − 1), pi + △ − (τ + 1 −

i)
)
,min

(
pi + (i − 1), pi + △ + (τ + 1 − i)

)
]. That is we

only need to prove that p ∈ [pi − (i − 1), pi + (i − 1)] and
p ∈ [pi +△− (τ + 1− i), pi +△+ (τ + 1− i)].
Based on Lemma 1, there must exist at least one substring

of s that matches a segment of r in transformation T . Con-
sider the first segment rm of r that matches a substring sm
of s in transformation T . Without loss of generality, sup-
pose the start position of sm in s is p and rm is the k-th
segment of r. Thus r ∈ Lk

l (rm). We split s (r) into three
parts: the part before the matching segment sl (rl), the
matching segment sm (rm), and the part after the matching
segment sr (rr). Based on Lemma 2.1 (from the right-side
perspective), p ∈ [pk+△−(τ+1−k), pk+△+(τ+1−k)]. If
p ∈ [pk− (k− 1), pk +(k− 1)], we set i = k and the theorem
is proved; otherwise suppose p ̸∈ [pk − (k− 1), pk + (k− 1)],
we have ed(sl, rl) ≥ |p− pk| ≥ k. As T transforms sl to rl,
matches sm with rm, and transforms sr to rr, τ ≥ |T | ≥
ed(sl, rl) + ed(sr, rr) ≥ k + ed(sr, rr), thus ed(sr, rr) ≤
τ − k. On the other hand, as there are τ + 1 − k segments
in rr, there must exist a segment in rr which matches a
substring of sr in transformation T based on Lemma 1.
Suppose r′m is the first segment in rr that matches a sub-

string s′m of sr in transformation T . Without loss of gener-
ality, suppose the start position of s′m in s is p′ and r′m is
the j-th(j > k) segment of r. Thus r ∈ Lj

l (r
′
m). We split

sr (rr) into three parts: the part before the matching seg-
ment s′l (r′l), the matching segment s′m (r′m), and the part
after the matching segment s′r (r′r). Next we prove that p′ ∈
[pj+△−(τ+1−j), pj+△+(τ+1−j)]. We prove it by contra-
diction. Suppose p′ ̸∈ [pj+△−(τ+1−j), pj+△+(τ+1−j)].
We have

ed(r′r, s
′
r) ≥ |(|s| − p′)− (|r| − pj)|

= |pj + (|s| − l)− p′|
= |(pj +△)− p′|
≥ τ + 1− j + 1

As T transforms sl to rl, matches sm with rm, transforms
s′l to r′l, matches s′m with r′m, and transforms s′r to r′r, τ ≥
|T | ≥ ed(rl, sl)+ed(r′l, s

′
l)+ed(r′r, s

′
r) ≥ k+ed(r′l, s

′
l)+τ+

1− j+1, thus ed(r′l, s
′
l) ≤ τ −k− (τ +1− j+1) = j−k−2.

On the other hand, as there are j−k−1 segments in r′l, there
must exist a segment of r′l which matches a substring of s′l in
the transformation T based on Lemma 1. This contradicts
with the assumption that r′m is the first segment in rr that
matches a substring of sr. Thus p′ ∈ [pj + △ − (τ + 1 −
j), pj +△+ (τ + 1− j)]. If p′ ∈ [pj − (j − 1), pj + (j − 1)],
we set i = j and the theorem is proved; otherwise, we have
p′ ∈ [pj +△ − (τ + 1 − j), pj +△ + (τ + 1 − j)] and p′ ̸∈
[pj − (j − 1), pj + (j − 1)]. We can repeat our above proof
until the theorem is proved or reaching the last segment of r
(denoted by r′′m) that matches a substring of s (denoted by
s′′m). In the latter case, we have r′′m is the i-th segment of r
and the start position of s′′m is p′′. Based on the above proof,
we have p′′ ∈ [pi+△−(τ+1−i), pi+△+(τ+1−i)]. Based on
the proof in Lemma 2.1, we have p′′ ∈ [pi−(i−1), pi+(i−1)].
Thus p′′ ∈ [pi − (i − 1), pi + (i − 1)] ∩ [pi + △ − (τ + 1 −
i), pi +△+ (τ + 1− i)] = [⊥i,⊤i].

In summary, for any string r with length l(|s|−τ ≤ l ≤ |s|)
which is similar to s and visited before s, r must have an
i-th segment rm matching a substring sm ∈ Wm(s,Li

l).

D. PROOF OF LEMMA 2

Lemma 2. |Wm(s, l)| = ⌊ τ
2−△2

2
⌋+ τ + 1.

