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ABSTRACT

Nearest Neighbor (NN) search in high dimension is an im-
portant feature in many applications (e.g., image retrieval,
multimedia databases). Product Quantization (PQ) is a
widely used solution which offers high performance, i.e., low
response time while preserving a high accuracy. PQ repre-
sents high-dimensional vectors (e.g., image descriptors) by
compact codes. Hence, very large databases can be stored
in memory, allowing NN queries without resorting to slow
I/0 operations. PQ computes distances to neighbors using
cache-resident lookup tables, thus its performance remains
limited by (i) the many cache accesses that the algorithm
requires, and (ii) its inability to leverage SIMD instructions
available on modern CPUs.

In this paper, we advocate that cache locality is not suffi-
cient for efficiency. To address these limitations, we design
a novel algorithm, PQ Fast Scan, that transforms the cache-
resident lookup tables into small tables, sized to fit SIMD
registers. This transformation allows (i) in-register lookups
in place of cache accesses and (ii) an efficient SIMD imple-
mentation. PQ Fast Scan has the exact same accuracy as
PQ, while having 4 to 6 times lower response time (e.g., for
25 million vectors, scan time is reduced from 74ms to 13ms).

1. INTRODUCTION

Nearest Neighbor (NN) search in high-dimensional spaces
is an important feature in many applications including ma-
chine learning, multimedia databases and information re-
trieval. Multimedia data, such as audio, images or videos
can be represented as feature vectors, characterizing their
content. Finding a multimedia object similar to a given
query object therefore involves representing the query object
as a high-dimensional vector and finding its nearest neigh-
bor in the feature vector space. While efficient methods exist
to solve the NN search problem in low-dimensional spaces,
the notorious curse of dimensionality challenges these so-
lutions in high dimensionality. As the dimensionality in-
creases, these methods are outperformed by bruteforce lin-
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ear scans and large databases make this problem even more
salient. To tackle this issue, the research community has
focused on Approximate Nearest Neighbor (ANN) search,
which aims at finding close enough vectors instead of the
exact closest ones.

Locality Sensitive Hashing (LSH) [11, 8] has been pro-
posed to solve the ANN problem. Yet, its significant stor-
age overhead and important I/O cost limit its applicabil-
ity to large databases. Recent advances in LSH-based ap-
proaches [19, 26] deal with these two issues but ANN search
with these solutions still requires I/O operations. We focus
on an alternative approach, named Product Quantization
(PQ) [14, 27]. PQ is unique in that it stores database vec-
tors as compact codes, allowing very large databases to be
stored entirely in memory. In most cases, vectors can be
represented by 8-byte codes, enabling a single commodity
server equipped with 256 GB RAM to store 32 billion vec-
tors in memory. Therefore, ANN search with PQ requires no
I/O operations. The key idea behind PQ is to divide each
vector into m distinct sub-vectors, and encode each sub-
vector separately. To answer ANN queries, PQ computes
the distance between the query vector and a large number
of database vectors using cache-resident lookup tables. This
process, known as PQ Scan, has a high CPU cost and is the
focus of this paper.

As it relies on main memory, PQ Scan is able to scan hun-
dreds of millions of database vectors per second. However,
because it performs many table lookups, PQ Scan is not able
to fully leverage the capabilities of modern CPUs. Its CPU
cost therefore remains high, as reported in [19]. In particu-
lar, PQ Scan cannot leverage SIMD instructions, which are
yet crucial for performance. In this paper, through the ex-
ample of PQ Scan, we investigate why algorithms based on
lookup tables cannot leverage SIMD instructions. We pro-
pose alternatives to cache-resident lookup tables, enabling
better performance. Based on our findings, we design a novel
algorithm, named PQ Fast Scan. PQ Fast Scan achieves 4-
6x better performance than PQ Scan while returning the
exact same results. More specifically, this paper makes the
following contributions:

e We extensively analyze PQ Scan performance. Our
study shows that sizing lookup tables to fit the L1
cache is not enough for performance. We also demon-
strate that PQ Scan cannot be implemented efficiently
with SIMD instructions, even using gather instructions
available in the latest generations of Intel CPUs.

e We design PQ Fast Scan that addresses these issues.
The key idea behind PQ Fast Scan is to build small



tables, sized to fit SIMD registers, that can be looked
up using fast SIMD instructions. We use these small
tables to compute lower bounds on distances and avoid
unnecessary accesses to the cache-resident lookup ta-
bles. This technique allows pruning over 95% of L1
cache accesses and thus provides a significant perfor-
mance boost. To build these small tables, we rely
on: (i) grouping of similar vectors, (ii) computation
of minimum tables and (iii) quantization of floating-
point distances to 8-bit integers.

e We implement PQ Fast Scan on Intel CPUs and evalu-
ate its performance on the public ANN_SIFT1B dataset
of high-dimensional vectors. We analyze parameters
that impact its performance, and experimentally show
that it achieves a 4-6x speedup over PQ Scan.

e We discuss the application of the techniques used in
PQ Fast Scan beyond the context of ANN search.

2. BACKGROUND

This section describes (i) how Product Quantization (PQ)
is used to represent high-dimensional vectors by compact
codes and (ii) the various steps involved in answering an
ANN query with PQ.

2.1 Product Quantization

Product Quantization builds on vector quantizers to rep-
resent high-dimensional vectors by compact codes [14]. A
vector quantizer is a function ¢ that maps a d-dimensional
vector x to a d-dimensional vector ¢; belonging to a prede-
fined set of vectors C. Vectors ¢; are called centroids, and
the set of centroids C, of size k, is the codebook.

q:Rd—>C:(co,...
q(x) =Cli] = e

We consider Lloyd-optimal quantizers which map vectors to
their closest centroids and can be built using k-means [20].

,Ckfl)

a(z) = argmin ||z — c||
Vector quantizers allow representing vectors by compact codes
by using the index ¢ of their closest centroid c¢; as repre-
sentative. This enables a 128-dimensional vector of floats
(128 x 32 bits or 512 bytes of memory) to be represented by
the index of its closest centroid (a single 64-bit integer or 8
bytes of memory).

code(z) = 4, such that g(z) = C[i]

To maintain the quantization error low, it is necessary to
build a quantizer with a high number of centroids (e.g., k =
204 centroids). Yet, building such a quantizer is intractable
both in terms of processing and memory requirements.

