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ABSTRACT
With the increasing amount of data and the need to inte-
grate data from multiple data sources, a challenging issue
is to find near duplicate records efficiently. In this paper,
we focus on efficient algorithms to find pairs of records such
that their similarities are above a given threshold. Several
existing algorithms rely on the prefix filtering principle to
avoid computing similarity values for all possible pairs of
records. We propose new filtering techniques by exploiting
the ordering information; they are integrated into the exist-
ing methods and drastically reduce the candidate sizes and
hence improve the efficiency. Experimental results show that
our proposed algorithms can achieve up to 2.6x–5x speed-up
over previous algorithms on several real datasets and pro-
vide alternative solutions to the near duplicate Web page
detection problem.

Categories andSubjectDescriptors: H.3.3 [Information
Search and Retrieval]: Search Process, Clustering

General Terms: Algorithms, Performance

Keywords: similarity join, near duplicate detection

1. INTRODUCTION
One of the issues accompanying the rapid growth of data

on the Internet and the growing need to integrating data
from heterogeneous sources is the existence of near dupli-
cate data. Near duplicate data bear high similarity to each
other, yet they are not bitwise identical. There are many
causes for the existence of near duplicate data: typograph-
ical errors, versioned, mirrored, or plagiarized documents,
multiple representations of the same physical object, spam
emails generated from the same template, etc. As a concrete
example, a sizeable percentage of the Web pages are found
to be near-duplicates by several studies [6, 14, 18]. These
studies suggest that around 1.7% to 7% of the Web pages
visited by crawlers are near duplicate pages.

Identifying all the near duplicate objects benefits many
applications. For example,

• For Web search engines, identifying near duplicate Web
pages helps to perform focused crawling, increase the qual-
ity and diversity of query results, and identify spams [14,
11, 18].

• Many Web mining applications rely on the ability to accu-
rately and efficiently identify near-duplicate objects. They
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include document clustering [6], finding replicated Web
collections [9], detecting plagiarism [20], community min-
ing in a social network site [25], collaborative filtering [3]
and discovering large dense graphs [15].

A quantitative way to defining that two objects are near
duplicates is to use a similarity function. The similarity
function measures degree of similarity between two objects
and will return a value in [0, 1]. A higher similarity value
indicates that the objects are more similar. Thus we can
treat pairs of objects with high similarity value as near du-
plicates. A similarity join will find all pairs of objects whose
similarities are above a given threshold.

An algorithmic challenge is how to perform the similarity
join in an efficient and scalable way. A näıve algorithm is to
compare every pair of objects, thus bearing a prohibitively
O(n2) time complexity. In view of such high cost, the preva-
lent approach in the past is to solve an approximate version
of the problem, i.e., finding most of, if not all, similar ob-
jects. Several synopsis-based schemes have been proposed
and widely adopted [5, 7, 10].

A recent trend is to investigate algorithms that compute
the similarity join exactly. Recent advances include inverted
index-based methods [24], prefix filtering-based methods [8,
3] and signature-based methods [1]. Among them, the re-
cently proposed All-Pairs algorithm [3] was demonstrated
to be highly efficient and be scalable to tens of millions of
records. Nevertheless, we show that the All-Pairs algorithm,
as well as other prefix filtering-based methods, usually gen-
erates a huge amount of candidate pairs, all of which need
to be verified by the similarity function. Empirical evidence
on several real datasets shows that its candidate size grows
at a fast quadratic rate with the size of the data. Another
inherent problem is that it hinges on the hypothesis that
similar objects are likely to share rare “features” (e.g., rare
words in a collection of documents). This hypothesis might
be weakened for problems with a low similarity threshold or
with a restricted feature domain.

In this paper, we propose new exact similarity join al-
gorithms with application to near duplicate detection. We
propose a positional filtering principle, which exploits the
ordering of tokens in a record and leads to upper bound es-
timates of similarity scores. We show that it is complemen-
tary to the existing prefix filtering method and can work on
tokens both in the prefixes and the suffixes. We conduct
an extensive experimental study using several real datasets,
and demonstrate that the proposed algorithms outperform
previous ones. We also show that the new algorithms can be
adapted or combined with existing approaches to produce re-



sults with better qualities or improve the runtime efficiency
in detecting near duplicate Web pages.

The rest of the paper is organized as follows: Section 2
presents the problem definition and preliminaries. Section 3
summarizes the existing prefix filtering-based approaches.
Sections 4 and 5 give our proposed algorithms that inte-
grate positional filtering method on the prefixes and suffixes
of the records, respectively. Generalization to other com-
monly used similarity measures is presented in Section 6.
We present our experimental results in Section 7. Related
work is covered in Section 8 and Section 9 concludes the
paper.

2. PROBLEM DEFINITION AND PRELIM-
INARIES

2.1 Problem Definition
We define a record as a set of tokens taken from a finite

universe U = {w1, w2, . . . , w|U| }. A similarity function, sim,
returns a similarity value in [0, 1] for two records. Given
a collection of records, a similarity function sim(), and a
similarity threshold t, the similarity join problem is to find
all pairs of records, 〈x, y〉, such that their similarities are no
smaller than the given threshold t, i.e, sim(x, y) ≥ t.

Consider the task of identifying near duplicate Web pages
for example. Each Web page is parsed, cleaned, and trans-
formed into a multiset of tokens: tokens could be stemmed
words, q-grams, or shingles [5]. Since tokens may occur mul-
tiple times in a record, we will convert a multiset of tokens
into a set of tokens by treating each subsequent occurrence
of the same token as a new token [8]. We can evaluate the
similarity of two Web pages as the Jaccard similarity be-
tween their corresponding sets of tokens.

We denote the size of a record x as |x|, which is the num-
ber of tokens in x. The document frequency of a token is the
number of records that contain the token. We can canon-
icalize a record by sorting its tokens according to a global
ordering O defined on U . A document frequency ordering
Odf arranges tokens in U according to the increasing order
of tokens’ document frequencies. A record x can also be
represented as a |U |-dimensional vector, ~x, where xi = 1 if
wi ∈ x and xi = 0 otherwise.