Proof. As Wm(s, l) = ∪τ+1
i=1Wm(s,Li

l), we have

|Wm(s, l)| =
∑τ+1

i=1 |Wm(s,Li
l)| =

∑τ+1
i=1 (⊤i −⊥i + 1) =∑τ+1

i=1

(
min

(
|s|− li+1, pi+(i−1), pi+△+(τ+1− i)

)
−

max
(
1, pi − (i− 1), pi +△− (τ + 1− i)

)
+ 1

)
As (pi+1 − (i + 1)) − (pi − i) = pi+1 − pi − 1 ≥ 0, pi − i

is a monotonically increasing function. Thus for any i ∈
[1, τ + 1], we have pi − (i − 1) ≥ p1 − (1 − 1) = 1 and
pi+△+(τ+1−i) = pi−i+△+τ+1 ≤ pτ+1−(τ+1)+△+τ+
1 = pτ+1+△ = pτ+1+ |s|−|r| = pτ+1+ |s|−(pτ+1+ lτ+1) =
|s| − lτ+1 ≤ |s| − li < |s| − li + 1, thus

|Wm(s, l)| =
∑τ+1

i=1 (⊤i −⊥i + 1) =∑τ+1
i=1

(
min

(
pi + (i− 1), pi +△+ (τ + 1− i)

)
−

max
(
pi − (i− 1), pi +△− (τ + 1− i)

)
+ 1

)
Consider ⊥i = max

(
pi − (i− 1), pi +△− (τ + 1− i)

)
. If

pi− (i− 1) ≥ pi +△− (τ +1− i), we have ⊥i = pi− (i− 1).
In this case i ≤ ⌊ τ−△

2
⌋+1. On the contrary, if pi− (i−1) <

pi +△− (τ + 1− i), we have ⊥i = pi +△− (τ + 1− i) for
i > ⌊ τ−△

2
⌋+ 1.

Similarly, for ⊤i = min
(
pi+(i−1), pi+△+(τ+1− i)

)
, if

pi +(i− 1) ≤ pi +△+(τ +1− i), we have ⊤i = pi +(i− 1).
In this case i ≤ ⌊ τ+△

2
⌋+1. On the contrary if pi +(i− 1) >

pi +△+ (τ + 1− i), we have ⊤i = pi +△+ (τ + 1− i) for
i > ⌊ τ+△

2
⌋+ 1.

In this way, to compute ⊥i-⊤i+1, we split i ∈ [1, τ+1] into
i ≤ ⌊ τ−△

2
⌋+1, ⌊ τ−△

2
⌋+2≤i≤⌊ τ+△

2
⌋+1, and ⌊ τ+△

2
⌋+2≤i≤τ+1.

|Wm(s, l)| =
∑τ+1

i=1 (⊤i −⊥i + 1) =

∑⌊ τ−△
2

⌋+1

i=1

((
pi + (i− 1)− (pi − (i− 1)

)
+ 1

)
+

∑⌊ τ+△
2

⌋+1

i=⌊ τ−△
2

⌋+2

((
pi +(i− 1))− (pi +△− (τ +1− i)

)
+1

)
+

∑τ+1

i=⌊ τ+△
2

⌋+2

((
pi+△+(τ+1−i))−(pi+△−(τ+1−i)

)
+1

)
=
∑⌊ τ−△

2
⌋+1

i=1 (2i−1)+
∑⌊ τ+△

2
⌋+1

i=⌊ τ−△
2

⌋+2
(τ−△+1)+

∑τ+1

i=⌊ τ+△
2

⌋+2
(2τ−2i+3)

= τ2+△τ−△2+△+1+⌊ τ+△
2
⌋2+⌊ τ−△

2
⌋2+2⌊ τ−△

2
⌋−2τ⌊ τ+△

2
⌋
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If τ+△ is even, τ−△ must be even. Thus ⌊ τ−△
2
⌋ = τ−△

2

and ⌊ τ+△
2
⌋ = τ+△

2
, and we have

|Wm(s, l)| = τ2 −△2

2
+ τ + 1 = ⌊τ

2 −△2

2
⌋+ τ + 1

If τ +△ is odd, τ −△ must be odd. Thus ⌊ τ−△
2
⌋ = τ−△−1

2

and ⌊ τ+△
2
⌋ = τ+△−1

2
, and we have

|Wm(s, l)| = τ2 −△2 + 1

2
+ τ = ⌊τ

2 −△2

2
⌋+ τ + 1

Thus the lemma is proved.

E. PROOF OF LEMMA 3

Lemma 3. LetWℓ(s, l),Wf (s, l),Wp(s, l),Wm(s, l) respec-
tively denote the set of selected substrings using the length-
based selection method, the shift-based selection method, the
position-aware selection method, and the multi-match-aware
selection method. For any string s and a length l, we have

Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l).

Proof. If τ = 0, the four methods select s as its se-
lected substring. Thus Wℓ(s, l) = Wf (s, l) = Wp(s, l) =
Wm(s, l) = {s}. Next we prove the lemma for τ > 0.
Given Li

l, firstly the substring length of each method is
the same, i.e., li. Next we consider the start positions.

