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Product quantization for nearest neighbor search
Hervé Jégou, Matthijs Douze, Cordelia Schmid

Abstract— This paper introduces a product quantization
based approach for approximate nearest neighbor search.
The idea is to decomposes the space into a Cartesian
product of low dimensional subspaces and to quantize each
subspace separately. A vector is represented by a short
code composed of its subspace quantization indices. The
Euclidean distance between two vectors can be efficiently
estimated from their codes. An asymmetric version in-
creases precision, as it computes the approximate distance
between a vector and a code.

Experimental results show that our approach searches
for nearest neighbors efficiently, in particular in combi-
nation with an inverted file system. Results for SIFT and
GIST image descriptors show excellent search accuracy
outperforming three state-of-the-art approaches. The scal-
ability of our approach is validated on a dataset of two
billion vectors.

Index Terms— High-dimensional indexing, image index-
ing, very large databases, approximate search.

I. INTRODUCTION

Computing Euclidean distances between high dimen-
sional vectors is a fundamental requirement in many
applications. It is used, in particular, for nearest neigh-
bor (NN) search. Nearest neighbor search is inherently
expensive due to the curse of dimensionality [3], [4].
Focusing on the D-dimensional Euclidean space RD,
the problem is to find the element NN(x), in a finite
set Y ⊂ RD of n vectors, minimizing the distance to the
query vector x ∈ RD:

NN(x) = argmin
y∈Y

d(x, y). (1)

Several multi-dimensional indexing methods, such as
the popular KD-tree [5] or other branch and bound
techniques, have been proposed to reduce the search
time. However, for high dimensions it turns out [6] that
such approaches are not more efficient than the brute-
force exhaustive distance calculation, whose complexity
is O(nD).

There is a large body of literature [7], [8], [9] on
algorithms that overcome this issue by performing ap-
proximate nearest neighbor (ANN) search. The key idea

This work was partly realized as part of the Quaero Programme,
funded by OSEO, French State agency for innovation. It was orig-
inally published as a technical report [1] in August 2009. It is also
related to the work [2] on source coding for nearest neighbor search.

shared by these algorithms is to find the NN with
high probability “only”, instead of probability 1. Most
of the effort has been devoted to the Euclidean dis-
tance, though recent generalizations have been proposed
for other metrics [10]. In this paper, we consider the
Euclidean distance, which is relevant for many appli-
cations. In this case, one of the most popular ANN
algorithms is the Euclidean Locality-Sensitive Hashing
(E2LSH) [7], [11], which provides theoretical guarantees
on the search quality with limited assumptions. It has
been successfully used for local descriptors [12] and
3D object indexing [13], [11]. However, for real data,
LSH is outperformed by heuristic methods, which exploit
the distribution of the vectors. These methods include
randomized KD-trees [14] and hierarchical k-means [15],
both of which are implemented in the FLANN selection
algorithm [9].

ANN algorithms are typically compared based on the
trade-off between search quality and efficiency. However,
this trade-off does not take into account the memory
requirements of the indexing structure. In the case of
E2LSH, the memory usage may even be higher than
that of the original vectors. Moreover, both E2LSH and
FLANN need to perform a final re-ranking step based on
exact L2 distances, which requires the indexed vectors to
be stored in main memory if access speed is important.
This constraint seriously limits the number of vectors
that can be handled by these algorithms. Only recently,
researchers came up with methods limiting the memory
usage. This is a key criterion for problems involving
large amounts of data [16], i.e., in large-scale scene
recognition [17], where millions to billions of images
have to be indexed. In [17], Torralba et al. represent an
image by a single global GIST descriptor [18] which is
mapped to a short binary code. When no supervision is
used, this mapping is learned such that the neighborhood
in the embedded space defined by the Hamming distance
reflects the neighborhood in the Euclidean space of the
original features. The search of the Euclidean nearest
neighbors is then approximated by the search of the
nearest neighbors in terms of Hamming distances be-
tween codes. In [19], spectral hashing (SH) is shown to
outperform the binary codes generated by the restricted
Boltzmann machine [17], boosting and LSH. Similarly,
the Hamming embedding method of Jegou et al. [20],
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[21] uses a binary signature to refine quantized SIFT
or GIST descriptors in a bag-of-features image search
framework.

In this paper, we construct short codes using quanti-
zation. The goal is to estimate distances using vector-
to-centroid distances, i.e., the query vector is not quan-
tized, codes are assigned to the database vectors only.
This reduces the quantization noise and subsequently
improves the search quality. To obtain precise distances,
the quantization error must be limited. Therefore, the
total number k of centroids should be sufficiently large,
e.g., k = 264 for 64-bit codes. This raises several issues
on how to learn the codebook and assign a vector. First,
the number of samples required to learn the quantizer
is huge, i.e., several times k. Second, the complexity of
the algorithm itself is prohibitive. Finally, the amount of
computer memory available on Earth is not sufficient to
store the floating point values representing the centroids.

The hierarchical k-means see (HKM) improves the
efficiency of the learning stage and of the corresponding
assignment procedure [15]. However, the aforementioned
limitations still apply, in particular with respect to mem-
ory usage and size of the learning set. Another possibility
are scalar quantizers, but they offer poor quantization er-
ror properties in terms of the trade-off between memory
and reconstruction error. Lattice quantizers offer better
quantization properties for uniform vector distributions,
but this condition is rarely satisfied by real world vectors.
In practice, these quantizers perform significantly worse
than k-means in indexing tasks [22]. In this paper, we
focus on product quantizers. To our knowledge, such a
semi-structured quantizer has never been considered in
any nearest neighbor search method.