The choice of the similarity function is highly dependent
on the application domain and thus is out of the scope of
this paper. We do consider several widely used similarity
functions. Consider two records x and y,

• Jaccard similarity is defined as J(x, y) = |x∩y|
|x∪y| .

• Cosine similarity is defined as C(x, y) = ~x·~y
‖~x‖·‖~y‖ =

∑
i
xiyi√

|x|·
√

|y|
.

• Overlap similarity is defined as O(x, y) = |x ∩ y|.1

A closely related concept is the notion of distance, which
can be evaluated by a distance function. Intuitively, a pair
of records with high similarity score should have a small
distance between them. The following distance functions
are considered in this work.

• Hamming distance between x and y is defined as the size
of their symmetric difference: H(x, y) = |(x−y)∪(y−x)|.

• Edit distance, also known as Levenshtein distance, mea-
sures the minimum number of edit operations needed to

1For the ease of illustration, we do no normalize the overlap simi-
larity to [0, 1].

transform one string into the other, where an edit oper-
ation is an insertion, deletion, or substitution of a sin-
gle character. It can be calculated via dynamic program-
ming [26].

Note that the above similarity and distance functions are
inter-related. We discuss some important relationships in
Section 2.2, and others in Section 6.

In this paper, we will focus on the Jaccard similarity, a
commonly used function for defining similarity between sets.
Extension of our algorithms to handle other similarity or
distance functions appears in Section 6. Therefore, in the
rest of the paper, sim(x, y) by default denotes J(x, y), unless
otherwise stated.

Example 1. Consider two text document, Dx and Dy as:

Dx =“yes as soon as possible”.

Dy =“as soon as possible please”.

They can be transformed into the following two records

x ={A,B,C,D,E }.
y ={B,C,D,E, F }.

with the following word-to-token mapping table:

Word yes as soon as1 possible please

Token A B C D E F

Doc. Freq. 1 2 2 2 2 1

Note that the second “as” has been transformed into a token
“as1” in both records. Records can be canonicalized according
to the document frequency ordering Odf into the following or-
dered sequences (denoted as [. . .])

x =[A,B,C,D,E ].

y =[F,B,C,D, E ].

The Jaccard similarity of x and y is 4

6
= 0.67, and the cosine

similarity is 4√
5·

√
5
= 0.80.

2.2 Properties of Jaccard Similarity Constraints
Similarity joins essentially evaluate every pair of records

against a similarity constraint of J(x, y) ≥ t. This con-
straint can be transformed into several equivalent forms on
the overlap similarity or the Hamming distance as follows:

J(x, y) ≥ t ⇐⇒O(x, y) ≥ α =
t

1 + t
· (|x|+ |y|). (1)

O(x, y) ≥ α ⇐⇒H(x, y) ≤ |x|+ |y| − 2α. (2)

We can also infer the following constraint on the relative
sizes of a pair of records that meets a Jaccard constraint.

J(x, y) ≥ t =⇒ t · |x| ≤ |y|. (3)

3. PREFIX FILTERING BASED METHODS
A näıve algorithm to compute t-similarity join result is to

enumerate and compare every pair of records. This method
is obviously prohibitively expensive for large datasets, as the
total number of comparisons is O(n2).

Efficient algorithms exist by converting the Jaccard sim-
ilarity constraint into an equivalent overlap constraint due
to Equation (1). An efficient way to find records that over-
lap with a given record is to use inverted indices [2]. An



inverted index maps a token w to a list of identifiers of
records that contain w. After inverted indices for all to-
kens in the record set are built, we can scan each record
x, probe the indices using every token in x, and obtain a
set of candidates; merging these candidates together gives
us their actual overlap with the current record x; final re-
sults can be extracted by removing records whose overlap
with x is less than ⌈ t

1+t
· (|x| + |y|)⌉ (Equation (1)). The

main problem of this approach is that the inverted lists of
some tokens, often known as “stop words”, can be very long.
These long inverted lists incur significant overhead for build-
ing and accessing them. In addition, computing the actual
overlap by probing indices essentially requires memorizing
all pairs of records that share at least one token, a num-
ber that is often prohibitively large. Several existing work
takes this approach with optimization by pushing the overlap
constraint into the similarity value calculation phase. For ex-
ample, [24] employs sequential access on short inverted lists
but switches to binary search on the α− 1 longest inverted
lists.

Another approach is based on the intuition that if two
canonicalized records are similar, some fragments of them
should overlap with each other, as otherwise the two records
won’t have enough overlap. This intuition can be formally
captured by the prefix-filtering principle [8, Lemma 1] re-
phrased below.

Lemma 1 (Prefix Filtering Principle). Consider an
ordering O of the token universe U and a set of records, each
with tokens sorted in the order of O. Let the p-prefix of a
record x be the first p tokens of x. If O(x, y) ≥ α, then the
(|x| − α+1)-prefix of x and the (|y| − α+1)-prefix of y must
share at least one token.

Since prefix filtering is a necessary but not sufficient condi-
tion for the corresponding overlap constraint, we can design
an algorithm accordingly as: we first build inverted indices
on tokens that appear in the prefix of each record in an in-
dexing phase. We then generate a set of candidate pairs by
merging record identifiers returned by probing the inverted
indices for tokens in the prefix of each record in a candi-
date generation phase. The candidate pairs are those
that have the potential of meeting the similarity threshold
and are guaranteed to be a superset of the final answer due
to the prefix filtering principle. Finally, in a verification
phase, we evaluate the similarity of each candidate pair and
add it to the final result if it meets the similarity threshold.

A subtle technical issue is that the prefix of a record de-
pends on the sizes of the other record to be compared and
thus cannot be determined before hand. The solution is to
index the longest possible prefixes for a record x. It can
be shown that we only need to index a prefix of length
|x| − ⌈t · |x|⌉ + 1 for every record x to ensure the prefix
filtering-based method does not miss any similarity join re-
sult.

The major benefit of this approach is that only smaller
inverted indices need to be built and accessed (by a approx-
imately (1 − t) reduction). Of course, if the filtering is not
effective and a large number of candidates are generated, the
efficiency of this approach might be diluted. We later show
that this is indeed the case and propose additional filtering
methods to alleviate this problem.