(i) We first prove Wf (s, l) ⊆ Wℓ(s, l).
For Wℓ(s, l), the start positions are in [1, |s| − li + 1].
For Wf (s, l), the start positions are in

[max(1, pi − τ),min(|s| − li + 1, pi + τ)].

To prove Wf (s, l) ⊆ Wℓ(s, l), we only need to prove

[1, |s| − li + 1] ⊇ [max(1, pi − τ),min(|s| − li + 1, pi + τ)].

It is obvious that max(1, pi − τ) ≥ 1 and min(|s| − li +
1, pi + τ) ≤ |s| − li + 1. Thus we have Wf (s, l) ⊆ Wℓ(s, l).

(ii) We then prove Wp(s, l) ⊆ Wf (s, l).
For Wp(s, l), the start positions are in

[
max(1, pi − ⌊

τ −△
2
⌋),min(|s| − li + 1, pi + ⌊

τ +△
2
⌋)
]
=[

pi − ⌊
τ −△

2
⌋, pi + ⌊

τ +△
2
⌋
]
∩ [1, |s| − li + 1]

For Wf (s, l), as [max(1, pi− τ),min(|s| − li +1, pi + τ)] =
[pi− τ, pi + τ ]∩ [1, |s| − li +1], to prove Wp(s, l) ⊆ Wf (s, l),
we only need to prove

[pi − τ, pi + τ ] ⊇ [pi − ⌊
τ −△

2
⌋, pi + ⌊

τ +△
2
⌋]

As 0 ≤ △ ≤ τ , we have pi− τ ≤ pi−⌊ τ−△
2
⌋ and pi + τ ≥

pi + ⌊ τ+△
2
⌋. Thus Wp(s, l) ⊆ Wf (s, l).

(iii) Next we prove Wm(s, l) ⊆ Wp(s, l).

For Wm(s, l), the start positions are in

[⊥i,⊤i] = [max(⊥l
i,⊥r

i ),min(⊤l
i.⊤r

i )] =

[max(1, pi − (i− 1), pi +△− (τ + 1− i)),

min(|s| − li + 1, pi + (i− 1), pi +△+ (τ + 1− i))] =

[max(pi − (i− 1), pi +△− (τ + 1− i)),

min(pi + (i− 1), pi +△+ (τ + 1− i)] ∩ [1, |s| − li + 1]

To prove Wm(s, l) ⊆ Wp(s, l), we only need to prove

[pi − ⌊
τ −△

2
⌋, pi + ⌊

τ +△
2
⌋] ⊇ [⊥i,⊤i].

Firstly we prove⊥i = max
(
pi−(i−1), pi+△−(τ+1−i)

)
≥

pi − ⌊ τ−△
2
⌋. If pi − (i− 1) ≥ pi +△− (τ + 1− i), we have

⊥i = pi − (i − 1). In this case i ≤ ⌊ τ−△
2
⌋ + 1. That is

i− 1 ≤ ⌊ τ−△
2
⌋. Obviously ⊥i = pi − (i− 1) ≥ pi − ⌊ τ−△

2
⌋.

On the contrary, if pi − (i − 1) < pi +△− (τ + 1 − i), we
have ⊥i = pi +△− (τ + 1− i). In this case i > ⌊ τ−△

2
⌋+ 1.

That is i − 1 > ⌊ τ−△
2
⌋. As ⊥i = pi + △ − (τ + 1 − i) =

pi + (i− 1)− (τ −△), ⊥i ≥ pi − ⌊ τ−△
2
⌋.

Then we prove that ⊤i = min
(
pi + (i− 1), pi +△+ (τ +

1− i)
)
≤ pi + ⌊ τ+△

2
⌋. If pi + (i− 1) ≤ pi +△+ (τ + 1− i),

we have ⊤i = pi +(i− 1). In this case i ≤ ⌊ τ+△
2
⌋+1. That

is i−1 ≤ ⌊ τ+△
2
⌋. Obviously ⊤i = pi+(i−1) ≤ pi+ ⌊ τ+△

2
⌋.

On the contrary if pi + (i − 1) > pi +△ + (τ + 1 − i), we
have ⊤i = pi +△+ (τ + 1− i). In this case i > ⌊ τ+△

2
⌋+ 1.

That is i − 1 > ⌊ τ+△
2
⌋. As ⊤i = pi + △ + (τ + 1 − i) =

pi − (i− 1) + τ +△, ⊤i ≤ pi + ⌊ τ+△
2
⌋.

Thus we have Wm(s, l) ⊆ Wp(s, l).

Therefore Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l) and
the lemma is proved.