Product Quantization (PQ) addresses this issue by divid-
ing an input vector x of dimensionality d into m distinct sub-
vectors u;(z),0 < j < m, and quantizing each sub-vector
separately using distinct lower complexity sub-quantizers.
Each sub-vector u;(x) has a dimensionality d* = d/m, where
d is a multiple of m.

x::(mow..,xd*_lw..,xd_d*,”.,xd_l)

uo () Um—1(z)

A product quantizer g, uses m sub-quantizers to quan-
tize the input vector x. Each sub-quantizer ¢;,0 < j < m
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Figure 1: Database vectors in memory

is a vector quantizer of dimensionality d*, with a distinct
codebook C;.

@ RY = Cj = (cj0,. ., Cike—1)

A product quantizer ¢, maps an input vector z of dimen-
sionality d as follows:

qp:}Rd%CO X oo X Cpm
ap(x) = (q0(uo(2)), - - - s gm—1(Um—1(x))
= (Colio]s- -, Cmlim])

The product quantizer g, can be used to represent an in-
put vector = by a compact code, pgcode(z), by concate-
nating the indexes of the m centroids returned by the m
sub-quantizers g¢;:

pqcode(x) = (io, - - -, im),
such that g,(z) = (Colio], - . -, Cm[im])

We only consider product quantizers where sub-quantizers
codebooks C; have the same size k*. The main advantage
of product quantizers is that they are able to produce a
large number of centroids k& from sub-quantizers with a lower
number of centroids k¥, such that k = (k*)™. For instance,
a product quantizer with 8 sub-quantizers of 2% centroids
has a total number of k = (28)® = 2% centroids. We focus
on product quantizers with 2% centroids as they offer a good
tradeoff between complexity and quality for NN search [14].

We introduce the notation PQmx log, (k™) to designate a
product quantizer with m sub-quantizers and k* centroids
per sub-quantizer. Thus, PQ 8x8 designates a product quan-
tizer with 8 sub-quantizers and 28 = 256 centroids per sub-
quantizer. Any (m, k™) configuration such that mxlog, (k™) =
64 allows building a product quantizer with 2°¢ centroids.
The m and k* parameters impact (i) the complexity of learn-
ing the product quantizer, (ii) its accuracy and (iii) the
memory representation of database vectors. Lower values
of m, and thus higher values of k™ provide product quan-
tizers with a lower quantization error at the price of an in-
creased learning complexity. Database vectors are stored as
pqgcodes, which consist of m indexes of log, (k™) bits. There-
fore, in the remainder of this paper, we refer to pqcodes
stored in the database as database vectors, or simply vectors.
Figure 1 shows the memory representation of 6 database
vectors, p,--- ,u encoded with a PQ8x8 quantizer. Each
vector is composed of 8 indexes of 8 bits.

2.2 ANN Search with Product Quantization

Nearest Neighbor Search requires computing distances be-
tween vectors stored in the database and a query vector y.
We consider squared distances as they avoid a square root



Algorithm 1 Nearest Neighbor Search with PQ

1: function NNS(y, database)

2 part < INDEX_GET_PARTITION(y, database) > Step 1
3: D < COMPUTE_DISTANCE_TABLES(y) > Step 2
4 PQSCAN(D, part) > Step 3
5: end function

6: function PQSCAN(D, part)

7 min <— oo

8: pos < 0

9: for i < 0 to |part| — 1 do

10: p < part; > i*® database vector
11: d < PQDISTANCE(p, D)

12: if d < min then

13: min < d

14: POS < &

15: end if

16: end for

17: return min, pos

18: end function

19: function PQDISTANCE(p, D)
20: d<« 0
21: for j <~ 0tom — 1 do
22: index < plj] > index of the j** centroid
23: d « d+Dj[index]
24: end for
25: return d
26: end function

computation while preserving the order. The Asymmet-
ric Distance Computation (ADC) method allows comput-
ing the distance between a query vector y and a database
vector p, without quantizing the query vector [14]. ADC
approximates the distance between the query vector y and
a database vector p by:

m—1

d(p,y) = Y du;(y), Clpli)

§=0

(1)

where d(u;(y),C;[p[j]]) is the squared distance between the
4™ sub-vector of the query vector y and C;[p[j]], the ;"
centroid associated with the database vector p.

To allow fast ANN queries, the IVFADC [14] system has
been proposed. This system adds an inverted index (IVF)
on top of the product quantizer and ADC. The index is built
from a basic vector quantizer, named coarse quantizer. Each
Voronoi cell of the coarse quantizer forms a partition of the
database. Answering an ANN query with IVFADC involves
three steps (Algorithm 1):

1. Selecting a partition of the database using the index.
The selected partition corresponds to the Voronoi cell
of the coarse quantizer where the query vector lies.

2. Computing distance tables, which are used to speed
up ADC computations.

3. Scanning the partition, i.e., computing the ADC be-
tween the query vector and all vectors of the partition.
We name this step PQ Scan.

PQ achieves high recall by scanning a large number of vec-
tors. The selected partition typically comprises thousands
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Figure 2: PQ distance computation

to millions of vectors, depending on the database size and
the index parameters. We focus on very large databases and
partitions exceeding 3 million vectors. In this case, Step 1
and 2 account for less than 1% of the CPU time while Step
3 uses more than 99% of the CPU time.

Once a partition has been selected, m distance tables, D;,
0 < j < m, are computed (Step 2). These distance tables
are specific to a given query vector. Each D; distance table
is composed of the distance between the j* sub-vector of the

query vector y and every centroid of the j** sub-quantizer:
(2)

Dj = (d(uj(y), C5[0]) -+, d (u;(y), Ci [k — 1]))

We omitted the definition of COMPUTE_DISTANCE_TABLES in
Algorithm 1 for the sake of clarity but it would correspond
to an implementation of Equation (2). Using these distance
tables, the ADC equation (1) can be rewritten as:

ip.¥) = 3 Dylpl] ®

PQ Scan (Step 3) iterates over all vectors (Algorithm 1,
line 9) of the selected partition, and computes the ADC
between the query vector and every vector of the partition
using the PQDISTANCE function (Algorithm 1, line 11). The
PQDISTANCE function is an implementation of Equation (3).
Figure 2 shows the pqdistance computation between the
query vector and the first database vector. The first cen-
troid index (p[0] = 02) is used to look up a value in the first
distance table (Do), the second centroid index (p[l] = 04)
is used to lookup a value in the second distance table (D1)
etc. All looked up values are then added to compute the
final distance.

