R-TREES: A DYNAMIC INDEX STRUCTURE
FOR SPATIAL SEARCHING

Antonin Guttman
University of Calhfornia
Berkeley

Abstract

In order to handle spatial data efficiently, as required in computer aided design and
geo-data applhications, a database system needs an index mechanmism that will help it

retrieve data items quickly according to their spatial locations

However, traditional

indexing methods are not well suited to data objects of non-zero size located in mult:-
dimensional spaces In this paper we describe a dynamic index structure called an R-tree
which meets this need, and give algornthms for searching and updating it. We present the
results of a senes of tests which indicate that the structure performs well, and conclude
that 1t 1s useful for current database systems in spatial apphcations

1. Introduction

Spatial data objects often cover areas
in multi-dimensional spaces and are not
well represented by point locations For
example, map objects hike counties, census
tracts etc occupy regions of non-zero size
n two dimensions A common operation on
spatial data is a search for all objects 1n an
area, for example to find all counties that
have land within 20 mules of a particular
point This kind of spatial search occurs
frequently 1n computer aided design (CAD)
and geo-data applications, and therefore 1t
1s important to be able to retrieve objects
efficiently according to their spatial loca-
tion

This research was sponsored by National
Science Foundation grant ECS-8300463
and Air Force Office of Scientific Research
grant AFOSR-83-0254

Pernussion to copy without fee all or part of this matenal 18 granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copynght notice and the title of the
publication and 1its date appear, and notice 1s given that copying is by
permission of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1984 ACM 0-89791-128-8/84/006/0047 $00 75

47

An index based on objects’ spatial loca-
tions 1s desirable, but classical one-
dimensional database indexing structures
are not appropriate to multi-dimensional
spatial searching Structures based on
exact matching of values, such as hash
tables, are not useful because a range
search 1s required Structures using one-
dimensional ordering of key values, such as
B-trees and ISAM indexes, do not work
because the search space 1s multi-
dimensional

A number of structures have been pro-
posed for handling multi-dimensional point
data, and a survey of methods can be
found in [5] Cell methods [4,8, 16] are not
good for dynamic structures because the
cell boundanes must be decided 1n
advance Quad trees [7] and k-d trees [3]
do not take paging of secondary memory
into account. K-D-B trees [13] are
designed for paged memory but are useful
only for point data The use of index inter-
vals has been suggested 1n [15], but this
method cannot be used 1n multiple dimen-
sions Corner stitching [12] 1s an example
of a structure for two-dimensional spatial
searching suitable for data objects of non-
zero size, but 1t assumes homogeneous pri-
mary memory and 1s not efficient for ran-
dom searches in very large collections of
data. Gnd files [10] handle non-point data
by mapping each object to a point in a

higher-dimensional space In this paper we
describe an alternative structure called an
R-tree which represents data objects by
mtervals in several dimensions

Section 2 outlines the structure of an
R-tree and Section 3 gives algorithms for
searching, inserting, deleting, and updat-
ing Results of R-tree index performance
tests are presented in Section 4 Section 5
contains a summary of our conclusions

2. R-Tree Index Structure

An R-tree 1s a height-balanced tree
similar to a B-tree [2,6] with index records
in 1its leaf nodes contamning pointers to
data objects Nodes correspond to disk
pages if the index 1s disk-resident, and the
structure 1s designed so that a spatial
search requres visiting only a small
number of nodes The imndex 1s completely
dynamic; inserts and deletes can be inter-
mixed with searches and no periodic reor-
ganization 1s required.