F. PROOF OF THEOREM 3
We first prove that the substring set Wm(s, l) generated

by the multi-match-aware selection method has the mini-
mum size. That is for any other substring set W(s, l) gen-
erated by a method that satisfies completeness, we have
|Wm(s, l)| ≤ |W(s, l)|. The basic idea of our proof is as
follows. For each substring sm∈Wm(s, l), we generate a sub-
string set Φ(sm, l), such that

Condition (1): If a substring selection method satisfies
completeness, it must select a substring in Φ(sm, l);

Condition (2): For any two substrings sm ̸= sm′ inWm(s, l),
if a substring selection method satisfies completeness, it
must select a substring in Φ(sm, l) and another substring
in Φ(sm′ , l), and the two substrings are not the same. No-
tice that two selected substrings are said to be the same, if
they are selected for the same segment and have the same
start positions and lengths.

Obviously if we can generate a substring set Φ(sm, l) satis-
fying the above two conditions, we have |Wm(s, l)| ≤ |W(s, l)|
(See the proof in Theorem 3). Next we discuss how to gen-
erate the substring set Φ(sm, l).

Notice that based on the definition of completeness, we
need to guarantee completeness for every string with length
|s|, thus Wm(s, l) does not depend on the content of s. In
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other words, the size ofWm(s, l) only depends on |s|. With-
out loss of generality, we consider a string s whose characters
are distinct, i.e., s[i] ̸= s[j] for i ̸= j where s[i] is the i-th
character of s for 1 ≤ i ≤ |s|.
Next we construct a string r with length l based on s,

such that (1) r is similar to s with τ edit operations; (2) if a
substring selection method that satisfies completeness does
not select a substring from Φ(sm, l), the method will miss
the similar pair ⟨s, r⟩.
We generate r from s as follows. Suppose the length of

r is l, and the start position of the i-th segment is pi and
the length is li. We first partition s into τ + 1 substrings
and then use the k-th substring of s to generate the k-th
segment of r. Let l′k and p′k respectively denote the length
and the start position of the k-th substring of s. We use pk
and lk to deduce l′k and p′k. Obviously we have p′1 = 1 and
p′k = p′1 +

∑k−1
j=1 l′j . Next we focus on how to get the length

of each substring of s (l′k) and how to generate a segment of
r as follows.
Suppose sm is selected from the i-th segment, i.e., sm ∈
Wm(s,Li

l), and the position of sm in s is p. Based on the
multi-match-aware selection method, as p ∈ [pi−(i−1), pi+
(i− 1)] ∩ [pi +△− (τ + 1− i), pi +△+ (τ + 1− i)], we can
easily deduce that |p− pi| ≤ i− 1 and |(l− pi)− (|s| − p)| =
|p− pi −△| ≤ τ + 1− i. We first consider p ≤ pi.
For each k ∈ [1, pi − p], we generate the k-th segment

of r from the k-th substring of s by applying an insertion
operation. As an insertion operation will increase the length
by 1, we have l′k = lk−1. Notice that as pi−p ≤ i−1 (based
on the multi-match-aware selection), we can choose pi − p
substrings from the first i − 1 substrings of s (before sm)
to apply an insertion operation on each substring. Here we
choose the first pi − p substrings.
For each k ∈ [pi−p+1, i−1], we generate the k-th segment

of r from the k-th substring of s by applying a substitution
operation. As a substitution operation will not change the
substring length, we have l′k = lk.
For k = i, the i-th segment of r is exactly the i-th sub-

string of s (i.e., sm), we have l′k = lk.
For each k ∈ [i+ 1, τ + 1− (pi − p+△)], we generate the

k-th segment of r from the k-th substring of s by applying a
substitution operation. As a substitution operation will not
change the substring length, we have l′k = lk.
For each k ∈ [τ+1−(pi−p+△)+1, τ+1], we generate the

k-th segment of r from the k-th substring of s by applying
a deletion operation. As a deletion operation will decrease
the length by 1, we have l′k = lk + 1. Notice that to make
the length of r be l, we need to do some deletions on the
last τ + 1− i substrings of s (after sm). As l = |s| − △, we
need to do pi − p+△ deletions. As pi − p+△ ≤ τ + 1− i
(based on the multi-match-aware selection), we can choose
pi − p+△ substrings from the the last τ + 1− i substrings
of s. Here we choose the last pi − p +△ substrings of s to
apply a deletion operation for each substring.
Obviously, we only do τ edit operations on s to generate

r. Thus r is similar to s with τ edit operations. Next we
discuss how to apply the insertion, substitution, and deletion
operations.
For k ∈ [1, pi − p], we do insertion operations. As we can

use a special character that does not appear in s to apply the
insertion operation, we do not need to select any substring
of s for the k-th segment of r. This is because the k-th
segment of r will not match any substring of s as it contains

a special character.
For k ∈ [pi−p+1, i−1], we need to do a substitution oper-

ation on each substring of s. Similarly, we can use a special
character that does not appear in s to apply the substitution
operation, thus we also do not select any substring for the
k-th segment of r.