3. PQ SCAN LIMITATIONS

In this section, we show that despite its low apparent
complexity, PQ Scan cannot be implemented efficiently on
CPUs. We identify two fundamental bottlenecks that limit
its performance: (i) the many cache accesses it performs
and (ii) the impossibility to implement it efficiently using
SIMD. Identification of these bottlenecks is key to designing
our novel algorithm that overcomes PQ Scan limitations.

3.1 Memory Accesses

As PQ Scan parallelizes naturally over multiple queries by
running each query on a different core, we focus on single-
core performance. P(Q Scan computes the pqdistance be-
tween the query vector and each database vector, which ac-
counts for almost all CPU cycles consumed. The number



of operations required for each pqdistance computation de-
pends on the m parameter of the product quantizer. Each
pqdistance computation involves:

e m memory accesses to load centroid indexes p[j] (Al-
gorithm 1, line 22) [mem1]

e m memory accesses to load D;|index| values from dis-
tance tables (Algorithm 1, line 23) [mem2]

e m additions (Algorithm 1, line 23)

We distinguish between two types of memory accesses:
mem1, accesses to centroid indexes and mem?2, accesses to
distance tables as they may hit different cache levels. We
analyze the locality of these two types of memory accesses.
Mem1 accesses always hits the L1 cache thanks to hardware
prefetchers included in modern CPUs. Indeed, hardware
prefetchers are able to detect sequential memory accesses
and prefetch data to the L1 cache. We access p[j] values
sequentially, i.e., we first access p[0] where p is the first
database vector, then p[1] until p[m-1]. Next, we perform
the same accesses on the second database vector, until we
have iterated on all database vectors.

The cache level accessed by the mem?2 accesses depends on
the m and k™ parameters of the product quantizer. Indeed,
the size of distance tables, which impacts the cache level
they can be stored in, is given by m X k* X sizeof (float).
To obtain a product quantizer with 2%* centroids, which
is important for accuracy, m x log,(k*) = 64. Therefore,
smaller m values lead to less memory accesses and additions
but imply higher £* values and thus larger distance tables,
which are stored in higher cache levels. Table 1 summarizes
the properties of the different cache levels as well as the
product quantizer configurations of which they can store
the distance tables.

Table 1: Cache level properties (Nehalem-Haswell)

L1 L2 L3
Latency (cycles) 4-5 11-13 25-40
Size 32KiB 256KiB 2-3MiB
X nb cores
PQ Configurations PQ16x4 PQ4x16
PQ8x8

PQ 16 x4 is not interesting because it requires more mem-
ory accesses than PQ 8x8 and distance tables can be stored
in the L1 cache for both configurations. PQ4x16 requires
two times less memory accesses than PQ 8x8, but PQ4x16
distance tables are stored in the L3 cache which has a 5 times
higher latency than the L1 cache. Overall, PQ 88 provides
the best performance tradeoff, and is the most commonly
used configuration in the literature [14, 27, 4, 10, 21]. Thus,
from now on, we focus exclusively on PQ 8x8.

We use performance counters to analyze the performance
of different PQ Scan implementations experimentally (Fig-
ure 3). For all implementations, the number of cycles with
pending load operations (cycles w/ load) is almost equal
to the number of cycles, which confirms that PQ Scan is a
memory-intensive algorithm. We also measured the num-
ber of L1 cache misses (not shown on Figure 3). L1 cache
misses represent less than 1% of memory accesses for all im-
plementations, which confirms that both mem! and mem2
accesses hit the L1 cache. The naive implementation of PQ
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Scan (Algorithm 1) performs 16 L1 loads per scanned vector:
8 meml accesses and 8 mem2 accesses. The authors of [14]
distribute the libpq library', which includes an optimized
implementation of PQ Scan. We obtained a copy of libpq
under a commercial licence. Rather than loading 8 centroid
indexes of 8 bits each (memI accesses), the libpq implemen-
tation of PQ Scan loads a 64-bit word into a register, and
performs 8-bit shifts to access individual centroid indexes.
This allows reducing the number of mem! accesses from 8
to 1. Therefore, the libpq implementation of PQ Scan per-
forms 9 L1 loads per scanned vector: 1 meml access and
8 mem2 accesses. However, overall, the libpg implemen-
tation is slightly slower than the naive implementation on
our Haswell processor. Indeed, the increase in the number
of instructions offsets the increase in IPC (Instructions Per
Cycle) and the decrease in L1 loads.

3.2 Inability to Leverage SIMD Instructions

In addition to cache accesses, PQ Scan requires m ad-
ditions per pqdistance computation. We evaluate the ap-
plicability of SIMD instructions to reduce the number of
instructions and CPU cycles devoted to additions. SIMD
instructions perform the same operation, e.g., additions, on
multiple data elements in one instruction. To do so, SIMD
instructions operate on wide registers. SSE SIMD instruc-
tions operate on 128-bit registers, while more recently in-
troduced AVX SIMD instructions operate on 256-bit regis-
ters [2]. SSE instructions can operate on 4 floating-point
ways (4x32 bits, 128 bits) while AVX instructions can op-
erate on 8 floating-point ways (8x32 bits, 256 bits). In this
subsection, we consider AVX instructions as they provided
the best results in our experiments. We show that PQ Scan
structure prevents an efficient use of SIMD instructions.

To enable the use of fast vertical SIMD additions, we
compute the pqgdistance between the query vector and 8
database vectors at a time, designated by the letters a to h.
We still issue 8 addition instructions, but each instruction
involves 8 different vectors, as shown on Figure 4. Overall,
the number of instructions devoted to additions is divided by
8. However, the gain in cycles brought by the use of SIMD
additions is offset by the need to set the ways of SIMD reg-
isters one by one. SIMD processing works best when all
values in all ways are contiguous in memory and can be
loaded in one instruction. Because they were looked up in a
table, Dola[0]], Do[b[0]], - - , Do[h[0]] values are not contigu-
ous in memory. We therefore need to insert Do[a[0]] in the
first way of the SIMD register, then Do[b[0]] in the second
way etc. In addition to memory accesses, doing so requires
many SIMD instructions, some of which have high latencies.
Overall, this offsets the benefit provided by SIMD additions.
This explains why algorithms relying on lookup tables, such
as PQ Scan, hardly benefit from SIMD processing. Figure
3 shows that the AVX implementation of PQ Scan requires
slightly less instructions than the naive implementation, and
is only marginally faster.