There are several enhancements on the basic prefix-filtering
scheme. [8] considers implementing the prefix filtering method

on top of a commercial database system, while [3] further
improves the method by utilizing several other filtering tech-
niques in candidate generation phase and verification phase.

Example 2. Consider a collection of four canonicalized re-
cords based on the document frequency ordering, and the Jac-
card similarity threshold of t = 0.8:

w = [C,D, F ].

z = [G,A,B,E, F ].

y = [A,B, C,D,E ].

x = [B,C,D,E, F ].

Prefix length of each record u is calculated as |u|− ⌈t · |u|⌉+1.
Tokens in the prefixes are underlined and are indexed. For
example, the inverted list for token C is [w, x ].

Consider the record x. To generate its candidates, we need
to pair x with all records returned by inverted lists of tokens B
andC. Hence, candidate pairs formed for x are { 〈x, y〉, 〈x,w〉 }.

The All-Pairs algorithm [3] also includes several other filter-
ing techniques to further reduce the candidate size. For exam-
ple, it won’t consider 〈x,w〉 as a candidate pair, as |w| < 4
and can be pruned due to Equation (3). This filtering method
is known as size filtering [1].

4. POSITIONAL FILTERING
We now describe our solution to solve the exact similar-

ity join problem. We first introduce the positional filtering,
and then propose a new algorithm, ppjoin, that combines
positional filtering with the prefix filtering-based algorithm.

4.1 Positional Filtering

Algorithm 1: ppjoin (R, t)

Input :R is a multiset of records sorted by the increasing
order of their sizes; each record has been
canonicalized by a global ordering O; a Jaccard
similarity threshold t

Output :All pairs of records 〈x, y〉, such that sim(x, y) ≥ t

1 S ← ∅;
2 Ii ← ∅ (1 ≤ i ≤ |U |);
3 for each x ∈ R do

4 A← empty map from record id to int;
5 p← |x| − ⌈t · |x|⌉+ 1;
6 for i = 1 to p do

7 w ← x[i];
8 for each (y, j) ∈ Iw such that |y| ≥ t · |x| do /* size

filtering on |y| */
9 α← ⌈ t

1+t
(|x|+ |y|)⌉;

10 ubound ← 1 +min(|x| − i, |y| − j);
11 if A[y] + ubound ≥ α then
12 A[y]← A[y] + 1;
13 else

14 A[y]← 0; /* prune y */;

15 Iw ← Iw ∪ {(x, i)}; /* index the current prefix
*/;

16 Verify(x,A, t);

17 return S

Although a global ordering is a prerequisite of prefix filter-
ing, no existing algorithm fully exploits it when generating
the candidate pairs. We observe that positional information



can be utilized in several ways to further reduce the candi-
date size. By positional information, we mean the position
a token in a canonicalized record (starting from 1). We il-
lustrate the observation in the following example.

Example 3. Consider x and y from the previous example
and the same similarity threshold t = 0.8

y = [A,B,C,D,E ].

x = [B,C,D,E, F ].

The pair, 〈x, y〉, does not meet the equivalent overlap con-
straint of O(x, y) ≥ 5, hence is not in the final result. How-
ever, since they share a common token, B, in their prefixes,
prefix filtering-based methods will select y as a candidate for
x.

However, if we look at the positions of the common token
B in the prefixes of x and y, we can obtain an estimate of
the maximum possible overlap as the sum of current overlap
amount and the minimum number of unseen tokens in x and
y, i.e., 1+min(3, 4) = 4. Since this upper bound of the overlap
is already smaller than the threshold of 5, we can safely prune
〈x, y〉.

We now formally state the positional filtering principle in
Lemma 2.

Lemma 2 (Positional Filtering Principle). Consider
an ordering O of the token universe U and a set of records,
each with tokens sorted in the order of O. Let token w =
x[i], w partitions the record into the left partition xl(w) =
x[1 . . (i − 1)] and the right partition xr(w) = x[i . . |x|]. If
O(x, y) ≥ α, then for every token w ∈ x∩y,O(xl(w), yl(w))+
min(|xr(w)|, |yr(w)|) ≥ α.

4.2 Positional Filtering-Based Algorithm
A natural idea to utilize the positional filtering principle is

to combine it with the existing prefix filtering method, which
already keeps tracks of the current overlap of candidate pairs
and thus gives us O(xl(w), yl(w)).

Algorithm 1 describes our ppjoin algorithm, an extension
to the All-Pairs algorithm [3], to combine positional filtering
and prefix-filtering. Like the All-Pairs algorithm, ppjoin al-
gorithm takes as input a collection of canonicalized record
already sorted in the ascending ordered of their sizes. It then
sequentially scans each record x, finds candidates that inter-
sect x’s prefix (x[1 . . p], Line 5) and accumulates the overlap
in a hash map A (Line 12). The generated candidates are
further verified against the similarity threshold (Line 16) to
return the correct join result. Note that the internal thresh-
old used in the algorithm is an equivalent overlap threshold
α computed from the given Jaccard similarity threshold t.
The document frequency ordering Odf is often used to canon-
icalize the records. It favors rare tokens in the prefixes and
hence results in a small candidate size and fast execution
speed. Readers are referred to [3] for further details on the
All-Pairs algorithm.

Now we will elaborate on several novel aspects of our ex-
tension: (i) the inverted indices used (Algorithm 1, Line 15),
and (ii) the use of positional filtering (Algorithm 1, Lines
9–14), and (iii) the optimized verification algorithm (Algo-
rithm 2).

In Line 15, we index both tokens and their positions for
tokens in the prefixes so that our positional filtering can uti-
lize the positional information. In Lines 9–14, we compute

an upper bound of the overlap between x and y, and only ad-
mit this pair as a candidate pair if its upper bound is no less
than the threshold α. Specifically, α is computed according
to Equation (1); ubound is an upper bound of the overlap be-
tween right partitions of x and y with respect to the current
token w, which is derived from the number of unseen tokens
in x and y with the help of the positional information in the
index Iw; A[y] is the current overlap for left partitions of x
and y. It is then obvious that if A[y] + ubound is smaller
than α, we can prune the current candidate y (Line 14).