For k = i, as sm matches rm, we add sm into Φ(sm, l).
For k ∈ [i + 1, τ + 1 − (pi − p + △)], we need to do a

substitution operation on each substring of s. Similarly, we
can use a special character that does not appear in s to
apply the substitution operation, thus we also do not select
any substring for the k-th segment of r.

Finally for each k ∈ [τ+1−(pi−p+△)+1, τ+1], we need
to do deletion operations. If each substring has no smaller
than 3 characters, we generate the k-th segment of r from
the the k-th substring of s by deleting a middle (i.e. neither
the first nor the last) character of the substring to apply
the deletion operation. In this case we do not need to select
such substrings for the k-th segment of r. This is because
as the characters in the substrings are distinct, if we delete
a middle character of the substring, the generated segment
will not match any substring of s. Thus if each substring has
no smaller that 3 characters, Φ(sm, l) = {sm}. Similarly, if
p ≥ pi + △ or pi + △ > p > pi, Φ(sm, l) = {sm} (each
substring has no smaller than 3 characters). In this case,
we can easily prove that Φ(sm, l) satisfies condition (1) as
formalized in Lemma 3.1.

Next we consider the case that some substrings have less
than 3 characters.

If p ≤ pi, for the last pi − p +△ substrings of s, instead
of deleting a character in each substring, we delete the last
pi − p + △ characters of s. In this way, we set the k-th
segment r[pk, lk] of string r as s[|s| − (pi − p +△) − (|r| −
pk), l

′
k = lk]. We give the basic idea as follows. Consider

the k-th segment r[pk, lk] of r for k ∈ [τ + 1 − (pi − p +
△)+1, τ +1]. Let s[xk · · · |s|] denote the substring of s from
the xk-th character to the end of s and r[pk · · · |r|] denote
the substring of r from the pk-th character to the end of r.
As we delete the last pi − p + △ characters of s to make
s[xk · · · |s|] and r[pk · · · |r|] have the same length, we have
|s[xk · · · |s|]| − |r[pk · · · |r|]| = pi − p + △. That is xk =
|s| − (pi − p+△)− (|r| − pk). Thus r[pk, lk] = s[xk, l

′
k = lk]

for k ∈ [τ + 1− (pi − p+△) + 1, τ + 1]. Note that the k-th
segment of r will not match any other substring of s as the
characters of s are distinct. Thus Φ(sm, l) = {sm}∪{s[|s|−
(pi−p+△)−(|r|−pk), lk]|k ∈ [τ+1−(pi−p+△)+1, τ+1]}.
We can easily prove that Φ(sm, l) satisfies condition (1) as
formalized in Lemma 3.1.

Similarly, if p ≥ pi + △, we do deletion operations on
the first p − pi substrings of s. We delete the first p − pi
characters of s, and we have xk = pk + (p− pi) and l′k = lk
for k ∈ [1, p − pi]. Thus Φ(sm, l) = {sm} ∪ {s[pk + (p −
pi), lk]|k ∈ [1, p − pi]}. We can easily prove that Φ(sm, l)
satisfies condition (1) as formalized in Lemma 3.1.

If pi < p < pi +△, we do deletion operations on the first
p − pi substrings and the last pi − p + △ substrings. We
delete the first p− pi characters of s and the last pi− p+△
characters of s, and we have xk = pk + (p− pi) and l′k = lk
for k ∈ [1, p−pi], and xk = |s|− (pi−p+△)− (|r|−pk) and
l′k = lk for k ∈ [τ +1− (pi − p+△) + 1, τ +1]. In this case,
Φ(sm, l) = {sm}∪{s[pk+(p−pi), lk]|k ∈ [1, p−pi]}∪{s[|s|−
(pi−p+△)−(|r|−pk), lk]|k ∈ [τ+1−(pi−p+△)+1, τ+1]}.
We can easily prove that Φ(sm, l) satisfies condition (1) as
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formalized in Lemma 3.1.

Lemma 3.1. If a selection method satisfies completeness,
it must select a substring in Φ(sm, l) for each sm ∈ Wm(s, l).

Proof. Firstly if each substring of s has at least 3 char-
acters, Φ(sm, l) = {sm}. As only sm matches a segment
of string r, if a substring selection method does not select
sm, the method must miss a similar pair ⟨s, r⟩. Thus any
selection method that satisfies completeness must select a
substring in Φ(sm, l).
Secondly, if some substrings of s have less than 3 char-

acters and we need to do deletion operations on such sub-
strings. We consider the following three cases.