The advantages of our method are twofold. First, the
number of possible distances is significantly higher than
for competing Hamming embedding methods [20], [17],
[19], as the Hamming space used in these techniques
allows for a few distinct distances only. Second, as a
byproduct of the method, we get an estimation of the
expected squared distance, which is required for ε-radius
search or for using Lowe’s distance ratio criterion [23].
The motivation of using the Hamming space in [20],
[17], [19] is to compute distances efficiently. Note, how-
ever, that one of the fastest ways to compute Hamming
distances consists in using table lookups. Our method
uses a similar number of table lookups, resulting in
comparable efficiency.

An exhaustive comparison of the query vector with all
codes is prohibitive for very large datasets. We, therefore,
introduce a modified inverted file structure to rapidly
access the most relevant vectors. A coarse quantizer
is used to implement this inverted file structure, where

vectors corresponding to a cluster (index) are stored in
the associated list. The vectors in the list are represented
by short codes, computed by our product quantizer,
which is used here to encode the residual vector with
respect to the cluster center.

The interest of our method is validated on two
kinds of vectors, namely local SIFT [23] and global
GIST [18] descriptors. A comparison with the state of
the art shows that our approach outperforms existing
techniques, in particular spectral hashing [19], Hamming
embedding [20] and FLANN [9].

Our paper is organized as follows. Section II intro-
duces the notations for quantization as well as the prod-
uct quantizer used by our method. Section III presents
our approach for NN search and Section IV introduces
the structure used to avoid exhaustive search. An evalua-
tion of the parameters of our approach and a comparison
with the state of the art is given in Section V.

II. BACKGROUND: QUANTIZATION, PRODUCT

QUANTIZER

A large body of literature is available on vector
quantization, see [24] for a survey. In this section, we
restrict our presentation to the notations and concepts
used in the rest of the paper.

A. Vector quantization

Quantization is a destructive process which has been
extensively studied in information theory [24]. Its pur-
pose is to reduce the cardinality of the representation
space, in particular when the input data is real-valued.
Formally, a quantizer is a function q mapping a D-
dimensional vector x ∈ RD to a vector q(x) ∈ C =
{ci; i ∈ I}, where the index set I is from now on
assumed to be finite: I = 0 . . . k − 1. The reproduction
values ci are called centroids. The set of reproduction
values C is the codebook of size k.

The set Vi of vectors mapped to a given index i is
referred to as a (Voronoi) cell, and defined as

Vi , {x ∈ RD : q(x) = ci}. (2)

The k cells of a quantizer form a partition of RD. By
definition, all the vectors lying in the same cell Vi are
reconstructed by the same centroid ci. The quality of a
quantizer is usually measured by the mean squared error
between the input vector x and its reproduction value
q(x):

MSE(q) = EX

[
d(q(x), x)2

]
=

∫
p(x) d

(
q(x), x

)2
dx,

(3)
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where d(x, y) = ||x − y|| is the Euclidean distance
between x and y, and where p(x) is the probability
distribution function corresponding the random variable
X . For an arbitrary probability distribution function,
Equation 3 is numerically computed using Monte-Carlo
sampling, as the average of ||q(x) − x||2 on a large set
of samples.

In order for the quantizer to be optimal, it has to
satisfy two properties known as the Lloyd optimality
conditions. First, a vector x must be quantized to its
nearest codebook centroid, in terms of the Euclidean
distance:

q(x) = argmin
ci∈C

d(x, ci). (4)

As a result, the cells are delimited by hyperplanes.
The second Lloyd condition is that the reconstruction
value must be the expectation of the vectors lying in the
Voronoi cell:

ci = EX

[
x|i
]
=

∫
Vi
p(x)x dx. (5)

The Lloyd quantizer, which corresponds to the k-
means clustering algorithm, finds a near-optimal code-
book by iteratively assigning the vectors of a training
set to centroids and re-estimating these centroids from
the assigned vectors. In the following, we assume that
the two Lloyd conditions hold, as we learn the quantizer
using k-means. Note, however, that k-means does only
find a local optimum in terms of quantization error.

Another quantity that will be used in the following
is the mean squared distortion ξ(q, ci) obtained when
reconstructing a vector of a cell Vi by the corresponding
centroid ci. Denoting by pi = P

(
q(x) = ci

)
the

probability that a vector is assigned to the centroid ci, it
is computed as

ξ(q, ci) =
1

pi

∫
Vi
d
(
x, q(x)

)2
p(x) dx. (6)

Note that the MSE can be obtained from these quan-
tities as

MSE(q) =
∑
i∈I

pi ξ(q, ci). (7)

The memory cost of storing the index value, without
any further processing (entropy coding), is dlog2 ke bits.
Therefore, it is convenient to use a power of two for
k, as the code produced by the quantizer is stored in a
binary memory.

B. Product quantizers

Let us consider a 128-dimensional vector, for example
the SIFT descriptor [23]. A quantizer producing 64-
bits codes, i.e., “only” 0.5 bit per component, contains

k = 264 centroids. Therefore, it is impossible to use
Lloyd’s algorithm or even HKM, as the number of
samples required and the complexity of learning the
quantizer are several times k. It is even impossible to
store the D × k floating point values representing the k
centroids.

Product quantization is an efficient solution to address
these issues. It is a common technique in source coding,
which allows to choose the number of components to be
quantized jointly (for instance, groups of 24 components
can be quantized using the powerful Leech lattice). The
input vector x is split into m distinct subvectors uj , 1 ≤
j ≤ m of dimension D∗ = D/m, where D is a multiple
of m. The subvectors are quantized separately using m
distinct quantizers. A given vector x is therefore mapped
as follows:

x1, ..., xD∗︸ ︷︷ ︸
u1(x)

, ..., xD−D∗+1, ..., xD︸ ︷︷ ︸
um(x)

→ q1
(
u1(x)), ..., qm(um(x)

)
,

(8)
where qj is a low-complexity quantizer associated with
the jth subvector. With the subquantizer qj we associate
the index set Ij , the codebook Cj and the corresponding
reproduction values cj,i.