Algorithm 2: Verify(x,A, t)

1 for each y such that A[y] > 0 do

2 α← ⌈ t
1+t

(|x|+ |y|)⌉;

3 wx ← the last token in the prefix of x;
4 wy ← the last token in the prefix of y;
5 O ← A[y];
6 px ← |x| − ⌈t · |x|⌉+ 1, py ← |y| − ⌈t · |y|⌉+ 1;
7 if wx < wy then

8 ubound ← A[y] + |x| − px;
9 if ubound ≥ α then

10 O ← O +
∣

∣x[(px + 1) . . |x|]
⋂

y[(A[y] + 1) . . |y|]
∣

∣;

11 else

12 ubound ← A[y] + |y| − py;
13 if ubound ≥ α then

14 O ← O +
∣

∣x[(A[y] + 1) . . |x|]
⋂

y[(py + 1) . . |y|]
∣

∣;

15 if O ≥ α then

16 S ← S ∪ (x, y);

Algorithm 2 is designed to verify whether the actual over-
lap between x and candidates y in the current candidate set,
{ y |A[y] > 0 }, meets the threshold α. Notice that we’ve
already accumulated in A[y] the amount of overlaps that oc-
cur in the prefixes of x and y. An optimization is to first
compare the last token in both prefixes, and only the suffix
of the record with the smaller token (denoted the record
as u) needs to be intersected with the entire other record
(denoted as v). This is because the prefix of u consists of
tokens that are smaller than wu (the last token in u’s prefix)
in the global ordering and v’s suffix consists of tokens that
are larger than wv . Since wu ≺ wv, u’s prefix won’t intersect
with v’s suffix. In fact, the workload can still be reduced:
we can skip the first A[y] number of tokens in v since at least
A[y] tokens have overlapped with u’s prefix and hence won’t
contribute to any overlap with u’s suffix. The above method
is implemented through Lines 4, 5, 8, and 12 in Algorithm 2.
This optimization in calculating the actual overlap immedi-
ately gives rise to a pruning method. We can estimate the
upper bound of the overlap as the length of the suffix of u
(which is either |x| − px or |y| − py). Lines 6 and 10 in the
algorithm perform the estimation and the subsequent lines
test whether the upper bound will meet the threshold α and
prune away unpromising candidate pairs directly.

Experimental results show that utilizing positional infor-
mation can achieve substantial pruning effects on real data-
sets. For example, we show the sizes of the candidates gen-
erated by ppjoin algorithm and All-Pairs algorithm for the
DBLP dataset in Table 1.

4.3 Minimizing Tokens to be Indexed
The following Lemma allows us to further reduce the num-

ber of tokens to be indexed and hence accessed.



Table 1: Candidate Size (DBLP, Jaccard)

t All-Pairs ppjoin ppjoin+

0.95 199,268 176,971 32,397
0.90 1,857,987 657,200 36,318
0.80 16,98,3319 3,303,232 63,265
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Figure 1: Quadratic Growth of Candidate Size

Lemma 3. Given a record x, we only need to index its (|x|−
⌈ 2t
1+t

· |x|⌉ + 1)-prefix for Algorithm 1 to produce correct join
result.

This optimization requires us to change Line 15 in Algo-
rithm 1 such that it only index the current token w if the
current token position i is no larger than |x|− ⌈ 2t

1+t
· |x|⌉+1.

Note that the length of the prefix used for probing into the
indices remains the same.

5. SUFFIX FILTERING
In this section, we first motivate the need to looking for

further filtering method, and then introduce a divide-and-
conquer based suffix filtering method, which is a generaliza-
tion of the positional filtering to the suffixes of the records.

5.1 Quadratic Growth of the Candidate Size
Let’s consider the asymptotic behavior of the size of the

candidate size generated by the prefix filtering-base meth-
ods. The candidate size is O(n2) in the worst case. Our
empirical evidence on several real datasets suggests that the
growth is indeed quadratic. For example, we show the square
root of query result size and candidate sizes of the All-Pairs
algorithm and our ppjoin algorithm in Figure 1. It can be ob-
served that while positional filtering helps to further reduce
the size of the candidates, it is still growing quadratically
(albeit with a much slower rate than All-Pairs).

5.2 Generalizing Positional Filtering to Suf-
fixes

Given the empirical observation about the quadratic growth
rate of the candidate size, it is desirable to find additional
pruning method in order to tackle really large datasets.

Our goal is to develop additional filtering method that
prunes candidates that survive the prefix and positional fil-
tering. Our basic idea is to generalize the positional filtering
principle to work on the suffixes of candidate pairs. However,
the challenge is that the suffixes of records are not indexed
nor their partial overlap has been calculated. Therefore, we
face the following two technical issues: (i) how to establish
an upper bound in the absence of indices or partial overlap
results? (ii) how to find the position of a token without
tokens being indexed?

We solve the first issue by converting an overlap constraint
to an equivalent Hamming distance constraint, according to
Equation (2). We then lower bound the Hamming distance
by partitioning the suffixes in an coordinated way. We de-
note the suffix of a record x as xs. Consider a pair of records,
〈x, y〉, that meets the Jaccard similarity threshold t, and
without loss of generality, |y| ≤ |x|. Since their overlap in
their prefixes is at most the minimum length of the prefixes,
we can derive the following upper bound in terms of the
Hamming distance of their suffixes.

H(xs, ys) ≤ Hmax =2|x| − 2⌈ t

1 + t
· (|x|+ |y|)⌉

− (⌈t · |x|⌉ − ⌈t · |y|⌉). (4)

In order to check whether H(xs, ys) exceeds the maximum
allowable value, we provide an estimate of the lower bound
of H(xs, ys) below. First we choose an arbitrary token w

from ys, and divide ys into two partitions: the left parti-
tion yl and the right partition yr. The criterion for the
partitioning is that the left partition contains all the to-
kens in ys that precede w in the global ordering and the
right partition contains w (if any) and tokens in ys that
succeed w in the global ordering. Similarly, we divide xs

into xl and xr using w too (even though w might not oc-
cur in x). Since xl (xr) shares no common token with yr
(yl), H(xs, ys) = H(xl, yl) +H(xr, yr). The lower bound of
H(xl, yl) can be estimated as the difference between |xl| and
|yl|, and similarly for the right partitions. Therefore,

H(xs, ys) ≥ abs(|xl| − |yl|) + abs(|xr| − |yr|).
Finally, we can safely prune away candidates whose lower
bound Hamming distance is already larger than the allow-
able threshold Hmax.