A spatial database consists of a collec-
tion of tuples representing spatial objects,
and each tuple has a umque 1dentifier
which can be used to retrieve 1t Leaf
nodes 1n an R-tree contain index record
entries of the form

(I, tuple —dentrfier)

where tuple —dentifier refers to a tuple in
the database and I 1s an n-dimensional
rectangle which 1s the bounding box of the
spatial object indexed

I'=Updy ny)
Here n 1s the number of dimensions and

is a closed bounded nterval [a,b] describ-
mng the extent of the object along dimen-
sion t. Alternatively I may have one or
both endpoints equal to mfimty, indicating
that the object extends outward
indefimtely Non-leaf nodes contain
entnes of the form

(I, chald —pownter)
where child —pownier 1s the address of a

lower node in the R-tree and [covers all
rectangles 1n the lower node's entres

let M be the maxymum number of
entries that will fit in one node and let

ms%l- be a parameter specifying the

mnmmum number of entries 1n a node An
R-tree satisfies the following properties

48

(1) Every leaf node contains between m
and M i1mdex records unless it 1s the
root

(2) For each index record
(I, tuple —dentifier) 1n a leaf node, I 1s
the smallest rectangle that spatially
contains the n-dimensional data object
represented by the indicated tuple

(3) Every non-leaf node has between m
and M children unless it 1s the root

(4) For each entry (I, child —pownter) in a
non-leaf node, / 1s the smallest rectan-
gle that spatially contains the rectan-
gles 1n the child node

(5) The root node has at least two children
unless 1t 1s a leaf

(8) All leaves appear on the same level

Figure 2 1a and 2 1b show the structure
of an R-tree and 1llustrate the containment
and overlapping relationships that can
exist between 1its rectangles

The height of an R-tree contaiming N
index records 1s at most Ilogm -1,

because the branching factor of each node
18 at least m [The maximum number of
N + N +
m m2
space utilization for all nodes except the
root 1s Zjln_ Nodes will tend to have more

than m entries, and this will decrease tree
height and improve space utihzation If
nodes have more than 3 or 4 entries the
tree 1s very wide, and almost all the space
1s used for leaf nodes contamning index
records The parameter m can be varied
as part of performance tumng, and
different values are tested experimentally
n Section 4

3. Searching and Updating

3.1. Searching

The search algorithm descends the tree
from the root 1n a manner similar to a B-
tree However, more than one subtree
under a node wisited may need to be
searched, hence 1t 1s not possible to
guarantee good worst-case performance
Nevertheless with most kinds of data the
update algorithms will maintain the tree in
a form that allows the search algorithm to
ehminate irrelevant regions of the indexed
space, and examine only data near the

nodes 1s +1 Worst-case

e [Re [Ri0|R11[R12]

| [R13J14]

|Ris|Rie] |[Ri7|Ri8[RI9]

To Data Tuples
(a)
gy — oo =
R 1R4 RIL]! :
R N
||R3 | R9 : | : 5] :l
|| l | | 3 |
|| f | | I'
Iy ' : | 'y
I I [R10 ! | : |I
Shape of I,/rR8 : : by ¥4 :I
Data Object ~%L | | 'y !
1 ! |
| == = — — +———d | 1
| \[R12 L
f'—'——” ————— H—————t T T ===
:Ra ! : | IR [Rig |
. ! iy ¥
! ! L R17 g
l"‘—"' ————— = | i
| [I
:: | |] : :: ?9 |:
l. | ! ' | |1 ||
|| I S A uiiuiiiopuiiy & Bpponiiopudie] |I
| I i t
I' I | I|
| ! ! !
HR15 [| |
:I e L T e e - - il
I.I‘_':.T.."______.T_':__._':_T_—_'—___I ___________________ JI
(b)
Figure 31

search area

In the following we denote the rectan-
gle part of an index entry £ by F'I, and the
tuple —dentifier or child —pownier part by
Ep

Algorithm Search. Given an R-tree whose
root node 1s 7, find all index records whose
rectangles overlap a search rectangle S

S1 [Search subtrees] If T 1s not a leaf,
check each entry FE to deterrmne
whether E'] overlaps S For all overlap-
ping entries, Invoke Search on the tree
whose root node 1s pointed to by £'p

49

S2 [Search leaf node] If T 1s a leaf, check
all entnes F to determune whether £/
overlaps S If so, £ 1s a quahfying
record