A reproduction value of the product quantizer is
identified by an element of the product index set I =
I1× . . .×Im. The codebook is therefore defined as the
Cartesian product

C = C1 × . . .× Cm, (9)

and a centroid of this set is the concatenation of centroids
of the m subquantizers. From now on, we assume that
all subquantizers have the same finite number k∗ of
reproduction values. In that case, the total number of
centroids is given by

k = (k∗)m. (10)

Note that in the extremal case where m = D, the
components of a vector x are all quantized separately.
Then the product quantizer turns out to be a scalar
quantizer, where the quantization function associated
with each component may be different.

The strength of a product quantizer is to produce a
large set of centroids from several small sets of centroids:
those associated with the subquantizers. When learning
the subquantizers using Lloyd’s algorithm, a limited
number of vectors is used, but the codebook is, to some
extent, still adapted to the data distribution to represent.
The complexity of learning the quantizer is m times
the complexity of performing k-means clustering with
k∗ centroids of dimension D∗.
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memory usage assignment complexity
k-means kD kD

HKM bf
bf−1

(k − 1)D lD

product k-means mk∗D∗ = k1/mD mk∗D∗ = k1/mD

TABLE I
MEMORY USAGE OF THE CODEBOOK AND ASSIGNMENT

COMPLEXITY FOR DIFFERENT QUANTIZERS. HKM IS

PARAMETRIZED BY TREE HEIGHT l AND THE BRANCHING FACTOR

bf .

Storing the codebook C explicitly is not efficient.
Instead, we store the m × k∗ centroids of all the sub-
quantizers, i.e., mD∗ k∗ = k∗D floating points values.
Quantizing an element requires k∗D floating point op-
erations. Table I summarizes the resource requirements
associated with k-means, HKM and product k-means.
The product quantizer is clearly the the only one that
can be indexed in memory for large values of k.

In order to provide good quantization properties when
choosing a constant value of k∗, each subvector should
have, on average, a comparable energy. One way to
ensure this property is to multiply the vector by a random
orthogonal matrix prior to quantization. However, for
most vector types this is not required and not recom-
mended, as consecutive components are often correlated
by construction and are better quantized together with the
same subquantizer. As the subspaces are orthogonal, the
squared distortion associated with the product quantizer
is

MSE(q) =
∑
j

MSE(qj), (11)

where MSE(qj) is the distortion associated with quan-
tizer qj . Figure 1 shows the MSE as a function of the
code length for different (m,k∗) tuples, where the code
length is l = m log2 k

∗, if k∗ is a power of two. The
curves are obtained for a set of 128-dimensional SIFT
descriptors, see section V for details. One can observe
that for a fixed number of bits, it is better to use a
small number of subquantizers with many centroids than
having many subquantizers with few bits. At the extreme
when m = 1, the product quantizer becomes a regular
k-means codebook.

High values of k∗ increase the computational cost of
the quantizer, as shown by Table I. They also increase the
memory usage of storing the centroids (k∗ ×D floating
point values), which further reduces the efficiency if
the centroid look-up table does no longer fit in cache
memory. In the case where m = 1, we can not afford
using more than 16 bits to keep this cost tractable. Using
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Fig. 1. SIFT: quantization error associated with the parameters m
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symmetric case asymmetric case
Fig. 2. Illustration of the symmetric and asymmetric distance
computation. The distance d(x, y) is estimated with either the dis-
tance d(q(x), q(y)) (left) or the distance d(x, q(y)) (right). The
mean squared error on the distance is on average bounded by the
quantization error.

k∗ = 256 and m = 8 is often a reasonable choice.

III. SEARCHING WITH QUANTIZATION

Nearest neighbor search depends on the distances
between the query vector and the database vectors, or
equivalently the squared distances. The method intro-
duced in this section compares the vectors based on
their quantization indices, in the spirit of source coding
techniques. We first explain how the product quantizer
properties are used to compute the distances. Then we
provide a statistical bound on the distance estimation
error, and propose a refined estimator for the squared
Euclidean distance.

A. Computing distances using quantized codes

Let us consider the query vector x and a database
vector y. We propose two methods to compute an
approximate Euclidean distance between these vectors,
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a symmetric and a asymmetric one. See Figure 2 for an
illustration.

Symmetric distance computation (SDC): both the vec-
tors x and y are represented by their respective centroids
q(x) and q(y). The distance d(x, y) is approximated by
the distance d̂(x, y) , d

(
q(x), q(y)

)
which is efficiently

obtained using a product quantizer

d̂(x, y) = d
(
q(x), q(y)

)
=

√∑
j

d
(
qj(x), qj(y)

)2
,

(12)
where the distance d

(
cj,i, cj,i′

)2 is read from a look-up
table associated with the jth subquantizer. Each look-up
table contains all the squared distances between pairs
of centroids (i, i′) of the subquantizer, or (k∗)2 squared
distances1.

Asymmetric distance computation (ADC): the
database vector y is represented by q(y), but the query
x is not encoded. The distance d(x, y) is approximated
by the distance d̃(x, y) , d

(
x, q(y)

)
, which is computed

using the decomposition

d̃(x, y) = d
(
x, q(y)

)
=

√∑
j

d
(
uj(x), qj(uj(y))

)2
,

(13)
where the squared distances d

(
uj(x), cj,i

)2
: j =

1 . . .m, i = 1 . . . k∗, are computed prior to the search.
For nearest neighbors search, we do not compute

the square roots in practice: the square root function
is monotonically increasing and the squared distances
produces the same vector ranking.