Case (1): p ≤ pi. Φ(sm, l) = {sm} ∪ {s[|s| − (pi − p+△)−
(|r| − pk), lk]}. As only substrings in Φ(sm, l) matches a
segment of string r. If a substring selection method does
not select a substring, the method must miss a similar pair
⟨s, r⟩. Thus any selection method that satisfies completeness
must select a substring in Φ(sm, l).

Case (2): p ≥ pi +△. It is similar to Case (1).

Case (3): pi<p<pi+△. It is similar to Case (1) and Case (2).

Thus the lemma is proved.

Then we prove that for any two substrings sm ̸= sm′ in
Wm(s, l), if a substring selection method satisfies complete-
ness, it must contain a substring in Φ(sm, l) and another
substring in Φ(sm′ , l) such that the two substrings are not
the same as formalized in Lemma 3.2.

Lemma 3.2. For any two substrings sm ̸= sm′ inWm(s, l),
if a method satisfies completeness, it must contain a sub-
string in Φ(sm, l) and another substring in Φ(sm′ , l), and
the two substrings are not the same.

Proof. Without loss of generality, suppose sm ∈ Wm(s,Li
l) ⊆

Wm(s, l) with start position p and s′m ∈ Wm(s,Lj
l ) ⊆ Wm(s, l)

with start position p′ (Notice that i may be equal to j).
We only need to prove that, for any sk ∈ Φ(sm, l) and
s′k ∈ Φ(sm′ , l), (1) sk ̸= s′k; or (2) If sk = s′k, a method
that only selects sk (or s′k) from Φ(sm, l) and Φ(sm′ , l) will
miss a similar pair.
Firstly, if sk and s′k are selected for different segments,

we have sk ̸= s′k and the lemma is proved. Secondly, sk
and s′k are selected for the same segment. Without loss of
generality, suppose they are selected for the k-th segment of
r. We consider the following cases.

Case 1: sk = sm and s′k = s′m. In this case as sm ̸= s′m,
sk ̸= s′k.

Case 2: sk = s[|s|−(pi−p+△)−(|r|−pk), lk] and s′k = s′m.
In this case p < pi +△. We prove that sk ̸= s′k as follows.
If k ̸= j, sk ̸= s′k, as sk is selected for the k-th segment and
s′k is selected for j-th segment. If k = j, the start positions
of s′k ∈ Wm(s,Lk

l ) are in [pk +△ − (τ + 1 − k), pk +△ +
(τ + 1 − k)] ∩ [pk − (k − 1), pk + (k − 1)]. We can deduce
|s| − (pi − p + △) − (|r| − pk) < pk + △ − (τ + 1 − k) as

follows. As sk = s[|s|− (pi− p+△)− (|r|− pk), lk], we have
k ∈ [τ + 1− (pi − p+△) + 1, τ + 1].

pk +△− (τ + 1− k) = pk + (|s| − |r|)− (τ + 1) + k

≥ pk + (|s| − |r|)− (τ + 1)+

τ + 1− (pi − p+△) + 1

= pk + (|s| − |r|)− (pi − p+△) + 1

> |s| − (pi − p+△)− (|r| − pk)

Thus s[|s| − (pi − p+△)− (|r| − pk), lk] will not match any
substring in Wm(s,Lk

l ). That is sk ̸= s′k.

Case 3: sk = sm and s′k = s[|s|−(pj−p′+△)−(|r|−pk), lk].
It is similar to Case (2);

Case 4: sk = s[pk + (p − pi), lk] and s′k = s′m. In this
case, p > pi. We prove that sk ̸= s′k as follows. If k ̸= j,
sk ̸= s′k, as sk is selected for the k-th segment and s′k is
selected for j-th segment. If k = j, the start positions of
s′k ∈ Wm(s,Lk

l ) are in [pk +△− (τ + 1− k), pk +△+ (τ +
1 − k)] ∩ [pk − (k − 1), pk + (k − 1)]. As k ∈ [1, p − pi], we
have pk + (k − 1) ≤ pk + (p− pi)− 1 < pk + (p− pi). Thus
s[pk+(p−pi), lk] will not match any substring inWm(s,Lk

l ).
That is sk ̸= s′k.

Case 5: sk = sm and s′k = s[pk + (p′ − pj), lk]. It is similar
to Case (4);

Case 6: sk = s[pk + (p − pi), lk] and s′k = s[|s| − (pj −
p′ + △) − (|r| − pk), lk], that is p > pi and p′ < pj + △.
We prove that sk ̸= s′k as follows. Based on the proofs of
Case 4 and Case 3, we have pk +(k− 1) < pk +(p− pi) and
|s|−(pj−p′+△)−(|r|−pk) < pk+△−(τ+1−k). Meanwhile
as △ ≤ τ , we have pk +△− (τ +1−k) ≤ pk +(k−1). Thus
s[pk + (p− pi), lk] ̸= s[|s| − (pj − p′ +△)− (|r| − pk), lk] as
their start positions are not the same. That is sk ̸= s′k.