3 2. Insertion

Inserting index records for new data
tuples 1s similar to insertion in a B-tree in
that new index records are added to the
leaves, nodes that overflow are spht, and
splits propagate up the tree

Algorithm Insert Insert a new index entry
E into an R-tree

Il [Find position for new record]
Invoke ChooselLeaf to select a leaf
node L in which to place F

[Add record to leaf node] If L has
room for another entry, imnstall £
(r)thermsg mvoke SplitNode to obtain
L4

and LL contamning £ and all the
old entries of L

[Propagate changes upward] Invoke
AdjustTree on L, also passing LL if a
split was performed

[Grow tree taller] If node split pro-
pagation caused the root to splt,
create a new root whose children are

A
the two resulting nodes

2

I3

14.

Algorithm ChooseLeaf Select a leaf node

n which to place a new index entry £

CLi [Imtiaize] Set N to be the root
node

[Leaf check] If N 1s a leaf, return N.

[Choose subtree] If N 1s not a leaf,
let F be the entry in N whose rec-
tangle F'] needs least enlargement to
include E'/ Resolve ties by choosing
the entry with the rectangle of smal-
lest area

[Descend until a leaf 1s reached.] Set
N to be the child node pomnted to by
Fp and repeat from CL2

CLR
CL3.

Cl4.

Algorithm AdjustTree Ascend from a leaf
node L to the root, adjusting covering rec-
tangles and propagating node splits as
necessary

AT1 [Imtiahize.] Set N=L If L was spht
previously, set NN to be the resulting
second node

[Check if done] If N 1s the root, stop
[Adjust covering rectangle mn parent
entry] Let P be the parent node of
N, and let Ep be N's entry in P
Adjust E); I so that 1t tightly encloses
all entry rectangles in N.

[Propagate node spht upward] If N
has a partner NN resulting from an
earher spht, create a new entry Eyy
with Eyy p pointing to NN and Eyy I
enclosing all rectangles in NN Add
Eyy to P if there 1s room. Otherwise,
invoke SplitNode to produce P and
PP contaiming Ejy and all P's old
entries

AT2
AT3

AT4

50

AT5 [Move up to next level.] Set N=P and
set NN=PP 1if a spht occurred.
Repeat from ATZ.

Algorithm SplitNode 1s described 1
Section 3.5.

3.3. Deletion
Algorithm Delete. Remove index record E
from an R-tree

(Find node contamning record]
Invoke Findleaf to locate the leaf
node L contaming £ Stop if the
record was not found.

T™a
vl

D2 [Delete record.] Remove £ from L

D3 [Propagate changes] Invoke Con-
denseTree, passing L.

D4 [Shorten tree.] If the root node has

only one child after the tree has
been adjusted, make the child the
new root

Algonthm FindLeaf. Given an R-tree whose
root node 1s 7, find the leaf node contain-
ing the ndex entry E.

FL1. [Search subtrees] If T 1s not a leaf,
check each entry F in T to deter-
mine if FI overlaps EI For each
such entry invoke FindLeaf on the
tree whose root 1s pointed to by Fp
until £ 1s found or all entries have
been checked

[Search leaf node for record] If T 1s
a leaf, check each entry to see if 1t
matches £ If E 1s found return T

FLR.

Algonnthm CondenseTree Given a leaf
node L from which an entry has been
deleted, ehrminate the node if 1t has too few
entries and relocate its entries Propagate
node ehmination upward as necessary.
Adjust all covering rectangles on the path
to the root, making them smaller if possi-
ble

CT1 [Imitiahze] Set N=L Set @, the set

of ehminated nodes, to be empty

[Find parent entry.] If N 1s the root,
go to CT6. Otherwise let P be the
parent of N, and let Ey be N’s entry

m P

[Eiminate under-full node.] If N has
fewer than m entnes, delete £y from

P and add N to set @.