Table II summarizes the complexity of the different
steps involved in searching the k nearest neighbors of a
vector x in a dataset Y of n = |Y| vectors. One can see
that SDC and ADC have the same query preparation cost,
which does not depend on the dataset size n. When n
is large (n > k∗D∗), the most consuming operations are
the summations in Equations 12 and 13. The complexity
given in this table for searching the k smallest elements
is the average complexity for n � k and when the
elements are arbitrarily ordered ([25], Section 5.3.3,
Equation 17).

The only advantage of SDC over ADC is to limit
the memory usage associated with the queries, as the
query vector is defined by a code. This is most cases
not relevant and one should then use the asymmetric
version, which obtains a lower distance distortion for a

1In fact, it is possible to store only k∗ (k∗ − 1)/2 pre-computed
squared distances, because this distance matrix is symmetric and the
diagonal elements are zeros.

SDC ADC

encoding x k∗D 0
compute d

(
uj(x), cj,i

)
0 k∗D

for y ∈ Y , compute d̂(x, y) or d̃(x, y) nm nm

find the k smallest distances n+ k log k log log n

TABLE II
ALGORITHM AND COMPUTATIONAL COSTS ASSOCIATED WITH

SEARCHING THE k NEAREST NEIGHBORS USING THE PRODUCT

QUANTIZER FOR SYMMETRIC AND ASYMMETRIC DISTANCE

COMPUTATIONS (SDC, ADC).

similar complexity. We will focus on ADC in the rest of
this section.

B. Analysis of the distance error

In this subsection, we analyze the distance error when
using d̃(x, y) instead of d(x, y). This analysis does not
depend on the use of a product quantizer and is valid for
any quantizer satisfying Lloyd’s optimality conditions
defined by Equations 4 and 5 in Section II.

In the spirit of the mean squared error criterion used
for reconstruction, the distance distortion is measured
by the mean squared distance error (MSDE) on the
distances:

MSDE(q) ,
∫∫ (

d(x, y)− d̃(x, y)
)2
p(x)dx p(y)dy.

(14)
The triangular inequality gives

d
(
x, q(y)

)
−d
(
y, q(y)

)
≤ d(x, y) ≤ d

(
x, q(y)

)
+d
(
y, q(y)

)
,

(15)
and, equivalently,(

d(x, y)− d(x, q(y))
)2
≤ d
(
y, q(y)

)2
. (16)

Combining this inequality with Equation 14, we obtain

MSDE(q) ≤
∫
p(x)

(∫
d
(
y, q(y)

)2
p(y) dy

)
dx (17)

≤ MSE(q). (18)

where MSE(q) is the mean squared error associated with
quantizer q (Equation 3). This inequality, which holds
for any quantizer, shows that the distance error of our
method is statistically bounded by the MSE associated
with the quantizer. For the symmetric version, a similar
derivation shows that the error is statistically bounded
by 2×MSE(q). It is, therefore, worth minimizing the
quantization error, as this criterion provides a statistical
upper bound on the distance error. If an exact distance
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Fig. 3. Typical query of a SIFT vector in a set of 1000 vectors:
comparison of the distance d(x, y) obtained with the SDC and ADC
estimators. We have used m = 8 and k∗ = 256, i.e., 64-bit code
vectors. Best viewed in color.

calculation is performed on the highest ranked vectors,
as done in LSH [7], the quantization error can be used
(instead of selecting an arbitrary set of elements) as
a criterion to dynamically select the set of vectors on
which the post-processing should be applied.

C. Estimator of the squared distance

As shown later in this subsection, using the estima-
tions d̂ or d̃ leads to underestimate, on average, the dis-
tance between descriptors. Figure 3 shows the distances
obtained when querying a SIFT descriptor in a dataset of
1000 SIFT vectors. It compares the true distance against
the estimates computed with Equations 12 and 13. One
can clearly see the bias on these distance estimators.
Unsurprisingly, the symmetric version is more sensitive
to this bias.

Hereafter, we compute the expectation of the squared
distance in order to cancel the bias. The approximation
q(y) of a given vector y is obtained, in the case of
the product quantizer, from the subquantizers indexes
qj
(
uj(y)

)
, j = 1 . . .m. The quantization index identifies

the cells Vi in which y lies. We can then compute the
expected squared distance ẽ

(
x, q(y)

)
between x, which

is fully known in our asymmetric distance computation
method, and a random variable Y , subject to q(Y ) =
q(y) = ci, which represents all the hypothesis on y

knowing its quantization index.

ẽ(x, y) , EY

[
(x− Y )2|q(Y ) = ci

]
(19)

=

∫
Vi
(x− y)2 p(y|i) dy, (20)

=
1

pi

∫
Vi
(x− ci + ci − y)2 p(y) dy. (21)

Developing the squared expression and observing,
using Lloyd’s condition of Equation 5, that∫

Vi
(y − ci) p(y) dy = 0, (22)

Equation 21 simplifies to

ẽ(x, y) =
(
x− q(y)

)2
+

∫
Vi
(x− y)2 p

(
y|q(y) = ci

)
dy

(23)

= d̃(x, y)2 + ξ
(
q, q(y)

)
(24)

where we recognize the distortion ξ
(
q, q(y)

)
associated

with the reconstruction of y by its reproduction value.
Using the product quantizer and Equation 24, the

computation of the expected squared distance between
a vector x and the vector y, for which we only know
the quantization indices qj

(
uj(y)

)
, consists in correcting

Equation 13 as

ẽ(x, y) = d̃(x, y)2 +
∑
j

ξj(y) (25)

where the correcting term, i.e., the average distortion

ξj(y) , ξ
(
qj , qj

(
uj(y)

))
(26)

associated with quantizing uj(y) to qj(y) using the jth

subquantizer, is learned and stored in a look-up table for
all indexes of Ij .