We can generalize the above method to more than one
probing token and repeat the test several times indepen-
dently to improve the filtering rate. However, we will show
that if the probings are arranged in a more coordinated way,
results from former probings can be taken into account and
make subsequent probings more effective. We illustrate this
idea in the example below.

Example 4. Consider the following two suffixes of length
6. Cells marked with “?” indicate that we have not accessed
those cells and do not know their contents yet.

1 2 3 4 5 6pos

? D ? ? F ?xs

xll xlr xr

? ? D F ? ?ys

yll ylr yr

Assume the allowable Hamming distance is 2. If we probe
the 4th token in ys (“F”), we have the following two partitions
of ys: yl = ys[1 . . 3] and yr = ys[4 . . 6]. Assuming a magical
“partition” function, we can partition xs into xs[1 . . 4] and
xs[5 . . 6] using F . The lower bound of Hamming distance is
abs(3− 4) + abs(3− 2) = 2.

If we perform the same test independently, say, using the
3rd token of ys (“D”), the lower bound of Hamming distance
is still 2. Therefore, 〈x, y〉 is not pruned away.

However, we can actually utilize the previous test result.
The result of the second probing can be viewed as a recursive



Algorithm 3: SuffixFilter(x, y,Hmax, d)

Input :Two set of tokens x and y, the maximum allowable
hamming distance Hmax between x and y, and
current recursive depth d

Output :The lower bound of hamming distance between x
and y

1 if d > MAXDEPTH then return abs(|x| − |y|) ;

2 mid← ⌈ |y|
2
⌉; w ← y[mid];

3 o←
Hmax−abs(|x|−|y|)

2
; /* always divisible */;

4 if |x| < |y| then ol ← 1, or ← 0 else ol ← 0, or ← 1;
5 (yl, yr, f, diff)← Partition(y, w,mid,mid);
6 (xl, xr, f, diff)← Partition(x,w,mid− o− abs(|x| − |y|) ·

ol, mid+ o+ abs(|x| − |y|) · or);
7 if f = 0 then

8 return Hmax + 1

9 H ← abs(|xl| − |yl|)+ abs(|xr| − |yr|)+ diff;
10 if H > Hmax then

11 return H
12 else

13 Hl ←
SuffixFilter(xl, yl,Hmax − abs(|xr| − |yr|)− diff, d+ 1) ;

14 H ← Hl + abs(|xr| − |yr |)+ diff;
15 if H ≤ Hmax then
16 Hr ← SuffixFilter(xr, yr ,Hmax −Hl − diff , d+ 1) ;
17 return Hl +Hr + diff
18 else

19 return H

partitioning of xl and yl into xll, xlr, yll, and ylr. Obviously
the total absolute differences of the sizes of the three partitions
from two suffixes is an lower bound of their Hamming distance,
which is

abs(|xll| − |yll|) + abs(|xlr| − |ylr|) + abs(|xr| − |yr|)
=abs(1− 2) + abs(3− 1) + abs(2− 3) = 4.

Therefore, 〈x, y〉 can be safely pruned.

The algorithm we designed to utilize above observations
is a divide-and-conquer one (Algorithm 3). First, the to-
ken in the middle of y is chosen, and x and y are parti-
tioned into two parts respectively. The lower bounds of
Hamming distance on both left and right partitions are com-
puted and summed up to judge if the overall hamming dis-
tance is within the allowable threshold (Lines 9–10). Then
we call the SuffixFilter function recursively first on the left
and then on the right partition (Lines 13–19). Probing re-
sults in the previous tests are used to help reduce the max-
imum allowable Hamming distance (Line 16) and to break
the recursion if the Hamming distance lower bound has ex-
ceeded the threshold Hmax (Lines 14–15 and 19). Finally,
only those pairs such that their lower bounding Hamming
distance meets the threshold will be considered as candidate
pairs. We also use a parameter MAXDEPTH to limit the max-
imum level of recursion (Line 1); this is aimed to strike a
balance between filtering power and filtering overhead.

The second technical issue is how to perform the partition
efficiently, especially for xs. A straight-forward approach is
to perform binary search on the whole suffix, an idea which
was also adopted by the ProbeCount algorithm [24]. The
partitioning cost will be O(log |xs|). Instead, we found that
the search only needs to be performed in a much smaller area
approximately centered around the position of the partition-
ing token w in y, due to the Hamming distance constraint.

Algorithm 4: Partition(s, w, l, r)

Input :A set of tokens s, a token w, left and right bounds
of searching range l, r

Output :Two subsets of s: sl and sr, a flag f indicating
whether w is in the searching range, and a flag diff
indicating whether the probing token w is not found
in y

1 sl ← ∅; sr ← ∅;
2 if s[l] > w or s[r] < w then

3 return (∅, ∅, 0, 1)

4 p← binary search for the position of the first token in s that
is no smaller than w in the global ordering within s[l . . r];

5 sl ← s[1 . . p − 1];
6 if s[p] = w then

7 sr ← s[(p+ 1) . . |s|]; /* skip the token w */;
8 diff ← 0;
9 else

10 sr ← s[p . . |s|];
11 diff ← 1;

12 return (sl, sr, 1, diff)

Algorithm 5: Replacement of Line 12 in Algorithm 1

1 if A[y] = 0 then

2 Hmax ← |x|+ |y| − 2 · ⌈ t
1+t
· (|x|+ |y|)⌉ − (i+ j − 2);

3 H ← SuffixFilter(x[(i+ 1) . . |x|], y[(j + 1) . . |y|],Hmax, 1);
4 if H ≤ Hmax then
5 A[y]← A[y] + 1;
6 else

7 A[y]← −∞; /* avoid considering y again */;

We illustrate this using the following example.