CT2

CTa.

CT4 [Adjust covering rectangle] If N has
not been ehmnated, adjust Ey I to

tightly contamn all entries n N

CT5 [Move up one level in tree] Set N=P
and repeat from CT2.
CT6 [Re-insert orphaned entries] Re-

msert all entries of nodes in set @
Entrmes from ehminated leaf nodes
are re-mserted mn tree leaves as
described in Algorithm Insert, but
entries from higher-level nodes must
be placed higher 1n the tree, so that
leaves of theiwr dependent subtrees
will be on the same level as leaves of
the main tree

The procedure outhned above for
disposing of under-full nodes differs from
the corresponding operation on a B-tree,
m which two or more adjacent nodes are
merged A B-tree-hke approach 1s possible
for R-trees, although there 1s no adjacency
;n the B-tree sense: an under-full node
can be merged with whichever sibling will
have 1ts area increased least, or the
orphaned entries can be distributed among
sibing nodes Either method can cause
nodes to be split. We chose re-insertion
mnstead for two reasons first, it accom-
plishes the same thing and 1s easier to
mmplement because the Insert routine can
be used Efficiency should be comparable
because pages needed during re-insertion
usually will be the same ones visited during
the preceding search and will already be 1n
memory. The second reason 1s that re-
msertion incrementally refines the spatial
structure of the tree, and prevents gradual
detenoration that mght occur if each
entry were located permanently under the
same parent node

3.4. Updates and Other Operations

If a data tuple 18 updated so that its
covering rectangle 1s changed, its index
recori must be deleted, updated, and then
re-mnserted, so that 1t will find 1its way to
the right place 1n the tree

Other kinds of searches besides the one
described above may be useful, for example
to find all data objects completely con-
tamned 1n a search area, or all objects that
contain a search area These operations
can be mmplemented by straightforward
variations on the algorithm given A search
for a specific entry whose 1dentity 1s known

51

beforehand 1s required by the deletion
algorithm and 1s implemented by Algorithm
FindLeaf Varnants of range deletion, n
which index entries for all data objects in a
particular area are removed, are also well
supported by R-trees

3.5. Node Splitting

In order to add a new entry to a full
node containing ¥ entries, 1t 1s necessary
to divide the collection of M+1 entnes
between two nodes The division should be
done 1n a way that makes 1t as unlkely as
possible that both new nodes will need to
be examined on subsequent searches
Since the decision whether to visit a node
depends on whether its covering rectangle
overlaps the search area, the total area of
the two covering rectangles after a spht
should be mmmimized. Figure 3 1 illustrates
this point The area of the covering rec-
tangles in the “bad splht” case 1s much
larger than 1n the “good spht” case

The same criterion was used in pro-
cedure ChooseLeaf to decide where to
msert a new index entry at each level in
the tree, the subtree chosen was the one
whose covering rectangle would have to be
enlarged least

We now turn to algonthms for parti-

tioning the set of M+1 entries mto two
groups, one for each new node

3.5.1. Exhaustive Algorithm

The most straightforward way to find
the mimimum area node splhit is to generate
all possible groupings and choose the best
However, the number of possibilities 1s
approximately 2¥-1 and a reasonable value

|
|
i
|
|
I
|
I
L

_—— e e = b e - — - -

Bad spht Good spht

Figure 31

of M 1s 50°, so the number of possible sphts
1s very large We implemented a modified
form of the exhaustive algorithm to use as
a standard for comparison with other algo-
rithms, but 1t was too slow to use with large
node sizes

352 A Quadratic-Cost Algorithm

This algorithm attempts to find a
small-area spht, but 1s not guaranteed to
find one with the smallest area possible
The cost 1s quadratic in M and hinear 1n the
number of dimensions The algorithm
picks two of the M+1 entries to be the first
elements of the two new groups by choos-
ing the pair that would waste the most
area If both were put in the same group,
1e the area of a rectangle covering both
entries, minus the areas of the entries
themselves, would be greatest The
remaining entries are then assigned to
groups one at a time At each step the
area expansion required to add each
remaining entry to each group 1s calcu-
lated, and the entry assigned 1s the one
showing the greatest difference between
the two groups