Performing a similar derivation for the symmetric
version, i.e., when both x and y are encoded using
the product quantizer, we obtain the following corrected
version of the symmetric squared distance estimator:

ê(x, y) = d̂(x, y)2 +
∑
j

ξj(x) +
∑
j′

ξj′(y). (27)

Discussion: Figure 4 illustrates the probability distribu-
tion function of the difference between the true distance
and the ones estimated by Equations 13 and 25. It
has been measured on a large set of SIFT descriptors.
The bias of the distance estimation by Equation 13 is
significantly reduced in the corrected version. However,
we observe that correcting the bias leads, in this case,
to a higher variance of the estimator, which is a com-
mon phenomenon in statistics. Moreover, for the nearest
neighbors, the correcting term is likely to be higher
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Fig. 4. PDF of the error on the distance estimation d − d̃ for
the asymmetric method, evaluated on a set of 10000 SIFT vectors
with m = 8 and k∗ = 256. The bias (=-0.044) of the estimator
d̃ is corrected (=0.002) with the error quantization term ξ

(
q, q(y)

)
.

However, the variance of the error increases with this correction:
σ2(d− ẽ) = 0.00155 whereas σ2(d− d̃) = 0.00146.

than the measure of Equation 13, which means that
we penalize the vectors with rare indexes. Note that
the correcting term is independent of the query in the
asymmetric version.

In our experiments, we observe that the correction re-
turns inferior results on average. Therefore, we advocate
the use of Equation 13 for the nearest neighbor search.
The corrected version is useful only if we are interested
in the distances themselves.

IV. NON EXHAUSTIVE SEARCH

Approximate nearest neighbor search with product
quantizers is fast (only m additions are required per dis-
tance calculation) and reduces significantly the memory
requirements for storing the descriptors. Nevertheless,
the search is exhaustive. The method remains scalable
in the context of a global image description [17], [19].
However, if each image is described by a set of local
descriptors, an exhaustive search is prohibitive, as we
need to index billions of descriptors and to perform
multiple queries [20].

To avoid exhaustive search we combine an inverted
file system [26] with the asymmetric distance computa-
tion (IVFADC). An inverted file quantizes the descriptors
and stores image indices in the corresponding lists, see
the step “coarse quantizer” in Figure 5. This allows
rapid access to a small fraction of image indices and
was shown successful for very large scale search [26].
Instead of storing an image index only, we add a small
code for each descriptor, as first done in [20]. Here,
we encode the difference between the vector and its

corresponding coarse centroid with a product quantizer,
see Figure 5. This approach significantly accelerates the
search at the cost of a few additional bits/bytes per
descriptor. Furthermore, it slightly improves the search
accuracy, as encoding the residual is more precise than
encoding the vector itself.

A. Coarse quantizer, locally defined product quantizer

Similar to the “Video-Google” approach [26], a code-
book is learned using k-means, producing a quantizer qc,
referred to as the coarse quantizer in the following. For
SIFT descriptors, the number k′ of centroids associated
with qc typically ranges from k′ = 1000 to k′ =
1000 000. It is therefore small compared to that of the
product quantizers used in Section III.

In addition to the coarse quantizer, we adopt a strategy
similar to that proposed in [20], i.e., the description of
a vector is refined by a code obtained with a product
quantizer. However, in order to take into account the
information provided by the coarse quantizer, i.e., the
centroid qc(y) associated with a vector y, the product
quantizer qp is used to encode the residual vector

r(y) = y − qc(y), (28)

corresponding to the offset in the Voronoi cell. The
energy of the residual vector is small compared to that
of the vector itself. The vector is approximated by

ÿ , qc(y) + qp
(
y − qc(y)

)
. (29)

It is represented by the tuple
(
qc(y), qp(r(y))

)
. By

analogy with the binary representation of a value, the
coarse quantizer provides the most significant bits, while
the product quantizer code corresponds to the least
significant bits.

The estimator of d(x, y), where x is the query and y
the database vector, is computed as the distance d̈(x, y)
between x and ÿ:

d̈(x, y) = d(x, ÿ) = d
(
x− qc(y), qp

(
y − qc(y)

))
. (30)

Denoting by qpj the jth subquantizer, we use the
following decomposition to compute this estimator ef-
ficiently:

d̈(x, y)2 =
∑
j

d
(
uj
(
x− qc(y)

)
, qpj

(
uj(y − qc(y))

))2
.

(31)
Similar to the ADC strategy, for each subquantizer qpj
the distances between the partial residual vector uj

(
x−

qc(y)
)

and all the centroids cj,i of qpj are preliminarily
computed and stored.
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The product quantizer is learned on a set of residual
vectors collected from a learning set. Although the
vectors are quantized to different indexes by the coarse
quantizer, the resulting residual vectors are used to learn
a unique product quantizer. We assume that the same
product quantizer is accurate when the distribution of the
residual is marginalized over all the Voronoi cells. This
probably gives inferior results to the approach consisting
of learning and using a distinct product quantizer per
Voronoi cell. However, this would be computationally
expensive and would require storing k′ product quantizer
codebooks, i.e., k′×d×k∗ floating points values, which
would be memory-intractable for common values of k′.

B. Indexing structure

We use the coarse quantizer to implement an inverted
file structure as an array of lists L1 . . .Lk′ . If Y is the
vector dataset to index, the list Li associated with the
centroid ci of qc stores the set {y ∈ Y : qc(y) = ci}.