To tackle this issue, Intel introduced a gather SIMD in-
struction in its latest architecture, Haswell [2]. Given an
SIMD register containing 8 indexes and a table stored in
memory, gather looks up the 8 corresponding elements from
the table and stores them in a register, in just one instruc-
tion. This avoids having to use many SIMD instructions to
set the 8 ways of SIMD registers. Figure 5 shows how gather

1http ://people.rennes.inria.fr/Herve.Jegou/projects/ann.html
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Figure 4: PQ Scan with SIMD vertical adds

can be used to look up 8 values in the first distance table
(Do). To efficiently use gather, we need a[0], - - , h[0] to be
stored contiguously in memory, so that they can be loaded
in one instruction. To do so, we transpose the memory lay-
out of the database presented in Figure 1. We store the
first components of 8 vectors contiguously (a[0],--- , h[0]),
followed by the second components of the same 8 vectors
(a[l],- -, h[1]) etc., instead of storing all components of the
first vector (a[0],--- ,a[7]), followed by the components of
the second vector (b[0],-- -, b[7]). This also allows to reduce
the number of mem1 accesses from 8 to 1, similarly to the
libpq implementation.

\ al0] \ b[0] \ 0] \ d[o] \ \ h[0] \

|
«—— Dy [memory]
1

| Dola[0]] | Do[b[0]] | Do[e[0]] | Dold[0] |

| Dolr[o]]

Figure 5: SIMD gather operation

However, the gather implementation of PQ Scan is slower
than the naive version (Figure 3), which can be explained by
several factors. First, even if it consists of only one instruc-
tion, gather performs 1 memory access for each element it
loads, which implies suffering memory latencies. Second,
at the hardware level, gather executes 34 pops® (Table 2)
where most instructions execute only 1 pop. Figure 3 shows
that the gather implementation has a low instructions count

*Micro-operations (j1ops) are the basic operations executed
by the processor. Instructions are sequences of pops.

45 T T T T T . T
40 |- 30 naive

35 | HEE libpq

30 L = avx

25 B gather

instructions

times and performance counters for 4
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L1 loads IPC

pops

implementations of PQ Scan (25M vectors)

Table 2: Instruction properties (Haswell)

Inst. Lat. Through. | pops | # elem elem size
gather 18 10 34 no limit | 32 bits
pshufb 1 0.5 1 16 8 bits

but a high pops count. For other implementations, the num-
ber of pops is only slightly higher than the number of in-
structions. It also has a high latency of 18 cycles and a
throughput of 10 cycles (Table 2), which means it is nec-
essary to wait 10 cycles to pipeline a new gather instruc-
tion after one has been issued. This translates into poor
pipeline utilization, as shown by the very low IPC of the
gather implementation (Figure 3). In its documentation,
Intel acknowledges that gather instructions may only bring
performance benefits in specific cases [1] and other authors
reported similar results [13].

4. PQFAST SCAN

In this section, we present PQ Fast Scan, a novel algo-
rithm we design that overcomes the limitations of PQ Scan.
PQ Fast Scan performs less than 2 L1 cache accesses per
scanned vector and allows additions to be implemented effi-
ciently using SIMD instructions. By design, PQ Fast Scan
returns exactly the same results as PQ Scan with a PQ 8x8
quantizer while performing 4-6 times faster.

4.1 Description

The key idea behind PQ Fast Scan is to use small tables,
sized to fit SIMD registers instead of the cache-resident dis-
tance tables. These small tables are used to compute lower
bounds on distances, without accessing the L1 cache. There-
fore, lower bounds computations are fast. In addition, they
are implemented using SIMD additions, further improving
performance. We use lower-bound computations to prune
slow pqdistance computations, which access the L1 cache
and cannot benefit from SIMD additions. Figure 6 shows
the processing steps applied to every database vector p. The
® symbol means we discard the vector p and move to the
next database vector. The min value is the distance of the
query vector to the current nearest neighbor. Our experi-
mental results on SIFT data show that PQ Fast Scan is able
to prune 95% of pqdistance computations.

To compute lower bounds, we need to look up values in
small tables stored in SIMD registers. To do so, we use the
pshufb instruction, which is key to PQ Fast Scan perfor-
mance. Similarly to gather, pshufb looks up values in a



Compute lower bound
(Small tables, SIMD additions)

lower bound < min

Compute pqdistance
(L1 cache accesses, Scalar additions)

pqdistance < min

p is the new
nearest neighbor

Figure 6: Overview of PQ Fast Scan

table corresponding to indexes stored in an SIMD register.
However, in the case of gather, the table is stored in mem-
ory while in the case of pshufb, the table is stored in an
SIMD register. This allows pshufb to have a much lower la-
tency than gather, but limits the size of small tables to 16
elements of 8 bits each (16x8 bits, 128 bits). Furthermore,
pshufb uses 16 indexes while gather uses only 8 indexes.
Table 2 summarizes the properties of gather and pshufb.

To compute pqdistances, the original PQ Scan algorithm
(with a PQ8x8 quantizer) uses 8 distance tables Dj, 0 <
j < 8, and each distance table comprises 256 elements of 32
bits. Hence, one distance table (256x32 bits) does not fit
into an SIMD register, which is why we need to build small
tables. Just like there are 8 distance tables D;, 0 < j < 8§,
we build 8 small tables S;, 0 < j < 8. Each small table .S; is
stored in a distinct SIMD register and is built by applying
transformations to the corresponding D; table.

To build 8 small tables suitable to compute lower bound
on distances, we combine three techniques: (1) vector group-
ing, (2) computation of minimum tables and (3) quantization
of distances. The first two techniques, vector grouping and
computation of minimum tables, are used to build tables of
16 elements (16x32 bits). The third technique, quantization
of distances, is used to shrink each element to 8 bits (16x32
bits — 16x8 bits). We group vectors and quantize distances
to build the first four small tables, So,--- ,S3. We compute
minimum tables and quantize distances to build the last four
small tables, Sy, ,S7. Figure 7 summarizes this process.

4.2 Vector Grouping

Database vectors are pqcodes, which consist of 8 compo-
nents of 8 bits (Figure 9a). When computing the pqdistance,
each component is used as an index in the corresponding dis-
tance table, e.g., the 1st component is used as an index in
the 1st distance table. The key idea behind vector grouping
is to group vectors such that all vectors belonging to a group
hit the same portion of 16 elements of a distance table.

