
R-TREES. A DYNAMIC INDEX STRUCTURE
FOR SPATIAL SEARCHING

Antomn Guttman
University of Cahforma

Berkeley

Abstract
In order to handle spatial data efficiently, as required in computer aided design and

geo-data applications, a database system needs an mdex mechanism that ti help it
retrieve data items quickly accordmg to their spatial locations However, traditional
mdexmg methods are not well suited to data oblects of non-zero size located m multi-
dimensional spaces In this paper we describe a dynarmc mdex structure called an R-tree
winch meets this need, and give algorithms for searching and updatmg it. We present the
results of a series of tests which indicate that the structure performs well, and conclude
that it is useful for current database systems m spatial applications

1. Intxoduction
Spatial data oblects often cover areas

m multi-dimensional spaces and are not
well represented by pomt locations For
example, map objects like counties, census
tracts etc occupy regions of non-zero size
m two dnnenslons A common operation on
spatial data 1s a search for all oblects m an
area, for example to find all counties that
have land mthm 20 nnles of a particular
pomt Tl~s kmd of spatial search occurs
frequently m computer tided design (CAD)
and geo-data applications, and therefore it
1s unportant to be able to retneve oblects
efficiently according to their spatial loca-
tion

‘llus research was sponsored by National
Science Foundation grant ECS-8300463
and An Force Ofi?ce of Scientific Research
grant AFOSR-83-0254
Pcrnuwon to copy mthout fee all of part of tlus matcnal Is granted

prowled that the copses are not made or dmtnbutai for drrcct

commcrctal advantage, the ACM copyright nohcc and the tltk of the

pubbcauon and its date appear, and nottce u gwcn that copying L) by

pcrnusslon of the Assoctauon for Computmg Macluncry To copy

othc~~~sc, or to rcpubbsh, rqmrcs a fee and/or spcctfii pernuwon

0 1984 ACM O-89791-128-8/84/006/0047 $00 75

An mdex based on obJects’ spatial loca-
tions 1s desirable, but classical one-
dunenaonal database mdexmg structures
are not appropriate to multi-dimensional
spatial searchmg Structures based on
exact matchmg of values, such as hash
tables, are not useful because a range
search 1s requed Structures usmg one-
dnnenslonal ordermg of key values, such as
B-trees and ISAM mdexes, do not work
because the search space is multl-
dnnenslonal

A number of structures have been pro-
posed for handling muhi-dimensional point
data, and a survey of methods can be
found m [5] Cell methods [4,8,16] are not
good for dynamic structures because the
cell boundmes must be decided m
advance Quad trees [i’) and k-d trees [3]
do not take pagmg of secondary memory
into account. K-D-B trees [13] are
designed for paged memory but are useful
only for pomt data The use of mdex mter-
vals has been suggested m [15], but tlus
method cannot be used m multiple dnnen-
sions Corner stitchmg [121 is an example
of a structure for two-dimensional spatial
searchmg smtable for data objects of non-
zero size, but it assumes homogeneous pr~
mary memory and 1s not e-lent for ran-
dom searches m very large collections of
data. Grid files [lo] handle non-pomt data
by mapping each object to a point in a

47

higher-cllmenslonal space In this paper we
descnbe an alternative structure called an
R-tree wmch represents data objects by
mtervals in several dnnenslons

Section 2 outhnes the structure of an
R-tree and Section 3 gives algornhms for
searchmg, msertmg, deletmg, and updat-
mg Results of R-tree mdex performance
tests are presented m Section 4 Section 5
contams a summary of our conclusions

2. R-Tree Index Structure
An R-tree 1s a height-balanced tree

slrmlar to a B-tree [Z, 61 Pnth mdex records
in its leaf nodes contammg pomters to
data objects Nodes correspond to disk
pages If the mdex 1s &Sk-resident, and the
structure 1s designed so that a spatial
search requnes visltmg only a small
number of nodes The mdex 1s completely
dynannc; inserts and deletes can be mter-
rmxed pnth searches and no penodlc reor-
gamzatlon 1s requn-ed.