Case 7: sk = s[|s| − (pi − p+△)− (|r| − pk), lk] and s′k =
s[pk + (p′ − pj), lk]. It is similar to Case (6).

Case 8: sk = s[pk+(p−pi), lk] and s′k = s[pk+(p′−pj), lk],
that is p > pi and p′ > pj . In this case, we consider the
following two cases:

(1) p−pi ̸= p′−pj : We have pk+(p−pi) ̸= pk+(p′−pj),
thus sk ̸= s′k.

(2) p− pi = p′ − pj : We have sk = s′k as pk + (p− pi) =
pk+(p′−pj) and both of their lengths are lk. Next we prove
i ̸= j by contradiction. Suppose i = j, we have pi = pj . As
p − pi = p′ − pj , p = p′. Thus sm = s′m as they have the
same start positions and the same lengths. This contradicts
with sm ̸= s′m. Thus i ̸= j.

Then we prove that a method that only selects sk (or s′k)
from Φ(sm, l) and Φ(sm′ , l) will miss a similar pair. We con-
struct a new string r′ similar to the case of generating the
string r using sm except that (1) For the k-th substring of s,
we apply an additional substitution operation (by substitut-
ing character s[pk + (p− pi)] with a special character) such
that the k-th segment of r′ will not match any substring of s;
and (2) The j-th segment of r′ is exactly the j-th substring
of s. Next we prove that the number of edit operations in
the new transformation from s to r′ is τ . Compared with the
transformation T from s to r and the new transformation
T ′ from s to r′, T ′ has an additional substitution operation
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on the k-th substring and a match operation on the the j-th
substring of s. Next we prove that in transformation T , we
do a substitution operation on the j-th substring.
As s′m ∈ Wm(s,Lj

l ), we have p′ ∈ [pj − (j − 1), pj + (j −
1)]∩ [pj+△−(τ+1−j), pj+△+(τ+1−j)]. Thus p′−pj <
j < τ +1−|pj −p′+△|+1. In addition, as p−pi = p′−pj ,
we have τ +1− |pj − p′ +△|+1 = τ +1− |pi − p+△|+1.
Thus p − pi < j < τ + 1 − |pi − p +△| + 1. As i ̸= j, in
the transformation T , we do a substitution operation on the
j-th substring.
Thus T and T ′ have the same number of edit operations,

that is the number of edit operations in T ′ is τ .
Note that in the transformation T ′ from s to r′, we only

have the following match operations: (1) the substring sm
matches the i-th segment; (2) the j-th substring matches
the j-th segment; and (3) the other substrings in Φ(sm, l)
and Φ(sm′ , l) except sk match some other segments of r′.
Next we prove that sk is neither sm nor the j-th substring.
Firstly as sm is a substring for the i-th segment and sk is

a substring for the k-th segment (k ̸= i), sk ̸= sm.
Secondly s′k ̸= s′m as they are selected for different seg-

ments. Thus sk = s′k ̸= s′m. Next we prove that the j-th
substring of s is exactly s′m. Thus sk is not the j-th sub-
string of s. We prove it as follows. The start position of the
j-th substring of s is pj + (p − pi) as we do p − pi deletion
operations in the transformation T . In addition the start
position of s′m is p′. As pj + (p − pi) = pj + (p′ − pj) = p′,
the j-th substring and s′m have the same start positions. On
the other hand they have the same length. Thus the j-th
substring in the transformation T is exactly s′m.
As sk does not match a segment of r′, if we only select sk,

we will miss the similar pair ⟨s, r′⟩. Thus we cannot only
select sk (or s′k) from Φ(sm, l) and Φ(sm′ , l).

Case 9: sk = s[|s| − (pi − p+△)− (|r| − pk), lk] and s′k =
s[|s|− (pj −p′ +△)− (|r|− pk), lk]. It is similar to Case (8).

Thus the lemma is proved.

Based on the two lemmas, next we prove that the sub-
string set Wm(s, l) generated by the multi-match-aware se-
lection method has the minimum size.

Theorem 3. The substring set Wm(s, l) generated by the
multi-match-aware selection method has the minimum size
among all the substring sets generated by the substring se-
lection methods that satisfy completeness.

Proof. Consider any substring selection method satis-
fying completeness. For each sm ∈ Wm(s, l), based on
Lemma 3.1 the method must select a substring in Φ(sm, l).
Based on Lemma 3.2, for different substrings sm and s′m in
Wm(s, l), the method must select two different substrings.
Thus the method must select |Wm(s, l)| substrings, and the
theorem is proved.

G. PROOF OF THEOREM 4

Theorem 4. If l ≥ 2(τ+1) and |s| ≥ l,Wm(s, l) satisfies
minimality.