Algonithm Quadratic Sphit Divide a set of
M+1 index entres into two groups

QS1 [Pick first entry for each group]
Apply Algorithm PickSeeds to choose
two entries to be the first elements
of the groups Assign each to a
group

[Check if done] If all entries have
been assigned, stop If one group has
so few entries that all the rest must
be assigned to 1t 1n order for it to
have the mnimum number m, assign
them and stop

[Select entry to assign] Invoke Algo-
rithm PickNext to choose the next
entry to assign Add it to the group
whose covering rectangle will have to
be enlarged least to accommodate 1t
Resolve ties by adding the entry to
the group with smaller area, then to
the one with fewer entries, then to
either Repeat from QS2

QS2

QS3

*A two dimensional rectangle can be
represented by four numbers of four bytes
each If a pomnter also takes four bytes,
each entry requires 20 bytes A page of
1024 bytes will hold about 50 entries

52

Algorithm PickSeeds Select two entries to
be the first elements of the groups

PS1 [Calculate inefficiency of grouping
entries together | For each pairr of
entries E'y and F,, compose a rectan-

gle J including F, I and £,/ Calcu-
late d= area(J) area(£ I)
area(£; I)

[Choose the most wasteful pair]
Choose the pair with the largest d

PS2

Algorithm PickNext Select one remammng
entry for classification 1n a group.

PN1 [Determine cost of putting each
entry in each group] For each entry
E not yet in a group, calculate d,=
the area increase required i the
covering rectangle of Group 1 to
include EI Calculate dy similarly

for Group 2

[Find entry with greatest preference
for one group] Choose any entry
with the maximum difference
between d, and d,

3.5.3. A Linear-Cost Algorithm

This algorithm is hinear in M and 1n the
number of dimensions Linear Spht 1s
1dentical to Quadratic Split but uses a
different version of PickSeeds PickNext
simply chooses any of the remaimng
entries

PN2

Algorithm linearPickSeeds Select two

entries to be the first elements of the

groups

LPS1 [Find extreme rectangles along all
dimensions | Along each dimension,
find the entry whose rectangle has
the highest low side, and the one
with the lowest high side Record the
separation

[Adjust for shape of the rectangle
cluster] Normalize the separations
by dividing by the width of the entire
set along the corresponding dimen-
sion

[Select the most extreme par]
Choose the pair with the greatest
normalized separation along any
dimension

LPS2

LPS3

4 Performance Tests

We implemented R-trees in C under
Unix on a Vax 11/780 computer, and used
our i1mplementation 1n a series of perfor-
mance tests whose purpose was to venfy
the practicality of the structure, to choose
values for M and m, and to evaluate
different node-splitting algorithms This
section presents the results

Five page sizes were _ tested,
corresponding to different values of M

Bytes per Page | Max Entries per Page (M)
128 6
256 12
512 25
1024 50
2048 102

Values tested for m, the mimimum number
of entries 1n a node, were M/2, M/ 3, and
2 The three node spht algorithms
described earlier were 1mplemented 1n
different versions of the program. All our
tests used two-dimensional data, although
the structure and algorithms work for any
number of dimensions

During the first part of each test run
the program read geometry data from files
and constructed an index tree, beginnmng
with an empty tree and calling sert with
each new index record Insert perfor-
mance was measured for the last 10% of
the recards, when the tree was nearly its
final s1ze During the second phase the
program called the function Search with
search rectangles made up using random
numbers 100 searches were performed
per test run, each retreving about 5% of
the data Finally the program read the
mput files a second time and called the
function Delete to remove the index record
for every tenth data item, so that measure-
ments were taken for scattered deletion of
10% of the index records The tests were
done using Very Large Scale Integrated cir-
cuit (VLSI) layout data from the RISC-II
computer chip [11] The circuit cell CEN-
TRAL, containing 1057 rectangles, was used
n the tests and 1s shown 1n Figure 4 1