A spatial database consists of a collec-
tion of tuples representmg spatial objects,
and each tuple has a umque ldenttier
wluch can be used to retneve it Leaf
nodes m an R-tree contam mdex record
entnes of the form

(I, tupte -w!enCtfier)

where tu#e -cdentijier refers to a tuple m
the database and I 1s an n-dunenaonal
rectangle wlvch 1s the boundmg box of the
spatial object mdexed

Here n 1s the number of dnnenaons and JT,
is a closed bounded mterval [a ,b] descnb-
mg the extent of the object along dnnen-
sion i. Alternatively 4 may have one or
both endpoints equal to mfhuty, mdlcatmg
that the object extends outward
mdefimtely Non-leaf nodes contam
entnes of the form

(I, child -powder)

where chdd -poznter 1s the address of a
lower node in the R-tree and I covers all
rectangles m the lower node’s entnes

Let Y be the maxmum number of
entn3 that snll At m one node and let
ml- 2 be a parameter speclfymg the

nnnnnum number of entnes m a node An
R-tree satisfies the followmg properties

Cl1

(2)

(3)

(4)

(5)

(6)

Every leaf node contalns ‘between m
and Y mdex records unless it 1s the
root
For each mdex record
(I, tuple -zdent@er) m a leaf node, I 1s
the smallest rectangle that spatially
contams the n-dnnenslonal data obJect
represented by the mdlcated tuple
Every non-leaf node has between m
and M chndren unless it 1s the root
For each entry (I, child -poznter) ur a
non-leaf node, I 1s the smallest rectan-
gle that spatially contams the rectan-
gles m the child node
The root node has at least two cmdren
unless it is a leaf
All leaves appear on the same level
Figure 2 la and 2 lb show the structure

of an R-tree and illustrate the contamment
and overlappmg relatlonshps that can
exist between its rectangles

The height of an R-tree co tamm N
index records is at most ? pg,

4
-1,

because the branchmg factor of each node
is at least. rn. *The .maximum number of

nodes 1s + 1 Worst-case

space ut&at;on for’all nodes except the
root is m M Nodes pvlll tend to have more

than m entnes, and ths will decrease tree
height and nnprove space utfizatlon If
nodes have more than 3 or 4 entnes the
tree 1s very mde, and almost all the space
1s used for leaf nodes con&rung mdex
records The parameter m can be vaned
as part of performance tumng, and
dflerent values are tested expenmentally
m Section 4

3. Searchmg and Updating

3.1. Searching
The search algorithm descends the tree

from the root m a manner snnrlar to a B-
tree However, more than one subtree
under a node vlslted may need to be
searched, hence It 1s not possible to
guarantee good worst-case performance
Nevertheless w&h most kmds of data the
update algonthms ti mamtam the tree m
a form that allows the search algonthm to
ehmmate irrelevant regions of the indexed
space, and examme only data near the

48

Shape of

:R~ - - - - - - -“‘zi;l;- - - - -;

I iT4-
1,----J----
I , R3
II
II
II

; RlO ;
rl 1

l&J--
I ---------J’
I I

_______ =======-------------------J

tb)
Figure 3 1

search area S2 [Search Ieaf node] If T 1s a leaf, check
In the followmg we denote the rectan- all entnes E to determme whether EI

gle part of an index entry E by EI, and the overlaps S If so, E is a quahfymg
buple -zdenh.er or chdd -pomter part by record

EP 3 2. Insertion

Algorithm Search. Given an R-tree whose
root node 1s T, find all index records whose
rectangles overlap a search rectangle S
Sl [Search subtrees] If T 1s not a leaf,

check each entrv E to deterrmne

Insertmg mdex records for new data
tuples 1s zmmlar to msertlon III a B-tree m
that new mdex records are added to the
leaves, nodes that overflow are spht, and
sphts propagate up the tree

whether EI overla& S For all overlap-
pmg entries, mvoke Search on the tree Algorithm Insert Insert a new mdex entry

whose root node 1s pomted to by Ep
E mto an R-tree

49

11 [Fmd posltlon for new record]
Invoke ChooseLeaf to select a leaf
node L m whch to place E

12 [Add record to leaf node] If L has
room for another entry, mstaI.l E
Othemse mvoke SplitNode to obtam
L and U contammg E and all the
old entrees of L

13 [Propagate changes upward] Invoke
AdjustTree on L, also passmg U If a
spht was performed

14. [Grow tree taller] If node spht pro-
pagation caused the root to spht,
create a new root whose cmdren are
the two resultmg nodes

Algorithm ChooseLeaf Select a leaf node
111 which to place a new mdex entry E
CL1

CL2
CL3.