Example 5. Continuing the previous example, consider par-
titioning xs according to the probing token F . The only pos-
sible area where F (for simplicity, assume F exists in xs) can
occur is within xs[3 . . 5], as otherwise, the Hamming distance
between xs and ys will exceed 2. We only need to perform bi-
nary search within xs[3 . . 5] to find the first token that is no
smaller than F .

The above method can be generalized to the general case
where xs and ys have different lengths. This is described
in Lines 4–6 in Algorithm 3. The size of the search range
is bounded by Hmax, and is likely to be smaller within the
subsequent recursive calls.

Algorithm 4 implements the partitioning process using a
partitioning token w. One thing that deviates from Exam-
ple 4 is that the right partition now does not include the
partitioning token, if any (Line 7). This is mainly to sim-
plify the pseudocode while still ensuring a tight bound on
the Hamming distance when the token w cannot be found
in xs.

Finally, we can integrate the suffix filtering into the ppjoin
algorithm and we name the new algorithm ppjoin+. To that
end, we only need to replace the original Line 12 in Algo-
rithm 1 with the lines shown in Algorithm 5. We choose to
perform suffix filtering only once for each candidate pair on
the first occasion that it is formed. This is because suffix
filtering probes the unindexed part of the records, and is
relative expensive to carry out. An additional optimization
opportunity enabled by this design is that we can further
reduce the initial allowable Hamming distance threshold to
|x|+ |y|−2⌈ t

1+t
·(|x|+ |y|)⌉− (i+j−2), where i and j stand



for the positions of the first common token w in x and y,
respectively (Line 2). Intuitively, this improvement is due
to the fact that x[1 . . (i − 1)] ∩ y[1 . . (j − 1)] = ∅ since the
current token is the first common token between them.

The suffix filtering employed by the ppjoin+ algorithm is
orthogonal and complementary to the prefix and positional
filtering, and thus helps further reduce the candidate size.
Its effect on the DBLP dataset can be seen in Table 1 and
Figure 1.

6. EXTENSION TO OTHER SIMILARITY
MEASURES

In this section, we briefly comment on necessary modifica-
tions to adapt both ppjoin and ppjoin+ algorithms to other
commonly used similarity measures. The major changes are
related to the length of the prefixes used for indexing (Line
15, Algorithm 1) and used for probing (Line 5, Algorithm 1),
the threshold used by size filtering (Line 8, Algorithm 1) and
positional filtering (Line 9, Algorithm 1), and the Hamming
distance threshold calculation (Line 2, Algorithm 5).

Overlap Similarity O(x, y) ≥ α is inherently supported
in our algorithms. The prefix length for a record x will be
x−α+1. The size filtering threshold is α. It can be shown
that positional filtering will not help pruning candidates,
but suffix filtering is still useful. The Hamming distance
threshold, Hmax, for suffix filtering will be |x| + |y| − 2α −
(i+ j − 2).

Edit Distance Edit distance is a common distance mea-
sure for strings. An edit distance constraint can be con-
verted into weaker constraints on the overlap between the
q-gram sets of the two strings. Specifically, let |u| be the
length of the string u, a necessary condition for two strings
to have less than δ edit distance is that their corresponding q-
gram sets must have overlap no less than α = (max(|u|, |v|)+
q − 1) − qδ [17].

The prefix length of a record x (which is now a set of
q-grams) is qδ + 1. The size filtering threshold is |x| − δ.
Positional filtering will use an overlap threshold α = |x|−qδ.
The Hamming distance threshold, Hmax, for suffix filtering
will be |y| − |x|+ 2qδ − (i+ j − 2).

Cosine Similarity We can convert a constraint on cosine
similarity to an equivalent overlap constraint as:

C(x, y) ≥ t ⇐⇒ O(x, y) ≥
⌈

t ·
√

|x| · |y|
⌉

.

The length of the prefix for a record x is |x|− ⌈t2 · |x|⌉+1,
yet the length of the tokens to be indexed can be optimized
to |x| − ⌈t · |x|⌉ + 1. The size filtering threshold is ⌈t2 ·
|x|⌉.2 Positional filtering will use an overlap threshold α =
⌈

t ·
√

|x| · |y|
⌉

. The Hamming distance threshold, Hmax, for

suffix filtering will be |x|+ |y|−2
⌈

t ·
√

|x| · |y|
⌉

− (i+ j−2).

7. EXPERIMENTAL EVALUATION
In this section, we present our experimental results.

7.1 Experiment Setup
We implemented and used the following algorithms in the

experiment.

2These are the same bounds obtained in [3].

Dataset n avg len |U |

DBLP 873,524 14.0 566,518
DBLP-3GRAM 873,524 102.5 113,169
ENRON 517,386 142.4 1,180,186
TREC-4GRAM 348,566 866.9 1,701,746
TREC-Shingle 348,566 32.0 9,788,436

Figure 2: Statistics of Datasets

All-Pairs is an efficient prefix filtering-based algorithm ca-
pable of scaling up to tens of millions of records [3].

ppjoin, ppjoin+ are our proposed algorithms. ppjoin inte-
grates positional filtering into the All-Pairs algorithm, while
ppjoin+ further employes suffix filtering.

All algorithms were implemented in C++. To make fair
comparisons, all algorithms use Google’s dense_hash_map

class for accumulating overlap values for candidates, as sug-
gested in [3]. All-Pairs has been shown to consistently outper-
form alternative algorithms such as ProbeCount-Sort [24],
PartEnum [1] and LSH [16], and therefore we didn’t con-
sider them [3].

All experiments were performed on a PC with Pentium D
3.00GHz CPU and 2GB RAM. The operating system is De-
bian 4.1. The algorithms were compiled using GCC 4.1.2
with -O3 flag.

We measured both the size of the candidate pairs and the
running time for all the experiments.

Our experiments covered the following similarity measures:
Jaccard similarity, and Cosine similarity.

We used several publicly available real datasets in the
experiment. They were selected to cover a wide spectrum
of different characteristics (See Figure 2).