We focus on the first distance table, Dy. We group vectors
on their first component and divide the Dy table into 16 por-
tions, of 16 elements each (Figure 8). All database vectors
p having a first component p[0] between 00 and 0f (0 to 15)
will trigger lookups in portion 0 of Dy when computing the
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Figure 8: Portions of the first distance table

padistance. These vectors form group 0. All vectors having
a first component between 10 and 1f (16 to 31) will trigger
lookups in portion 1 of Dg. These vectors form the group
1. We define 16 groups in this way. Each group is identified
by an integer ¢, and contains database vectors p such that:

16(i — 1) < p[0] < 164

and only requires the portion ¢ of the first distance table,
Do. We apply the same grouping procedure on the 2nd, 3rd
and 4th components. Eventually, each group is identified
by four integers (io,%1,12,%3), each belonging to [0;16] and
contains vectors such that:

16(io — 1) < p[0] < 16ip A 16(i1 — 1) < p[1] < 16i; A
16(iz — 1) < p[2] < 16i2 A 16(i5 — 1) < p[3] < 16is

Figure 9b shows a database where all vectors have been
grouped. We can see that all vectors in the group (3,1, 2,0)
have a first component between 30 and 3f, a second compo-
nent between 10 and 1f, etc. To compute the pqdistance of
the query vector to any vector of a group (io,1,1%2,%3), we
only need a portion of Dy, D1, D2 and Ds. Before scanning
a group, we load the relevant portions of Do, --- , D3 into 4
SIMD registers to use them as the small tables Sp,--- , S3.
This process is shown by solid arrows on Figure 13. We
do not apply grouping on all 8 components so as not to
create too small groups. The average size s of a group is
given by s = n/16°, where n is the number of vectors in the
scanned partition and ¢ the number of components used for
grouping. For best performance, s should exceed about 50
vectors. Indeed, before scanning a group, we load portions
of distances tables into SIMD registers, which is costly. If
the group comprises less than 50 vectors, a large part of the
CPU time is spent loading distance tables. This is detri-
mental to performance, as shown by our experimental re-
sults (Section 5.6). The minimum partition size nmin(c) to
be able to group vectors on ¢ components is therefore given
by Numin(c) = 50 - 16°, and increases exponentially with the
number of components used for grouping. In this paper, we
target partitions of n = 3.2 — 25 million vectors, therefore
we always group on ¢ = 4 components.

Grouping vectors also allows decreasing the amount of
memory consumed by the database by approximatively 25%.
In a group, the 1st component of all vectors has the same
4 most significant bits. As we apply grouping on the 4 first
components, their 2nd, 3rd and 4th components also have
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Figure 10: Minimum tables

the same most significant bits. We can therefore avoid stor-
ing the 4 most significant bits of the 4 first components
each database vector. This saves 4 x 4 bits = 16 bits on the
8 x 8 bits = 64 bits of each vector, which leads to a 25%
reduction in memory consumption. Thus, on Figure 9b, the
grayed out hexadecimal digits (which represent 4 bits) may
not be stored.

4.3 Minimum Tables

We grouped vectors to build the first four small tables
S0, ,S53. To build the last four small tables, S4,--- ,S7
we compute minimum tables. This involves dividing the
original distance tables, D4, --- , D7, into 16 portions of 16
elements each. We then keep the minimum of each por-
tion to obtain a table of 16 elements. This process is shown
on Figure 10. Using the minimum tables techniques alone
results in small tables containing low values, which is detri-
mental to PQ Fast Scan performance. If these values are too
low, the computed lower bound is not tight, i.e., far from the
actual pqdistance. This limits the ability of PQ Fast Scan
to prune costly pqdistance computations.

To obtain small tables with higher values, we introduce
an optimized assignment of sub-quantizer centroids indexes.
Each value D;[i] in a distance table is the distance between
the j*® sub-vector of the query vector and the centroid with
index i of the 5 sub-quantizer (Section 2.2). When a sub-
quantizer is learned, centroids indexes are assigned arbitrar-
ily. Therefore, there is no specific relation between centroids
having indexes corresponding to a portion of a distance ta-
ble (e.g., centroids having indexes between 00 and 0f). On
the contrary, our optimized assignment ensures that all in-
dexes corresponding to a given portion (e.g., 00 to 0f) are
assigned to centroids close to each other, as shown on Fig-

294

(a) Arbitrary assignment  (b) Optimized assignment

Figure 11: Centroid indexes assignement
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Figure 12: Selection of quantization bounds

ure 11. Centroids corresponding to the same portion have
the same background color. For the sake of clarity, Figure 11
shows 4 portions of 4 indexes, but in practice we have 16 por-
tions of 16 indexes. This optimized assignment is beneficial
because it is likely that a query sub-vector close to a given
centroid will also be close to nearby centroids. Therefore,
all values in a given portion of a distance table will be close.
This allows computing minimum tables with higher values,
and thus tighter lower bounds. To obtain this optimized
assignment, we group centroids into 16 clusters of 16 ele-
ments each using a variant of k-means that forces groups
of same sizes [24]. Centroids in the same cluster are given
consecutive indexes, corresponding to one portion of a dis-
tance table. This optimized assignment of centroid indexes
replaces the arbitrary assignement applied while learning
sub-quantizers.

4.4 Quantization of Distances

The vector grouping and minimum tables techniques are
used to build tables of 16 elements of 32 bits each, from the
original D; distance tables (256 x 32 bits). So that these
tables can be used as small tables, we also need to shrink
each element to 8 bits. To do so, we quantize floating-point
distances to 8-bit integers. As there is no SIMD instruction
to compare unsigned 8-bit integers, we quantize distances to
signed 8-bit integers, only utilizing their positive range, i.e.,
0-127. We quantize floating-point distances between a gmin
and a gmaz bound into n = 127 bins. The size of each bin
is (gmaz — gmin)/n and the bin number (0-126) is used as
a representation value for the quantized float. All distances
above gmaz are quantized to 127 (Figure 12).

We set gmin to the minimum value across all distance
tables, which is the smallest distance we need to represent.
Setting gmax to the maximum possible distance, i.e., the
sum of the maximums of all distance tables, results in a
high quantization error. Therefore, to determine gmaz, we
find a temporary nearest neighbor of the query vector among
the keep% first vectors of the database (usually, keep =~ 1%)
using the original PQ Scan algorithm. We then use the
distance between the query vector and this temporary near-
est neighbor as gmaz bound. We do not need to represent
distances higher than this distance because all future near-
est neighbor candidates will be closer to the query vector



So ... S (Vector Grouping) Database S4...S7 (Minimum Tables)
00 10 2~ 30 _—4—e£ | T
Do\90...5[67;.4[74...7[64...6] ......... \ G0 &2 @ At

[67...0[88...1][85...8]16...
[36...4[44.5]41...5]17...