CLA

[h-&u&e] Set N to be the root
node
[Leaf check] If N 1s a leaf, return N.
[Choose subtree] If N 1s not a leaf,
let F be the entry m N whose rec-
tangle FI needs least enlargement to
mclude EI Resolve ties by choosmg
the entry vnth the rectangIe of smal-
lest area
[Descend until a leaf 1s reached.] Set
N to be the cMd node pomted to by
Fp and repeat from CL2

Algolrthm AdjustRee Ascend from a leaf
node L to the root, adjustmg covermg rec-
tangles and propagatmg node sphts as
necessary
AT1 [Imtlahze.] Set N=L If L was spht

previously, set NN to be the resultmg
second node

AT2 [Check If done] If N 1s the root, stop
AT3 [AdJust covermg rectangle m parent

entry] Let P be the parent node of
N, and let EN be N’s entry m P
Adjust EN I so that it tightly encloses
all entry rectangles m N.

AT4 [Propagate node spht upward] If N
has a partner NN resultmg from an
earher spht, create a new entry Em
mth ENNp pointmg to NN and Em I

enclosmg all rectangles m NN Add
Em to P If there 1s room Othemse,
mvoke SplitNode to produce P and
PP contmg Em and all P’s old
entrees

AT5 [Move up to next level.] Set N=P and
set NN=PP If a spht occurred,
Repeat from AT2.

AlgoMhm SplitNode 1s described m
Sectlon 3.5.

3.3. Deletion
Algorithm Delete. Remove mdex record E
from an R-tree
Dl

D2
D3

D4

[Fmd node contammg record]
Invoke F’indLeaf to Iocate the leaf
node L contammg E Stop d the
record was not found.
[Delete record.] Remove E from L
[Propagate changes]
denseTree, passmg L.
[Shorten tree.] If the
only one clvld after
been adjusted, make
new root

Invoke Con-

root node has
the tree has
the cMd the

Algollthm F’mdLeaf. Given an R-tree whose
root node 1s T, find the leaf node contam-
mg the mdex entry E.
FLl.

FL2.

[Search subtrees] If T 1s not a leaf,
check each entry F m T to deter-
mme d FI overlaps E I For each
such entry myoke FindLeaf on the
tree whose root 1s pomted to by Fp
until E 1s found or all entnes have
been checked
[Search leaf node for record] If T 1s
a leaf, check each entry to see ff it
matches E If E 1s found return T

Algorithm CondenseTree Given a leaf
node L from whch an entry has been
deleted, ehnnnate the node If it has too few
entnes and relocate its entnes Propagate
node ehmmatron upward as necessary.
AdJust all covermg rectangles on the path
to the root, makmg them smaller If possi-
ble
CT1

CT2

[Imtlahze] Set N=L Set Q, the set
of elmnnated nodes, to be empty
[Fmd parent entry.] If N 1s the root,
go to CT& Othemse let P be the
parent of N, and let EN be N’s entry
IIlP
[Ehnnnate under-full node.] If N has
fewer than m entmes, delete EN from
P and add N to set Q.

CT3,

50

--

CT4 [Adjust covering rectangle] If N has
not been elunmated, adJust EN I to
tightly contam all entnes m N

CT5 [Move up one level m tree] Set N=P
and repeat from CT2.