DBLP This dataset is a snapshot of the bibliography records
from the DBLP Web site. It contains almost 0.9M records;
each record is a concatenation of author name(s) and the
title of a publication. We tokenized each record using
white spaces and punctuations. The same DBLP dataset
(with smaller size) was also used in previous studies [1, 3].

DBLP-3GRAM This is the same DBLP dataset, but fur-
ther tokenized into 3-grams. Specifically, tokens in a record
are concatenated with a single whitespace, and then every
3 consecutive letters is extract as a 3-gram.

ENRON This dataset is from the Enron email collection3.
It contains about 0.5M emails from about 150 users, mostly
senior management of Enron. We tokenize the email title
and body into words using the same tokenization proce-
dure as DBLP.

TREC-4GRAM This dataset is from TREC-9 Filtering
Track Collections.4 It contains 0.35M references from the
MEDLINE database. We extracted author, title, and ab-
stract fields to from records. Records are subsequently
tokenized as in DBLP.

TREC-Shingle We applied Broder’s shingling method [5]
on TREC-4GRAM to generate 32 shingles of 4 bytes per
record, using min-wise independent permutations. TREC-
4GRAM and TREC-Shingle are dedicated to experiment
on near duplicate Web page detection (Section 7.5).

Some important statistics about the datasets are listed in
Figure 2.
3Available at http://www.cs.cmu.edu/~enron/
4Available at http://trec.nist.gov/data/t9_filtering.html.
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Figure 3: Experimental Results

7.2 Jaccard Similarity
Candidate Size Figures 3(a) to 3(c) show the sizes of
candidate pairs generated by the algorithms and the size of
the join result on the DBLP, Enron, and DBLP-3GRAM
datasets, with varying similarity thresholds from 0.80 to
0.95. Note that y-axis is in logarithm scale.

Several observations can be made:

• The size of the join result grows modestly when the simi-
larity threshold decreases.

• All algorithms generate more candidate pairs with the de-
crease of the similarity threshold. Obviously, the candi-
date size of All-Pairs grows the fastest. ppjoin has a de-
cent reduction on the candidate size of All-Pairs, as the
positional filtering prunes many candidates. ppjoin+ pro-
duces the fewest candidates thanks to the additional suffix
filtering.

• The candidate sizes of ppjoin+ are usually in the same
order of magnitude as the sizes of the join result for a
wide range of similarity thresholds. The only outlier is

the Enron dataset, where ppjoin+ only produces modestly
smaller candidate set than ppjoin. There are at least two
reasons: (a) the average record size of the enron dataset
is large; this allows for a larger initial Hamming distance
threshold Hmax for the suffix filtering. Yet we only use
MAXDEPTH = 2 (for efficiency reasons; also see the Enron’s
true positive rate below). (b) Unlike other datasets used,
an extraordinary high percentage of candidates of ppjoin
are join results. The ratio of sizes of query result over
candidate size by ppjoin algorithm is 38.1%, 4.9%, and
0.03% for Enron, DBLP, and DBLP-3GRAM, respectively.
In other words, ppjoin has already removed the majority
of false positive candidate pairs on Enron and hence it
is hard for suffix filtering to further reduce the candidate
set.

Running Time Figures 3(d) to 3(f) show the running
time of all algorithms on the three datasets with varying
Jaccard similarity thresholds.

In all the settings, ppjoin+ is the most efficent algorithm,
followed by ppjoin. Both algorithms outperform the All-Pairs



algorithm. The general trend is that the speed-up increases
with the decrease of the similarity threshold. This is be-
cause (i) index construction, probing, and other overheads
are more noticeable with a high similarity threshold, as the
result is small and easy to compute. (ii) inverted lists in
the indices are longer for a lower similarity threshold; this
increases the candidate size which in turn slows down the All-
Pairs algorithm as it does not have any other additional fil-
tering mechanism. In contrast, many candidates are quickly
discarded by failing the positional or suffix filtering used in
ppjoin and ppjoin+ algorithms.

The speed-up that our algorithms can achieve against the
All-Pairs algorithm is also dependent on the dataset. At
the 0.8 threshold, ppjoin can achieve up to 3x speed-up
against All-Pairs on both Enron and DBLP-3GRAM, and
up to 2x speed-up on DBLP. At the same threshold, ppjoin+
can achieve 5x speed-up on DBLP-3GRAM, 4x speed-up on
Enron, and 2.6x speed-up on DBLP. This trend can be ex-
plained as All-Pairs algorithm is not good at dealing with
long records and/or a small token domain.

The performance between ppjoin and ppjoin+ is most sub-
stantial on DBLP-3GRAM, where filtering on the suffixes
helps to improve the performance drastically. The reason
why ppjoin+ has only modest performance gain over ppjoin
on Enron is because 38% of the candidates are final results,
hence the additional filtering employed in ppjoin+ won’t con-
tribute to much runtime reduction. The difference of the
two is also moderate on DBLP. This is mainly because the
average size of DBLP records is only 14 and even a brute-
force verification using the entire suffix is likely to be fast,
especially in modern computer architectures.

7.3 Cosine Similarity
We ran all three algorithms on the DBLP and ENRON

datasets using the cosine similarity function, and plot the
candidate sizes in Figures 3(g) to 3(h) and running times in
Figures 3(i) to 3(j). For both metrics, the general trends are
similar to those using Jaccard similarity. A major difference
is that all algorithms now run slower for the same similarity
threshold, mainly because a cosine similarity constraint is
inherently looser than the corresponding Jaccard similarity
constraint. At the 0.8 threshold, the speed-ups of the ppjoin
and ppjoin+ algorithm is 2x and 3x on DBLP, respectively;
on Enron, the speed-ups are 1.6 and 1.7, respectively.

7.4 Varying Data Sizes
We performed the similarity join using Jaccard similar-

ity on subsets of the DBLP dataset and measured running
times.5 We randomly sampled about 20% to 100% of the
records. We scaled down the data so that the data and re-
sult distribution could remain approximately the same. We
show the square root of the running time with Jaccard sim-
ilarity for the DLBP dataset and cosine similarity for the
Enron dataset in Figures 3(k) and 3(l) (both thresholds are
fixed at 0.9).