Figure 4 2 shows the cost in CPU time
for inserting the last 10% of the records as
a function of page size The exhaustive
algorithm, whose cost increases exponen-
tially with page size, 1s seen to be very slow
for larger page si1zes The linear algorithm
1s fastest, as expected With this algorithm

53

Figure 4.1
Circuit cell CENTRAL (1057 rectangles)

CPU time hardly increased with page size
at all, which suggests that node splitting
was responsible for only a small part of the
cost of inserting records The decreased
cost of insertion with a stricter node bal-
ance requirement reflects the fact that
when one group becomes too full, all splt
algorithms simply put the remaining ele-
ments 1n the other group without further
comparisons

The cost of deleting an item from the
index, shown in Figure 43, 1is strongly
affected by the minimum node fill require-
ment When nodes become under-full,
theiwr entries must be re-inserted, and re-
Insertion sometimes causes nodes to spht
Stricter fill requirements cause nodes to
become under-full more often, and with
more entries Furthermore, splhts are more
frequent because nodes tend to be fuller
The curves are rough because node elhmi-
nations occur randomly and infrequently;
there were too few 1 our tests to smooth
out the vanations

Figures 44 and 4.5 show that the
search performance of the index 1is very

200t Em=2 ; E= Exhaustive algorithng
// Q = Quadratic algorithm
100 / L = Linear algorithm
/ —

CPU / / Em=M/2
msec 50}
per
msert /

20

t /
10F
5
128 258 512 1024 2048
Bytes per page
Figure 4 2
CPU cost of mserting records
i IR =5 sy A
Em=M/2 Q= Quadratic algorithm

cpu 50} / = Linear algorithm {Lm=u /2
msec Qm=M/2
per
delete

2048

1024
Bytes per page

256 51T
Figure 4 3
CPU cost of deleting records

inserisilive to the use of different node
spht algonthms and fill requirements The
exhaustive algorithm produces a shghtly
better index structure, resulting in fewer
pages touched and less CPU cost, but most
combmations of algorthm and fill require-
ment come within 10% of the best All algo-
rithms provide reasonable performance

Figure 46 shows the storage space
occupled by Lhe index tree as a function of
algorithm, fill criterion and page size Gen-
erally the results bear out our expectation
that stricter node fill criteria produce
smaller indexes The least dense index
consumes about 50% more space than the
most dense, but all results for 1/2-full and
1/3-full (not shown) are within 15% of each
other

A second series of tests measured R-
tree performance as a function of the
amount of data in the index The same
sequence of test operations as before was

54

8F. E= Exhaustwe algorithm -
K Q = Quadratic algorithm
Pages 5 Y L = Linear algorithm
touched m=
per 4}
quabfying
record 3|
2t
Lm=M/2
1} Q m=2
- U L1~ 7
128 258 512 1024 2048
Bytes per page
Figure 4 4

Search performance Pages touched

500| E = Exhaustive algorithm _
CPU Q = Quadratic algorithm L m=M/2
[L = Linear algorithm e
usec gno] 7
per Q m=M/2
quahfymng } Lm=2
record gggl 1Q m=2
200 ==z
%
LE m=2 Em=M/2
100 N A P W T T T
128 258 512 1024 2048
Bytes per page
Figure 4 5
Search performance CPU cost
" E = Exhaustive a'lg.o;‘lltil;x'l'
dratic algorithm |
50k} Em=2 Q Qua 4
= Linear algorithm Qm=2
45k |——¥= .
Bytes 40k[1
requred Lm=2