CT6 [Re-msert orphaned entnes] Re-
msert all entnes of nodes m set Q
Entnes from ehmmated leaf nodes
are re-mserted m tree leaves as
described m Algorithm Insert., but
entrees from higher-level nodes must
be placed hgher 111 the tree, so that
leaves of therr dependent subtrees
wdl be on the same level as leaves of
the mam tree

The procedure outhned above for
dlsposmg of under-full nodes dflers from
the correspondmg operation on a B-tree,
m which two or more adlacent nodes are
merged A B-tree-l&e approach 1s possible
for R-trees, although there 1s no adlacency
m the B-tree sense: an under-full node
can be merged mth whchever slblmg will
have its area mcreased least, or the
orphaned entnes can be dlstnbuted among
slblmg nodes Either method can cause
nodes to be spht. We chose re-msertlon
mstead for two reasons first., it accom
phshes the same t* and 1s easier to
rmplement because the Insert routme can
be used Efficiency should be comparable
because pages needed durmg re-msertlon
usually wdl be the same ones vlslted durmg
the preceding search and ~I.U already be m
memory. The second reason 1s that re-
msertlon incrementally reties the spatial
structure of the tree, and prevents gradual
deterloratlon that nnght occur If each
entry were located permanently under the
same parent node

3.4. Updates and Other Operations
lf a data tuple 1s updated so that its

covermg rectangle 1s changed, its mdex
record must be deleted, updated, and then
re-mserted, so that it Hnll find its way to
the light place m the tree

Other kmds of searches besides the one
described above may be useful, for example
to find all data objects completely con-
tamed III a search area, or all obJects that
contam a search area These operations
can be nnplemented by strwhtforward
vmatlons on the algonthmglven A search
for a specific entry whose identity 1s known

beforehand 1s requed by the deletion
algolrthm and 1s unplemented by Algonthm
F’indLeaf Vmants of range deletion, m
wluch mdex entnes for all data obJects m a
particular area are removed, are also well
supported by R-trees

3.5. Node Splitting
Tn order to add a new entry to a full

node contammg M entlres, it 1s necessary
to dlvlde the collection of M+l entnes
between two nodes The dlvlslon should be
done m a way that makes it as unhkely as
possible that both new nodes mll need to
be exammed on subsequent searches
Smce the decision whether to mslt a node
depends on whether its covenng rectangle
overlaps the search area, the total area of
the two covermg rectangles after a spht
should be mzed. Figure 3 1 dustrates
tlvs pomt The area of the covermg rec-
tangles m the “bad spht” case 1s much
larger than m the “good spht” case

The same crltelron was used m pro-
cedure ChooseLeaf to decide where to
msert a new mdex entry at each level m
the tree, the subtree chosen was the one
whose covermg rectangle would have to be
enlarged least

We now turn to algollthms for partl-
tlomng the set of M+ 1 entnes mto two
groups, one for each new node

3.5.1. Exhaustive Algorithm
The most strrughtforward way to find

the mmunurn area node spht 1s to generate
all possible groupmgs and choose the best
However, the number of posslbtitles 1s
approxnnately Z”-’ and a reasonable value

-----.

1
I
L-----

-- ,- - - ---

1
I
L-

--,
---c----i
___----I

lr ---
Bad spht Good spht

Figure 3 1

51

of M 1s 50*, so the number of possible sphts
1s very large We implemented a modified
form of the exhaustive algorithm to use as
a standard for compartson mth other algo-
zrthms, but It was too slow to use mth large
node sizes

3 5 2 A Quadratic-Cost Algorithm
Tl~s algor?thm attempts to find a

small-area spht, but IS not guaranteed to
find one w-&h the smallest area possible
The cost 1s quadratic m M and hnear m the
number of dnnenslons The algorithm
picks two of the M+l entnes to be the first
elements of the two new groups by choos-
mg the pm that would waste the most
area If both were put m the same group,
1 e the area of a rectangle covermg both
eptnes, mmus the areas of the entries
themselves, would be greatest The
remammg entrres are then assigned to
groups one at a tune At each step the
area expansion requred to add each
remammg entry to each group 1s calcu-
lated, and the entry assigned 1s the one
show-mg the greatest dflerence between
the two groups