It is clear that the running time of all three algorithms
grow quadratically. This is not surprising given the fact
that the actual result size already grows quadratically (e.g.,
See Figure 1). Our proposed algorithms have demonstrated
a slower growth rate than the All-Pairs algorithm for both
similarity functions and datasets.

5We also measured the candidate sizes (e.g., see Figure 1).

7.5 Near Duplicate Web Page Detection
We also investigate a specific application of the similar-

ity join: near duplicate Web page detection. A traditional
method is based on performing approximate similarity join
on shingles computed from each record [6]. Later work pro-
posed further approximations mainly to gain more efficiency
at the cost of result quality.

Instead, we designed and tested three algorithms that per-
form exact similarity join on q-grams or shingles. (i) qp al-
gorithm where we use the ppjoin+ algorithm to join directly
on the set of 4-grams of each record. (ii) qa algorithm is
similar to qp except that All-Pairs algorithm is used as the
exact similarity join algorithm. (iii) sp algorithm where we
use the ppjoin+ algorithm to join on the set of shingles.

The metrics we measured are: running times, precision
and recall of the join result. Since algorithm qp returns
exact answer based on the q-grams of the records, its result
is a good candidate for the correct set of near duplicate
documents. Hence, we define precision and recall as follows:

Precision =
|Rsp| ∩ |Rqp|

|Rsp|
. Recall =

|Rsp| ∩ |Rqp|
|Rqp|

.

where Rx is the set of result returned by algorithm x.
We show the results in Table 2 with varying similarity

threshold values.

Table 2: Quality vs. Time Trade-off of Approximate
and Exact Similarity Join

t Precision Recall timeap timeqp timesp

0.95 0.38 0.11 41.98 11.76 1.00
0.90 0.48 0.06 245.03 43.37 1.03
0.85 0.58 0.04 926.54 202.65 1.03
0.80 0.57 0.03 2467.31 775.00 1.05

Several observations can be made

• Shingling-based methods will mainly suffer from low re-
calls in the result, meaning that only a small fraction of
truly similar Web pages will be returned. We manually
examined some similar pairs missing from Rsp (t = 0.95),
and most of the sampled pairs are likely to be near du-
plicates (e.g., they differ only by typos, punctuations, or
additional annotations). Note that other variants of the
basic shingling method, e.g., systematic sampling of shin-
gles or super-shingling [6] were designed to trade result
quality for efficiency, and are most likely to have even
worse precision and recall values.

In contrast, exact similarity join algorithms (qp or qa)
have the appealing advantage of finding all the near du-
plicates given a similarity function.

• qp, while enjoying good result quality, requires longer
running time. However, with reasonably high similarity
threshold (0.90+), qp can finish the join in less than 45
seconds. On the other hand, qa takes substantially longer
time to perform the same join.

• sp combines the shingling and ppjoin+ together and is ex-
tremely fast even for modest similarity threshold of 0.80.
This method is likely to offer better result quality than,
e.g., super-shingling, while still offering high efficiency.

In summary, ppjoin+ algorithm can be combined with q-
grams or shingles to provide appealing alternative solutions
to tackle the near duplicate Web page detection tasks.



8. RELATED WORK
Near Duplicate Object Detection Near duplicate ob-
ject detection has been studied under different names in sev-
eral areas, including record linkage [27], merge-purge [19],
data deduplication [23], name matching [4], just to name a
few. [12] is a recent survey on this topic.

Similarity functions are the key to the near duplicate de-
tection task. For text documents, edit distance [26] and
Jaccard similarity on q-grams [17] are commonly used. Due
to the huge size of Web documents, similarity among docu-
ments is evaluated by Jaccard or overlap similarity on small
or fix sized sketches [5, 10]. Soundex is a commonly used
phonetic similarity measures for names [22].

Exact Near Duplicate Detection Algorithm Exist-
ing methods for exact near duplicate detection usually con-
vert constraints defined using one similarity function into
equivalent or weaker constraints defined on another similar-
ity measure. [17] converts edit distance constraints to over-
lap constraints on q-grams. Jaccard similarity constraints
and 1/2-sided normalized overlap constraints can be con-
verted to overlap constraints [24, 8]. Constraints on overlap,
dice and Jaccard similarity measures can be coverted to con-
straints on cosine similarity [3]. [1] transforms Jaccard and
edit distance constraints to Hamming distance constraints.

The techniques proposed in previous work fall into two cat-
egories. In the first category, exact near duplicate detection
problems are addressed by inverted list based approaches
[3, 8, 24], as discussed above. The second category of work
[1] is based on the pigeon hole principle. The records are
carefully divided into partitions and then hashed into signa-
tures, with which candidate pairs are generated, followed by
a post-filtering step to eliminate false positives.

ApproximateNear Duplicate Object Detection Sev-
eral previous work [6, 7, 10, 16] has concentrated on the prob-
lem of retrieving approximate answers to similarity func-
tions. LSH (Locality Sensitive Hashing) [16] is a well-known
approximate algorithm for the problem. It regards each
record as a vector and generates signatures for each record
with random projections on the set of dimensions. Broder
et al. [6] addressed the problem of identifying near dupli-
cate Web pages approximately by compressing document
records with a sketching function based on min-wise inde-
pendent permutations. The near duplicate object detection
problem is also a generalization of the well-known nearest
neighbor problem, which is studied by a wide body of work,
with many approximation techniques considered by recent
work [7, 13, 16, 21].

9. CONCLUSIONS
In this paper, we propose efficient similarity join algo-

rithms by exploiting the ordering of tokens in the records.
The algorithms provide efficient solutions for an array of
applications, such as duplicate Web page detection on the
Web. We show that positional filtering and suffix filtering
are complementary to the existing prefix filtering technique.
They successfully alleviate the problem of quadratic growth
of candidate pairs when the data grows in size. We demon-
strate the superior performance of our proposed algorithms
to the existing prefix filtering-based algorithms on several
real datasets under a wide range of parameter settings. The
proposed methods can also be adapted or integrated with

existing near duplicate Web page detection methods to im-
prove the result quality or accelerate the execution speed.
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