In inverted list Li, an entry corresponding to y
contains a vector identifier and the encoded residual
qp(r(y)):

field length (bits)
identifier 8–32
code mdlog2 k∗e

The identifier field is the overhead due to the inverted
file structure. Depending on the nature of the vectors
to be stored, the identifier is not necessarily unique.
For instance, to describe images by local descriptors,
image identifiers can replace vector identifiers, i.e., all
vectors of the same image have the same identifier.
Therefore, a 20-bit field is sufficient to identify an
image from a dataset of one million. This memory cost
can be reduced further using index compression [27],
[28], which may reduce the average cost of storing the
identifier to about 8 bits, depending on parameters2. Note
that some geometrical information can also be inserted
in this entry, as proposed in [20] and [27].

C. Search algorithm

The inverted file is the key to the non-exhaustive
version of our method. When searching the nearest
neighbors of a vector x, the inverted file provides a
subset of Y for which distances are estimated: only the
inverted list Li corresponding to qc(x) is scanned.

However, x and its nearest neighbor are often not
quantized to the same centroid, but to nearby ones. To

2An average cost of 11 bits is reported in [27] using delta encoding
and Huffman codes.

Fig. 5. Overview of the inverted file with asymmetric distance
computation (IVFADC) indexing system. Top: insertion of a vector.
Bottom: search.

address this problem, we use the multiple assignment
strategy of [29]. The query x is assigned to w indexes
instead of only one, which correspond to the w nearest
neighbors of x in the codebook of qc. All the correspond-
ing inverted lists are scanned. Multiple assignment is not
applied to database vectors, as this would increase the
memory usage.

Figure 5 gives an overview of how a database is
indexed and searched.

Indexing a vector y proceeds as follows:
1) quantize y to qc(y)

2) compute the residual r(y) = y − qc(y)

3) quantize r(y) to qp(r(y)), which, for the product
quantizer, amounts to assigning uj(y) to qj(uj(y)),
for j = 1 . . .m.

4) add a new entry to the inverted list corresponding
to qc(y). It contains the vector (or image) identi-
fier and the binary code (the product quantizer’s
indexes).

Searching the nearest neighbor(s) of a query x consists
of

1) quantize x to its w nearest neighbors in the code-
book qc;

For the sake of presentation, in the two next steps
we simply denote by r(x) the residuals associated
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with these w assignments. The two steps are ap-
plied to all w assignments.

2) compute the squared distance d
(
uj(r(x)), cj,i

)2
for each subquantizer j and each of its centroids
cj,i;

3) compute the squared distance between r(x) and
all the indexed vectors of the inverted list. Using
the subvector-to-centroid distances computed in
the previous step, this consists in summing up m
looked-up values, see Equation 31;

4) select the K nearest neighbors of x based on
the estimated distances. This is implemented ef-
ficiently by maintaining a Maxheap structure of
fixed capacity, that stores the K smallest values
seen so far. After each distance calculation, the
point identifier is added to the structure only if
its distance is below the largest distance in the
Maxheap.

Only Step 3 depends on the database size. Com-
pared with ADC, the additional step of quantizing x
to qc(x) consists in computing k′ distances between D-
dimensional vectors. Assuming that the inverted lists are
balanced, about n × w/k′ entries have to be parsed.
Therefore, the search is significantly faster than ADC,
as shown in the next section.

V. EVALUATION OF NN SEARCH

In this section, we first present the datasets used
for the evaluation3. We then analyze the impact of
the parameters for SDC, ADC and IVFADC. Our ap-
proach is compared to three state-of-the-art methods:
spectral hashing [19], Hamming embedding [20] and
FLANN [9]. Finally, we evaluate the complexity and
speed of our approach.

A. Datasets

We perform our experiments on two datasets, one
with local SIFT descriptors [23] and the other with
global color GIST descriptors [18]. We have three vector
subsets per dataset: learning, database and query. Both
datasets were constructed using publicly available data
and software. For the SIFT descriptors, the learning set is
extracted from Flickr images and the database and query
descriptors are from the INRIA Holidays images [20].
For GIST, the learning set consists of the first 100k
images extracted from the tiny image set of [16]. The
database set is the Holidays image set combined with

3Both the software and the data used in these experiments are
available at http://www.irisa.fr/texmex/people/jegou/ann.php.

Flickr1M used in [20]. The query vectors are from
the Holidays image queries. Table III summarizes the
number of descriptors extracted for the two datasets.

vector dataset: SIFT GIST
descriptor dimensionality d 128 960
learning set size 100,000 100,000
database set size 1,000,000 1,000,991
queries set size 10,000 500

TABLE III
SUMMARY OF THE SIFT AND GIST DATASETS.

The search quality is measured with recall@R, i.e.,
the proportion of query vectors for which the nearest
neighbor is ranked in the first R positions. This measure
indicates the fraction of queries for which the nearest
neighbor is retrieved correctly, if a short-list of R vectors
is verified using Euclidean distances. Furthermore, the
curve obtained by varying R corresponds to the distribu-
tion function of the ranks, and the point R=1 corresponds
to the “precision” measure used in [9] to evaluate ANN
methods.

In practice, we are often interested in retrieving the
K nearest neighbors (K > 1) and not only the nearest
neighbor. We do not include these measures in the paper,
as we observed that the conclusions for K=1 remain
valid for K > 1.

B. Memory vs search accuracy: trade-offs

The product quantizer is parametrized by the number
of subvectors m and the number of quantizers per
subvector k∗, producing a code of length m × log2 k

∗.
Figure 6 shows the trade-off between code length and
search quality for our SIFT descriptor dataset. The
quality is measured for recall@100 for the ADC and
SDC estimators, for m ∈ {1, 2, 4, 8, 16} and k∗ ∈
{24, 26, 28, 210, 212}. As for the quantizer distortion in
Figure 1, one can observe that for a fixed number of bits,
it is better to use a small number of subquantizers with
many centroids than to have many subquantizers with
few bits. However, the comparison also reveals that MSE
underestimates, for a fixed number of bits, the quality
obtained for a large number of subquantizers against
using more centroids per quantizer.