Algorithm Quadratic Spht Dlvlde a set of
A?+1 : index entnes mtotwo groups
Qsl

Q=

QS3

[Pick Arst entry for each group]
Apply Algorithm PickSeeds to choose
two entries to be the first elements
of the groups Assign each to a
group
[Check If done] If all entnes have
been assigned, stop If one group has
so few entries that all the rest must
be assigned to it m order for it to
have the muumum number m, assign
them and stop
[Select entry to assign] Invoke Algo-
rithm PickNext to choose the next
entry to assign Add it to the group
whose covermg rectangle pvlll have to
be enlarged least to accommodate it
Resolve ties by addmg the entry to
the group mth smaller area, then to
the one mth fewer entries, then to
either Repeat from QS2

*A two dunenslonal rectangle can be
represented by four numbers of four bytes
each If a pomter also takes four bytes,
each entry requu-es 20 bytes A page of
1024 bytes ~I.U hold about 50 entnes

Algorithm PickSeeds Select two entrees to
be the first elements of the groups
PSl [Calculate mefficiency of groupmg

entnes together] For each pm of
entl-les El and E2, compose a rectan-
gle J mcludmg El I and E2 I Calcu-
late d = area(J) - area(El I) -
area(E2 I)

PS2 [Choose the most wasteful pm]
Choose the pau- mth the largest d

Algorithm PlckNext Select one remanung
entry for clasticatlon m a group.
PNl

PN2

[Determme cost of puttmg each
entry m each group] For each entry
E not yet m a group, calculate d,=
the area mcrease requu-ed m the
covermg rectangle of Group 1 to
include EI Calculate d2 slrmlarly
for Group 2
[Fmd entry mth greatest preference
for one group] Choose any entry
vvlth the maximum dflerence
between d 1 and d2

3.5.3. A Linear-Cost Algollthm
Tlus algorithm 1s lmear m M and m the

number of dunenslons Linear Spht 1s
ldentlcal to Quadratic Split but uses a
different version of PickSeeds PickNext
sunply chooses any of the remammg
entries

Algorithm LmearPlckSeeds Select two
entries to be the first elements of the
groups
LPSl

LPS2

LIPS3

[Fmd extreme rectangles along all
dunenslons] Along each dunenslon,
find the entry whose rectangle has
the hghest low side, and the one
mth the lowest high side Record the
separation
[AdJust for shape of the rectangle
cluster] Normahze the separations
by dlvldlng by the mdth of the entire
set along the correspondmg dnnen-
sion
[Select the most extreme pm]
Choose the pm vvlth the greatest
normalized separation along any
dunenslon

52

4 Performance Tests
We implemented R-trees m C under

Umx on a Vax 11/780 computer, and used
our implementation 112 a series of perfor-
mance tests whose purpose was to verify
the practicality of the structure, to choose
values for M and m, and to evaluate
different node-splitting algorithms This
section presents the results

cc)r I-
Five tested,
respond!&gfo ii&g& vz:t of M
Bytes per Page Max Entnes per Page (M)

128
256
512

1024
2048

6

E
50

102

Values tested for m, the mmnnum number
of entries m a node, were M/ 2, M/3, and
2 The three node split algonthms
described earlier were implemented m
different versions of the program. All our
tests used two-dimensional data, although
the structure and algorithms work for any
number of dimensions

During the first part of each test run
the program read geometry data from files
and constructed an index tree, begmnmg
with an empty tree and calling kwert mth
each new mdex record Insert perfor-
mance was measured for the last 10% of
the records, when the tree was nearly its
final size During the second phase the
program called the function Search wnh
search rectangles made up using random
numbers 100 searches were performed
per test run, each retrievmg about 5% of
the data Finally the program read the
mput files a second tune and called the
function Ddete to remove the index record
for every tenth data item, so that measure-
ments were taken for scattered deletion of
10% of the index records The tests were
done using Very Large Scale Integrated cir-
crut (VLSI) layout data from the RISC-II
computer chip [ll] The circuit cell CEN-
TRAL, contammg 1057 rectangles, was used
m the tests and is shown m Figure 4 1

Figure 4 2 shows the cost m CPU tune
for msertmg the last 10% of the records as
a function of page size The exhaustive
algorithm, whose cost increases exponen-
tially vnth page size, is seen to be very slow
for larger page sizes The linear algorithm
is fastest, as expected With this algorithm