Dy [A7...1]45...7]16...5]25...4]_

6 23 92 bc di

34,46 25
E a 21

~

0 32-8b €903

Figure 13: Use of small tables to compute lower bounds

than this temporary nearest neighbor. This choice of gmin
and gmax bounds allows us to represent a small but rele-
vant range of distances (Figure 12). Quantization error is
therefore minimal, as confirmed by our experimental results
(Section 5.5). Lastly, to avoid integer overflow issues, we use
saturated SIMD additions.

4.5 Lookups in Small Tables

In this subsection, we describe how lower bounds are com-
puted by looking up values in small tables and adding them.
The first four small tables, So,--- ,.S3 correspond to quan-
tized portions of Do, --- , D3. We load these quantized por-
tions into SIMD registers before scanning each group, as
shown by the solid arrows on Figure 13. Thus, two dif-
ferent groups use different small tables Sp,---,S53. On the
contrary, the last four small tables, Sy - - - , S7, built by com-
puting minimum tables do not change and are used to scan
the whole database. They are loaded into SIMD registers at
the beginning of the scan process.

As small tables contain 16 values, they are indexed by 4
bits. Given a database vector p, we use the 4 least signif-
icant bits of p[0]---p[3] to index values in So,---,S3 and
the 4 most significant bits of p[4] - - - p[7] to index values in
S4,-++,S7. Indexes are circled on Figure 13 (the 4 most
significant bits correspond to the first hexadecimal digit,
and the 4 least significant bits to the second hexadecimal
digit) and lookups in small tables are depicted by dotted
arrows. Lookups depicted by dotted arrows are performed
using pshufb. To compute the lower bound, we add the 8
looked up values. To decide on pruning pqdistance compu-
tations, the lower bound is compared to the quantized value
of min, the distance between the query vector and the cur-
rent nearest neighbor.

5. EVALUATION

The aim of this section is twofold: evaluating the perfor-
mance of PQ Fast Scan and analyzing the parameters that
influence it. We show that PQ Fast Scan outperforms PQ
Scan by a factor 4-6 in common usage scenarios.

5.1 Experimental Setup

We implemented PQ Fast Scan in C++ using intrinsics to
access SIMD instructions. Our implementation uses SIMD
instructions from the SSSE3, SSE3 and SSE2 instruction
sets. We compared our implementation of PQ Fast Scan
with the libpq implementation of PQ Scan, introduced in
Section 3.1. On all our test platforms, we used the gcc and
g++ compilers version 4.9.2, with the following compila-
tion options: -03 -m64 -march=native -ffast-math. We
released our source code® under the Clear BSD license.

3ht‘cps ://github.com/technicolor-research/pg-fast-scan

We evaluate PQ Fast Scan on the largest public dataset
of high-dimensional vectors, ANN_SIFT1B*. It consists of
3 parts: a learning set of 100 million vectors, a base set
of 1 billion vectors and a query set of 10000 vectors. We
restricted the learning set for the product quantizer to 10
million vectors. Vectors of this dataset are SIF'T descriptors
of dimensionality 128. We use two subsets of ANN_SIFT1B
for experiments:

e ANN_SIFT100M]1, a subset of 100 million vectors of
the base set. We build an index with 8 partitions; each
query is directed to the most relevant partition which is
then scanned with PQ Fast Scan and PQ Scan. Table
3 summarizes the sizes of the different partitions.

e ANN_SIFT1B, the full base set of 1 billion vectors to
test our algorithm on a larger scale.

We study the following parameters which impact the per-
formance of PQ Fast Scan:

e keep, the percentage of vectors kept at the beginning
of the database (Section 4.4). Even when using PQ
Fast Scan, these vectors are scanned using the seminal
PQ Scan algorithm to find a temporary nearest neigh-
bor. The distance of the query vector to the tempo-
rary nearest neighbor is then used as the gmax value
for quantization of distance tables.

e topk, the number of nearest neighbors returned by the
search process. For the sake of simplicity, we described
PQ Scan and PQ Fast Scan as if they returned a sin-
gle nearest neighbor. In practice, they return multiple
nearest neighbors e.g., topk = 100 for information re-
trieval in multimedia databases.

e partition size, the number of vectors in the scanned
partition.

Table 3: Size of partitions used for experiments
Partition 0 1 2 3 4 5 6 7

# vectors | 25M| 3.4M 11M| 11M| 11M| 11M| 4M | 23M
# queries | 2595| 307 | 1184| 1032| 1139| 1036 390 | 2317

We compare the performance of PQ Fast Scan, denoted
fastpq, and the libpq implementation of PQ Scan, denoted
libpg. We compare their respective scan speed, expressed
in millions of vectors scanned per second [M vecs/s]. Scan
speed is obtained by dividing response times by partition
sizes. We do not evaluate P(Q Fast Scan accuracy, recall
or precision because PQ Fast Scan returns the exact same

4http ://corpus-texmex.irisa.fr/
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Figure 14: Distribution of scan times (partition 0,
keep=0.5%, topk=100)

results as PQ Scan and PQ accuracy has already been ex-
tensively studied [14]. In addition to theoretical guarantees,
we checked that PQ Fast Scan returned the same results as
the libpg implementation of PQ Scan for every experiment.
Lastly, we run PQ Fast Scan across a variety of different
platforms (Table 5) and demonstrate it consistently outper-
forms PQ Scan by a factor of 4-6. All experiments were run
on a single processor core. Unless otherwise noted, experi-
ments were run on laptop (A) (Table 5).

5.2 Distribution of Response Times

We study the distribution of PQ Fast Scan response times.
Contrary to PQ Scan, PQ Fast Scan response time varies
with the query vector. Indeed, PQ Fast Scan performance
depends on the amount of pqdistance computations that
can be pruned, which depends on the query vector. Figure
14 shows the distribution of response times of 2595 nearest
neighbor queries executed on partition 0. As expected, PQ
Scan response time is almost constant across different query
vectors. PQ Fast Scan response time is more dispersed, but
it responds to the bulk of queries 4-6 times faster than PQ
Scan, as shown in Table 4. In the remainder of this sec-
tion, when studying the impact of different parameters on
PQ Fast Scan performance, we plot median response times
or median scan speeds. We use the st quartile (25th per-
centile) and 3rd quartile (75th percentile) to draw error bars.
Because it directly impacts performance, we also plot the
percentage of pruned pqdistance computations.