As expected, the asymmetric estimator ADC sig-
nificantly outperforms SDC. For m=8 we obtain the
same accuracy for ADC and k∗=64 as for SDC and
k∗=256. Given that the efficiency of the two approaches
is equivalent, we advocate not to quantize the query
when possible, but only the database elements.
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Figure 7 evaluates the impact of the parameters for
the IVFADC method introduced in Section IV. For this
approach, we have, in addition, to set the codebook
size k′ and the number of neighboring cells w visited
during the multiple assignment. We observe that the
recall@100 strongly depends on these parameters, and
that increasing the code length is useless if w is not big
enough, as the nearest neighbors which are not assigned
to one of the w centroids associated with the query are
definitely lost.

This approach is significantly more efficient than SDC
and ADC on large datasets, as it only compares the query
to a small fraction of the database vectors. The propor-
tion of the dataset to visit is roughly linear in w/k′. For
a fixed proportion, it is worth using higher values of k′,
as this increases the accuracy, as shown by comparing,
for the tuple (m,w), the parameters (1024, 1) against
(8192, 8) and (1024, 8) against (8192, 64).

C. Impact of the component grouping

The product quantizer defined in Section II creates
the subvectors by splitting the input vector according to
the order of the components. However, vectors such as
SIFT and GIST descriptors are structured because they
are built as concatenated orientation histograms. Each
histogram is computed on grid cells of an image patch.
Using a product quantizer, the bins of a histogram may
end up in different quantization groups.

The natural order corresponds to grouping consecu-
tive components, as proposed in Equation 8. For the SIFT
descriptor, this means that histograms of neighboring
grid cells are quantized together. GIST descriptors are
composed of three 320-dimension blocks, one per color
channel. The product quantizer splits these blocks into
parts.

SIFT GIST
m 4 8 8
natural 0.593 0.921 0.338
random 0.501 0.859 0.286
structured 0.640 0.905 0.652

TABLE IV
IMPACT OF THE DIMENSION GROUPING ON THE RETRIEVAL

PERFORMANCE OF ADC (RECALL@100, k∗=256).

To evaluate the influence of the grouping, we modify
the uj operators in Equation 8, and measure the impact
of their construction on the performance of the ADC
method. Table IV shows the effect on the search quality,
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measured by recall@100. The analysis is restricted to
the parameters k∗=256 and m ∈ {4, 8}.

Overall, the choice of the components appears to have
a significant impact of the results. Using a random order
instead of the natural order leads to poor results. This
is true even for GIST, for which the natural order is
somewhat arbitrary.

The “structured” order consists in grouping together
dimensions that are related. For the m = 4 SIFT quan-
tizer, this means that the 4×4 patch cells that make up the
descriptor [23] are grouped into 4 2× 2 blocks. For the
other two, it groups together dimensions that have have
the same index modulo 8. The orientation histograms of
SIFT and most of GIST’s have 8 bins, so this ordering
quantizes together bins corresponding to the same orien-
tation. On SIFT descriptors, this is a slightly less efficient
structure, probably because the natural order corresponds
to spatially related components. On GIST, this choice
significantly improves the performance. Therefore, we
use this ordering in the following experiments.

Discussion: A method that automatically groups the
components could further improve the results. This
seems particularly important if we have no prior knowl-
edge about the relationship between the components
as in the case of bag-of-features. A possible solution
is the minimum sum-squared residue co-clustering [30]
algorithm.

D. Comparison with the state of the art

Comparison with Hamming embedding methods: We
compare our approach to spectral hashing (SH) [19],
which maps vectors to binary signatures. The search
consists in comparing the Hamming distances between
the database signatures and the query vector signature.
This approach was shown to outperform the restricted
Boltzmann machine of [17]. We have used the publicly
available code. We also compare to the Hamming em-
bedding (HE) method of [20], which also maps vectors
to binary signatures. Similar to IVFADC, HE uses an
inverted file, which avoids comparing to all the database
elements.

Figures 8 and 9 show, respectively for the SIFT and
the GIST datasets, the rank repartition of the nearest
neighbors when using a signature of size 64 bits. For our
product quantizer we have used m = 8 and k∗ = 256,
which give similar results in terms of run time. All our
approaches significantly outperform spectral hashing4 on

4In defense of [17], [19], which can be learned for arbitrary
distance measures, our approach is adapted to the Euclidean distance
only.
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the two datasets. To achieve the same recall as spectral
hashing, ADC returns an order of magnitude less vectors.

The best results are obtained by IVFADC, which for
low ranks provides an improvement over ADC, and
significantly outperforms spectral hashing. This strategy
avoids the exhaustive search and is therefore much
faster, as discussed in the next subsection. This partial
scan explains why the IVFADC and HE curves stop at
some point, as only a fraction of the database vectors
are ranked. Comparing these two approaches, HE is
significantly outperformed by IVFADC. The results of
HE are similar to spectral hashing, but HE is more
efficient.
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Comparison with FLANN: The approximate nearest-
neighbor search technique of Muja & Lowe [9] is based
on hierarchical structures (KD-trees and hierarchical k-
means trees). The software package FLANN automat-
ically selects the best algorithm and parameters for a
given dataset. In contrast with our method and spectral
hashing, all vectors need to remain in RAM as the
method includes a re-ranking stage that computes the
real distances for the candidate nearest neighbors.

The evaluation is performed on the SIFT dataset by
measuring the 1-recall@1, that is, the average proportion
of true NNs ranked first in the returned vectors. This
measure is referred to as precision in [9].