35k} 4L m=M/2

Qm=M/2

30k}

512 1024 2048

Bytes per page

128 258

Figure 4 6
Space efficiency

run on samples contamming 1057, 2238,
3295, and 4559 rectangles. The first sam-
ple contamed layout data from the circuat
cell CENTRAL used earlier, and the second
consisted of layout from a simlar but
larger cell containing 2238 rectangles The
third sample was made by using both

CENTRAL and the larger cell, with the two
cells effectively placed on top of each
other. Three cells were combined to make
up the last sample Because the samples
were composed 1n different ways using
varying data, performance results do not

scale perfectly and some unevenness was
to be expected

Two combinations of spht algorithm and
node ﬁll reqmrement were chosen for the
LCSLS LI].B Luteur i‘.l.lgOI'lLIL[Il WILII) —-6, d.[.l(l
the quadratic algorithm with m=M/3,
both with a page size of 1024 bytes (M=50)

Figure 4 7 shows the results of tests to

At arrmmirnas ha maart ard Aalata manfan.
UCLVCIlLIULIC l..l.U “ LIOoCI Vv dallu utliTLuve peilivi

mance 1s affected by tree size. Both test
configurations produced trees with two lev-
els for 1057 records and three levels for
the other sample sizes The figure shows
that the cost of inserts with the quadratic
algorithm 1s nearly constant except where
the tree mmcreases 1n height There the
curve shows a defimte jump because of the
increase 1n the number of levels where a
sphit can occur The linear algorithm shows
no jump, indicating again that hnear node
sphts account for only a small part of the
cost of inserts.

No node sphts occurred during the
deletion tests with the linear configuration,
because of the relaxed node fill require-
ment and the small number of data items.
As a result the curve shows only a small
jump where the number of tree levels
increases Deletion with the quadratic

Q= Qua:iratlc algo'nthm. m=il/ 3
L = Linear algorithm, m=2
40}
CPU msec Q msert
per 30F
insert
de 20 delet,
delete 20 L delete Q delete
10 / L nsert
100D 2000 3000 4000 5000
Number of records
Figure 4 7

CPU cost of mserts and deletes
vs amount of data

55

configuration produced only 1 to 8 node
sphts, and the resulting curve 1s very
rough When allowance 1s made for vana-
tions due to the small sample size, the
tests show that insert and delete cost 1s
mdependent of tree width but 1s affected

by tree height, which grows slowly with the
number of data items

Figures 48 and 4.9 confirm that the
two conﬁguratlons have nearly the same
search performance Each search
retrieved between 3% and 8% of the data
The downward trend of the curves 1s to be
expected, because the cost of processing
higher tree nodes becomes less significant
as the amount of data retrieved mn each
search 1increases The increase 1 the
number of tree levels kept the cost from
dropping between the first and second
data points. The low CPU cost per qualfy-
Ing record, less than 150 mucroseconds for
larger amounts of data, shows that the
index 1s quite effective 1n narrowing
searches to small subtrees

The straight hnes in Figure 4 10 reflect
the fact that almost all the space 1n an R-
tree index 1s used for leaf nodes, whose
number varies hnearly with the amount of
data For the Linear-2 test configuration
the total space occupied by the R-tree was
about 40 bytes per data item, compared to
20 bytes per item for the index records
alone The corresponding figure for the
Quadratic-1/3 configuration was 33 Bytes
per 1tem

15 Q= duadra’uc a'lgonthm. m=M/3
L = Linear algorithm, m=2
Pages
touched ! |
per
quallying Q
record
05t L
1000 2000 3000 4000 5000
Number of records
Figure 4 8
Search performance vs amount of data-
Pages touched

300 T T
2501 \
CPU usec
per 2004
quahiying
record 150} Q
100} ‘"
50 t Q = Quadratic algonnthm, m=M/3
L = Linear algonthm, m=2
1000 2000 3000 4000 5000
Number of records
Figure 4 9
Search performance vs amount of data
CPU cost
200k T T T
Q = Quadratic algonthm, m=M/3 _ L
L = Linear algorithm, m=2
150k | Q 1
Bytes
required
100k |
50k |
1000 2000 3000 4000 5000
Number of records
Figure 4 10