Table 4: Response time distribution

Mean || 25% | Median | 75% | 95%
PQ Scan 73.9 || 73.6 73.8 | 74.0 | 74.5
PQ Fast Scan 13.7 || 12.3 12.9 | 14.1 | 18.0
Speedup 5.4 6.0 5.7 | 5.2 | 4.1

5.3 Performance Counters

We use performance counters to measure the usage of
CPU resources of PQ Fast Scan and PQ Scan when scan-
ning partition 0 (Figure 15). Thanks to the use of register-
resident small tables, PQ Fast Scan only performs 1.3 L1
loads per scanned vector, where the libpq implementation
of PQ Scan requires 9 L1 loads. PQ Fast Scan requires 89%
less instructions than PQ Scan thanks to the use of SIMD
instructions instead of scalar ones (respectively 3.7 and 34

Figure 15:

: 35 :

L1 loads

IPC

cycles instructions

Performance counters (partition O,

keep=0.5%, topk=100)
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instructions per scanned vector). PQ Fast Scan uses 83%
less cycles than PQ Scan (respectively 1.9 and 11 cycles per
vector). The decrease in cycles is slightly less significant
than the decrease in instructions because PQ Fast Scan has
a lower IPC than PQ Scan. This is because SIMD instruc-
tions can be less easily pipelined than scalar instructions.

5.4 Impact of keep and topk Parameters

Both keep and topk impact the amount of pruned distance
computations, and thus PQ Fast Scan performance. For in-
formation retrieval in multimedia databases, topk is often set
between 100 and 1000. Therefore, we start by studying the
impact of keep for topk = 100 and topk = 1000. The keep
parameter impacts the tightness of the gmaz bound used
for quantization. A higher keep value means more vectors
are scanned using the seminal PQ Scan algorithm to find a
temporary nearest neighbor (Section 4.4). This makes the
gmaz bound tighter and decreases the distance quantization
error. Figure 16 shows that the pruning power increases with
keep; however this increase is moderate. For topk = 1000,
the pruning power is lower than for topk = 100 and more
sensitive to keep. PQ Fast Scan can prune a pqdistance com-
putation if the lower bound of the currently scanned vector
is higher than the distance between the query vector and
the current topk-th nearest neighbor. A higher topk value
implies a higher distance between the query vector and the
topk-th nearest neighbor. Therefore, less pqdistance com-
putations can be pruned.

The scan speed increases slightly with keep as more dis-
tance computations get pruned, up to a threshold where
it starts to collapse. After this threshold, the increase in
pruned distance computations provided by the tighter gmax
bound is outweighed by the increased time spent scanning
the first keep% vectors using the slow PQ Scan algorithm.
Overall, PQ Fast Scan is not very sensitive to keep, and a
decent gmazx bound is found quickly. Any keep value be-
tween 0.1% and 1% is suitable. We set keep = 0.5% for the
remainder of experiments. Lastly, we evaluate PQ Fast Scan
performance for more topk values. Figure 18 confirms that
PQ Fast Scan performance decreases with topk.

5.5 Impact of Distance Quantization

PQ Fast Scan uses three techniques to build small tables:
(1) vector grouping, (2) minimum tables and (3) quantiza-
tion of distances. Among these three techniques, minimum
tables and quantization of distances impact the tightness of
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Figure 16: Impact of keep parameter (all partitions)

lower bounds, and therefore pruning power. To assess the
respective impact on pruning power of these two techniques,
we implement a quantization-only version of PQ Fast Scan
which relies only on quantization of distances (Figure 17).
This version uses tables of 256 8-bit integers, while the full
version of PQ Fast Scan uses tables of 16 8-bit integers.
Therefore, the quantization-only version cannot use SIMD
and offers no speedup. Hence, Figure 17 shows only the
pruning power and does not show the scan speed. The
quantization-only version of PQ Fast Scan achieves 99.9%
to 99.97% pruning power. This is higher than the prun-
ing power of the full version of PQ Fast Scan (i.e., using
the three techniques) which is 98% to 99.7% (Figure 16).
This demonstrates that our quantization scheme is highly
efficient and that most of the loss of pruning power comes
from minimum tables.

5.6 Impact of Partition Size

The partition size impacts scan speed without impacting
pruning power (Figure 19). Partitions 0, 7, 2, 4, 5 and 3 have
sizes comprised between 10 million vectors and 25 million
vectors, and PQ Fast Scan speed is almost constant across all
theses partitions. Smaller partitions, e.g., partitions 6 and
1, exihibit lower scan speeds. PQ Fast Scan groups vectors
on 4 components for partition exceeding 3 million vectors,
(Section 4.2). As partition sizes approaches this threshold,
the scan speed decreases. For partitions comprising less than
3 million vectors, it would be necessary to group vectors on
3 components instead of 4.

5.7 Large Scale Experiment

We test PQ Fast Scan on the full database of 1 billion
vectors (ANN_SIFT1B). For this database, we build an in-
dex with 128 partitions. Partitions therefore have an av-
erage size of about 8 million vectors. We run 10000 NN
queries. The most appropriate partition for each query is
selected using the index, and scanned to find nearest neigh-
bors. We scan partitions using both PQ Scan and PQ Fast
Scan, and we compare mean response times to queries (Fig-
ure 20, SIFT1B). In addition to its lower response time, PQ
Fast Scan also allows decreasing the amount of memory con-
sumed by the database thanks to vector grouping (Section
4.2). Unlike previous experiments, this experiment was run
on workstation (B) instead of laptop (A) (Table 5). The
parameters keep = 1%, topk = 100 were chosen.
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Figure 17: Pruning power using
quantization only (all partitions)

Table 5: Configuration of test platforms

[ Taptop (A) [ workstation (B) | server (C) [ server (D) |
Core Xeon Xeon Xeon
i7-4810MQ | E5-2609v2 E5-2640 X5570
Haswell Ivy Bridge Sandy Bridge | Nehalem
2.8-3.8 Ghz | 2.5-2.5 Ghz 2.5-3.0 Ghz 2.9-3.3 Ghz
2014 2013 2012 2009
8 GB 16 GB 64 GB 24 GB
2x4 GB 4x4 GB 4x16 GB 6x4 GB
DDR3 DDR3 DDR3 DDR3
1600 Mhz 1333 Mhz 1333 Mhz 1066 Mhz

5.8 Impact of CPU Architecture

To conclude our evaluation section, we compare PQ Fast
Scan and PQ Scan over a wide range of using processors
released between 2009 and 2014 (Table 5). On all these sys-
tems, Fast PQ Scan median speed exceeds PQ Scan median
speed by a factor of 4-6, thus validating our performance
analysis and design hypotheses (Figure 20, Scan speed). PQ
Fast Scan performance is not sensitive to processor archi-
tecture. PQ Fast Scan loads 6 bytes from memory for each
lower bound computation. Thus, a scan speed of 1800 M
vecs/s correspond to a bandwith use of 10.8 GB/s. The
memory bandwidth of Intel server processors ranges from
40 GB/s to 70 GB/s. When answering 8 queries concur-
rently on an 8-core server processor, PQ Fast Scan is bound
by the memory bandwidth, thus demonstrating its highly
efficient use of CPU resources.