For the sake of comparison with FLANN, we added
a verification stage to our IVFADC method: IVFADC
queries return a shortlist of R candidate nearest neigh-
bors using the distance estimation. The vectors in the
shortlist are re-ordered using the real distance, as done
in [7], [9], and the closest one is returned. Note that, in
this experimental setup, all the vectors are stored in main
memory. This requirement seriously limits the scale on
which re-ordering can be used.

The IVFADC and FLANN methods are both evaluated
at different operating points with respect to precision and
search time. For FLANN, the different operating points
are obtained with parameters generated automatically for
various target precisions. For IVFADC, they are obtained
by varying the number k′ of coarse centroids, the number
w of assignments and the short-list size R. The product
quantizer is generated using k∗=256 and m=8, i.e., 64-
bit codes. This choice is probably not optimal for all
operating points.

Figure 10 shows that the results obtained by IVFADC
are better than those of FLANN for a large range of
operating points. Moreover, our method has a much
smaller memory footprint than FLANN: the indexing
structure occupies less than 25 MB, while FLANN
requires more than 250 MB of RAM. Note, however, that
both are negligible compared to the memory occupied
by the vectors in the case of large datasets. On such
a scale, the re-ranking stage is not feasible and only
memory-aware approaches (HE, SH and our methods)
can be used.

E. Complexity and speed

Table V reports the search time of our methods.
For reference, we report the results obtained with the
spectral hashing algorithm of [19] on the same dataset
and machine (using only one core). Since we use a
separate learning set, we use the out-of-sample evalu-
ation of this algorithm. Note that for SH we have re-
implemented the Hamming distance computation in C
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in order to have the approaches similarly optimized.
The algorithms SDC, ADC and SH have similar run
times. IVFADC significantly improves the performance
by avoiding an exhaustive search. Higher values of k′

yield higher search efficiencies for large datasets, as the
search benefits from parsing a smaller fraction of the
memory. However, for small datasets, the complexity of
the coarse quantizer may be the bottleneck if k′ ×D >
n/k′ when using a exhaustive assignment for qc. In
that case the ADC variant may be preferred. For large
datasets and using an efficient assignment strategy for
the coarse quantizer, higher values of k′ generally lead
to better efficiency, as first shown in [15]. In this work,
the authors propose a hierarchical quantizer to efficiently
assign descriptors to one million centroids.

F. Large-scale experiments

To evaluate the search efficiency of the product quan-
tizer method on larger datasets we extracted about 2
billion SIFT descriptors from one million images. Search
is performed with 30 000 query descriptors from ten
images. We compared the IVFADC and HE methods
with similar parameters. In particular, the amount of
memory that is scanned for each method and the cost
of the coarse quantization are the same.

The query times per descriptor are shown on Fig-
ure 11. The cost of the extra quantization step required
by IVFADC appears clearly for small database sizes.
For larger scales, the distance computation with the
database vectors become preponderant. The processing
that is applied to each element of the inverted lists is
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method parameters search average number of recall@100
time (ms) code comparisons

SDC 16.8 1 000 991 0.446
ADC 17.2 1 000 991 0.652
IVFADC k′= 1 024, w=1 1.5 1 947 0.308

k′= 1 024, w=8 8.8 27 818 0.682
k′= 1 024, w=64 65.9 101 158 0.744
k′= 8 192, w=1 3.8 361 0.240
k′= 8 192, w=8 10.2 2 709 0.516
k′= 8 192, w=64 65.3 19 101 0.610

SH 22.7 1 000 991 0.132

TABLE V
GIST DATASET (500 QUERIES): SEARCH TIMINGS FOR 64-BIT CODES AND DIFFERENT METHODS. WE HAVE USED m=8 AND k∗=256

FOR SDC, ADC AND IVFADC.
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Fig. 11. Search times for SIFT descriptors in datasets of increasing
sizes, with two search methods. Both use the same 20 000-word
codebook, w = 1, and 64-bit signatures.

approximately as expensive in both cases. For HE, it
is a Hamming distance computation, implemented as 8
table lookups. For IVFADC it is a distance computation
that is also performed by 8 table lookups. Interestingly,
the floating point operations involved in IVFADC are not
much more expensive than the simple binary operations
of HE.

G. Image search

We have evaluated our method within an image search
system based on local descriptors. For this evaluation, we
compare our method with the HE method of [20] on the
INRIA Holidays dataset, using the pre-processed set of
descriptors available online. The comparison is focused
on large scale indexing, i.e., we do not consider the im-
pact of a post-verification step [23], [31] or geometrical
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Fig. 12. Comparison of IVFADC and the Hamming Embedding
method of [20]. mAP for the Holidays dataset as function of the
number of distractor images (up to 1 million).

information [20].

Figure 12 shows the search performance in terms of
mean average precision as a function of the size of
the dataset. We have used the same coarse quantizer
(k′=20,000) and a single assignment strategy (w=1) for
both the approaches, and fixed k∗=256 for IVFADC. For
a given number of bits (32 or 64), we have selected the
best choice of the Hamming threshold for HE. Similarly,
we have adjusted the number of nearest neighbors to be
retrieved for IVFADC.

One can observe that the gain obtained by IVFADC is
significant. For example, for one million distractors, the
mAP of 0.497 reported in [20] with 64-bit signatures is
improved to 0.517.
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VI. CONCLUSION

We have introduced product quantization for approx-
imate nearest neighbor search. Our compact coding
scheme provides an accurate approximation of the Eu-
clidean distance. Moreover, it is combined with an in-
verted file system to avoid exhaustive search, resulting in
high efficiency. Our approach significantly outperforms
the state of the art in terms of the trade-off between
search quality and memory usage. Experimental results
for SIFT and GIST image descriptors are excellent and
show that grouping the components based on our prior
knowledge of the descriptor design further improves the
results. The scalability of our approach is validated on a
dataset of two billion vectors.
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