Proof. If l ≥ 2(τ + 1), the substrings with deletion op-
erations must contain at least 3 characters. In this case,

Φ(sm, l) = {sm}, thus any substring selection method must
select {sm} based on Theorem 3. Thus Wm(s, l) satisfies
minimality.

H. PROOF OF LEMMA 4

Lemma 4. Given strings s and r, if each value in E(i, ∗)
is larger than τ , the edit distance of r and s is larger than τ .

Proof. We prove that any transformation from r to s
will involve more than τ edit operations if each value in
E(i, ∗) is larger than τ . For any transformation T from
r to s, T will must include one of M(i, ∗). Without loss
of generality, suppose T includes M(i, j). Then we have
d1 ≥ M(i, j) and d2 ≥

∣∣(|s| − j) − (|r| − i)
∣∣. Thus |T | =

d1 + d2 ≥M(i, j)+
∣∣(|s| − j)− (|r| − i)

∣∣ = E(i, j) > τ . Thus
transformation T will involve more than τ edit operations.
Therefor the edit distance of r and s is larger that τ .

I. PROOF OF THEOREM 5
Given a string r and a string s, s has a substring sm

matching a segment rm of r. If ⟨s, r⟩ passes our verification
algorithm, that is ed(rl, sl) + ed(rr, sr) ≤ τ , ⟨s, r⟩ must
be a similar pair as ed(r, s) ≤ ed(rl, sl) + ed(rr, sr) ≤ τ .
Thus our extension-based method satisfies condition (1). To
prove condition (2), we need to prove that s must have a
substring sm which matches a segment rm of r such that
sm ∈ Wm(s, l) and ed(rl, sl) + ed(rr, sr) = ed(r, s) ≤ τ .

Lemma 5.1. If s is similar to r, s must have a substring
sm which matches a segment rm of r, such that sm ∈ Wm(s, l)
and ed(r, s) = ed(rl, sl) + ed(rr, sr).

Proof. We first prove that given a transformation T
from r to s with |T | = ed(r, s) edit operations, for any seg-
ment rm of r matching a substring sm of s in T , ed(r, s) =
ed(rl, sl)+ed(rr, sr). As T transforms rl to sl, matches rm
with sm, and transforms rr to sr, we have |T | ≥ ed(rl, sl)+
ed(rm, sm) + ed(rr, sr). In addition, based on the defi-
nition of edit distance, we have ed(rl, sl) + ed(rm, sm) +
ed(rr, sr) ≥ ed(r, s). As |T | = ed(r, s) and ed(rm, sm) = 0,
ed(r, s) = ed(rl, sl) + ed(rr, sr).

Then, based on Theorem 2, for any transformation T ,
there must exist a substring sm ∈ Wm(s, l) of s that matches
a segment rm of r, and we have ed(r, s) = ed(rl, sl) +
ed(rr, sr). Thus the lemma is proved.

Then based on Lemma 5.1, we prove Theorem 5.

Theorem 5. Our extension-based verification method sat-
isfies correctness.

Proof. We first prove the condition (1). If ⟨s, r⟩ passes
our verification algorithm, then there exists a segment rm
matching a substring sm and ed(sl, rl) + ed(sr, rr) ≤ τ .
Thus there exists a transformation from r to s with no large
than τ edit distance. Hence ⟨s, r⟩ must be a similar pair.

Then we prove the condition (2). If ⟨s, r⟩ is a similar
pair, any transformation T with |T | = ed(r, s) ≤ τ edit
operations will have a segment rm matching a substring sm
of s. Based on Lemma 5.1, we have ed(s, r) = ed(sl, rl) +
ed(sr, rr) ≤ τ . As ed(sl, rl) + ed(sr, rr) ≤ τ , ⟨s, r⟩ must
pass our verification algorithm.
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J. PROOF OF THEOREM 6
Based on completeness of our multi-match-aware selection

method and correctness of our extension-based verification
method, next we prove correctness and completeness of our
algorithms.

Theorem 6. Our algorithm satisfies (1) completeness: Given
any similar pair ⟨s, r⟩, our algorithm must find it as an an-
swer; and (2) correctness: A pair ⟨s, r⟩ found in our algo-
rithm must be a similar pair.

Proof. We first prove completeness of our method. That
is given a similar pair ⟨s, r⟩, our method must find it as an
answer. Without loss of generality, suppose r is visited be-
fore s. Based on Theorem 2, our multi-match-based method
must find this pair as a candidate pair. Based on Theorem 5,
the similar pair ⟨s, r⟩ can pass our extension-based verifica-
tion, and thus it must be added as an answer. Thus our
algorithm satisfies completeness.
Then we prove correctness of our method. That is a pair
⟨s, r⟩ found in our algorithm must be a similar pair. Based
on Theorem 5, any pair ⟨s, r⟩ passed our extension-based
verification must be a similar pair. Thus our algorithm sat-
isfies correctness.
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