6. DISCUSSION

While this paper mainly focuses on ANN search, the tech-
niques used in PQ Fast Scan can be applied beyond this
context. We now discuss how they can be generalized.

The main idea behind PQ Fast Scan is to build lookup
tables so that they fit in SIMD registers, while storing them
in the L1 cache is generally considered as best practice for
efficiency. Therefore, any algorithm relying on lookup tables
is a candidate for applying this idea. Among practical uses
of lookup tables is query execution in compressed databases.
Compression schemes, either generic [23, 12, 3, 25] or specific
(e.g., SAX for time series [18]), have been widely adopted in
database systems. In the case of dictionary-based compres-
sion (or quantization), the database stores compact codes.
A dictionary (or codebook) holds the actual values corre-
sponding to the compact codes. Query execution then relies
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Figure 20: Experiments on different platforms (see
Table 5)

on lookup tables, derived from the dictionary. In this case,
storing lookup tables in SIMD registers allows for better
performance. If lookup tables are small enough (16 entries),
they may be stored directly in SIMD registers, after quan-
tization of their elements to 8-bit integers. Otherwise, it
possible to build small tables for different types of queries.
For top-k queries, it is possible to build small tables en-
abling computation of lower or upper bounds. Like in PQ
Fast Scan, lower bounds can then be used to limit L1-cache
accesses. To compute upper bounds instead of lower bounds,
maximum tables can be used instead of minimum tables. For
approximate aggregate queries (e.g., approximate mean), ta-
bles of aggregates (e.g., tables of means) can be used instead
of minimum tables.

Another idea behind PQ Scan Fast is to use 8-bit satu-
rated arithmetic. This idea can be applied for queries which
do not use lookup tables, such as queries executed on uncom-
pressed data. Top-k queries require exact score evaluation
for a small number of items, so 8-bit arithmetic can be used
to discard candidates. Similarly, 8-bit arithmetic may pro-
vide enough precision for approximate queries. In the con-
text of SIMD processing, 8-bit arithmetic allows processing
4 times more data per instruction than 32-bit floating-point
arithmetic and thus provides a significant speedup.

To perform lookups in tables stored in SIMD registers, we
use SIMD shuffle instructions (included in the Intel SSSE3
instruction set). Such instructions are also available on
ARM processors, with the Neon instruction set. Lastly, the
AVX-512 SIMD instruction set, available on upcoming Intel
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Figure 19: Impact of partition size (all partitions,
keep=0.5%, topk=100)
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processors, will allow storing larger tables in SIMD regis-
ters. This will allow for even better performance and wider
applicability of our techniques.

7. RELATED WORK

Product Quantization for ANN. Product Quantization is
a widely used solution for ANN search in large databases.
Several publications extend the original method presented
in [14]. Among these publications, a part focuses on the
development of efficient indexing schemes that can be used
in conjunction with product quantization [4, 28]. Another
part of publications focuses on optimizing the learning of
sub-quantizers to increase recall [21, 10, 15], which is or-
thogonal to our work. Adaptation of PQ Fast Scan to these
optimized product quantizers is straightforward, as they also
rely on distance tables for ANN search.

Other approaches for ANN. Locality Sensitive Hashing
(LSH) is another prominent approach for ANN search. The
original method [8] has prohibitive storage requirements for
large databases but offers theoretical guarantees on the qual-
ity of the returned neighbors. LSH-based systems with lower
storage requirements have been recently proposed [9, 19].
Despite recent improvements, LSH-based systems have higher
storage requirements than systems based on product quanti-
zation. LSH-based systems are therefore less suited to store
very large databases in main memory.

Lookup tables in SIMD registers. Implementation of era-
sure correcting codes, used to provide reliable storage, relies
on cache-resident lookup tables. Authors have proposed to
shrink these tables and store them into SIMD registers [22,
17]. This allowed a dramatic improvement in throughput
over previous approaches. These lookup tables are used to
implement associative finite field arithmetic, and these as-
sociativity properties can be used to shrink lookup tables.
In PQ Scan, distance computations are not associative, so
we developed other techniques to shrink lookup tables.

Fast query processing. Operating directly on compressed
data (or compact representations), like in PQ Fast Scan,
has been shown to speed up query processing in other sce-
narios [3, 25]. Besides, the use of SIMD to speed up query
processing in databases [6] has been widely studied. In par-
ticular, SIMD has been used to sort data [7] and perform
relational joins [5, 16]. The specificity of our work is to focus
on use of SIMD to speed up algorithms relying on lookup
tables, such as PQ Scan.



8. CONCLUSION

In this paper, we presented PQ Fast Scan, a novel al-
gorithm for ANN search that is able to check over a bil-
lion candidate vectors per second on a single core. PQ Fast
Scan builds on product quantization, a recently introduced
and increasingly popular method for ANN search in high-
dimensional spaces. PQ Fast Scan design stems from a thor-
ough analysis of the limitations of PQ Scan, the original
algorithm for product quantization based ANN search.

An important feature of PQ Scan is that it relies on L1-
cache resident lookup tables to compute distances. Although
using cache resident lookup tables is generally seen as suf-
ficient for efficiency, we demonstrated that storing lookup
tables in SIMD registers allows achieving significantly lower
query response time. Qur main contribution lies in the de-
sign of techniques to turn cache-resident lookup tables into
small tables, sized to fit SIMD registers. Use of these small
tables allow PQ Fast Scan to perform 4-6 times faster than
PQ Scan, thus advancing the state of art in high-dimensional
ANN search.
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