Space required for R-tree
vs amount of data

5. Conclusions

The R-tree structure has been shown to
be useful for indexing spatial data objects
that have non-zero size Nodes
corresponding to disk pages of reasonable
size (e g 1024 bytes) have values of M that
produce good performance With smaller
nodes the structure should also be
effective as a main-memory index, CPU per-
formance would be comparable but there
would be no 170 cost

The linear node-spht algorithm proved
to be as good as more expensive tech-
nmques It was fast, and the shghtly worse
quahty of the sphits did not affect search
performance noticeably

56

Prehiminary investigation indicates that
R-trees would be easy to add to any rela-
tional database system that supported
conventional access methods, (e g INGRES
[9], SystemrR [1]) Moreover, the new
structure would work especially well n
conjunction with abstract data types and
abstract indexes [14] to streamline the

handlineg nf enatinl Aot
u.cusu.u.us Vi Dyﬂblm uava

6. References

1 M Astrahan, et al, System R
Relational Approach to Database
Management, ACM Transactions on
Database Systems 1, 2 (June 1976),
97-137

R Bayer and E McCreight,
Orgamization and Mamntenance of
Large Ordered Indices, Proc 1970
ACM-SIGFIDET Workshop on Data
Descrplion and Access, Houston,
Texas, Nov. 1970, 107-141

J L Bentley, Multidimensional Bmnary
Search Trees Used for Associative
Searching, Communications of the
ACM 18, 9 (September 1975), 509-517

J L Bentley, D F. Stanat and E H
Wilhiams, Jr, The complexity of fixed-
radius near neighbor searching, hnf
Proc Lett 6, 6 (December 1977), 209-
212

J L Bentley and J H Friedman, Data
Structures for Range Searching,
Computing Surveys 11, 4 (December
1979), 397-409

D Comer, The Ubiquitous B-tree,
Computing Surveys 11, 2 (1979), 121-
138

R A Finkel and J L Bentley, Quad
Trees - A Data Structure for Retrneval
on Composite Keys, Acta mformatica
4, (1974), 1-9

A Guttman and M Stonebraker, Using
a Relational Database Management
System for Computer Aided Design
Data, IEEE Database Fngineering 5, 2
(June 1982)

G Held, M Stonebraker and E Wong,
INGRES A Relational Data Base
System, Proc AFIPS 1975 NCC 44,
(1975), 409-416

K Hinnchs and J Nievergelt, The Grid
File A Data Structure Designed to
Support Proximity Queries on Spatial
Objects, Nr 54, Institut fur

10

11.

12

13.

14

15

186.

Informatik, Eidgenossische Technische
Hochschule, Zurich, July 1983

M G. H Katevenis, R. W Sherburne, D
A Patterson and C H Séqun, The
RISC I Micro-Architecture, Proc VLSI
83 Conference, Trondheimn, Norway,
August 1983

J K Ousterhout, Corner Stitching A
Data Structuring Technique for VLSI
Layout Tools, Computer Science
Report Computer Science Dept
82/114, Umversity of Cahforma,
Berkeley, 1982

J T Robinson, The K-D-B Tree A
Search Structure for Large
Multidimensional Dynamic Indexes,
ACM-SIGMOD Conference Proc, Aprl
1981, 10-18

M Stonebraker, B Rubenstein and A
Guttman, Application of Abstract Data
Types and Abstract Indices to CAD
Data Bases, Memorandum No
UCE/ERL M83/3, Electronics Research
Laboratory, Umversity of Califorma,
Berkeley, January 1983

K C Wong and M Edelberg, Interval
Hierarchies and Their Application to
Predicate Files, ACM Transactions on
Database Systems 2, 3 (September
1977), 223-232

G. Yuval, Finding Near Neighbors in
k-dimensional Space, lnf Proc Lett 3,
4 (March 1375), 113-114

57