Figure 4.1
Clrctut cell CENTRAL (1057 rectangles)

CPU tune hardly increased pvlth page size
at all, which suggests that node sphttmg
was responsible for only a small part of the
cost of msertmg records The decreased
cost of msertlon w-Ah a stricter node bal-
ance reqturement reflects the fact that
when one group becomes too full, all spht
algorithms simply put the remammg ele-
ments m the other group mthout further
comparisons

The cost of deletmg an item from the
index, shown m Figure 4 3, is strongly
affected by the muumum node fill reqture-
ment When nodes become under-full,
their entries must be re-inserted, and re-
insertion sometimes causes nodes to spht
Stricter fill requnements cause nodes to
become under-full more often, and mth
more entries Furthermore, splits are more
frequent because nodes tend to be fuller
The curves are rough because node elunr-
nations occur randomly and mfrequently;
there were too few m our tests to smooth
out the variations

Figures 4 4 and 4.5 show that the
search performance of the mdex is very

53

E = Ekhaustwe algont
Q = Quadra& algorkhm
L = Linear algorithm

-----__ - Lm=2
,-------Lm=M/2

5L 128 256 512 1024 2048 J
Bytes per page

Frgure 4 2
CPU cost of msertmg records

100 I
k tiu;rtl;re 4&&k!&

E m=M/2 Q = Quadratic algorithm

CPU 50- /
L = knear algorithm

msec
p=r i
delete /

20. /

128 258 512 1024 2048
Bytes per page

Figure 4 3
CPU cost of deletmg records

inselisltive to the use of different node
spht algolrthms and fill requrrements The
exhaustive algonthm produces a shghtly
better mdex structure, resultmg m fewer
pages touched and less CPU cost, but most
combmatrons of algornhm and fill requu-e-
ment come v&hm 10% of the best All algo-
rrthms provide reasonable performance

Figure 4 6 shows the storage space
occupied by the mdex tree as a fun&on of
algorithm,, fill criterron and page size Gen-
erally the results bear out our expectation
that strrcter node fill clrtena produce
smaller mdexes The least dense mdex
consumes about 50% more space than the
most dense, but ah results for l/2-full and
l&full (not shown) are mthm 15% of each
other

A second semes of tests measured R-
tree performance as a function of the
amount of data m the mdex The same
sequence of test operations as before was

. I111.111,

E =’ Exhaukve algorithm
Q = QuadratIc algorithm
L = Lmear algorithm

128 258 512 1024 2048
Bytes per page

Figure 4 4
Search performance Pages touched

100
128 258 512 1024 2048

Bytes per page

Frgure 4 5
Search performance CPU cost

E = Exhaustwe algorithm

Em=M/2 --.--._ Lm=2

30k.

-
128 256 512 1024 2048

Bytes per page

Figure 4 6
Space efficiency

run on samples contammg 1057, 2236,
3295, and 4559 rectangles. The first sam-
ple contamed layout data from the crrcurt
cell CENTRAL used earher, and the second
consisted of layout from a slrmlar but
larger cell contauung 2238 rectangles The
thud sample was made by usmg both

54

CENTRAL and the larger cell, Pnth the two
cells effectively placed on top of each
other. Three cells were combmed to make
up the last sample Because the samples
were composed m dlff’erent ways usmg
varymg data, performance results do not
scale perfectly and some unevenness was
to be expected

Two combmatlons of spht algonthm and
node fill requtrement were chosen for the
tests the hnear algolrthm wrth m=Z, and
the quadratic algorithm with m=M/ 3,
both Pnth a page aze of 1024 bytes (M=50)

Fqure 4 ‘7 shows the results of tests to
determme how msert and delete perfor-
mance 1s affected by tree size. Both test
configurations produced trees Pnth two lev-
els for 1057 records and three levels for
the other sample azes The figure shows
that the cost of mserts mth the quadratic
algorithm 1s nearly constant except where
the tree mcreases m height There the
curve shows a defimte lump because of the
mcrease m the number of levels where a
spht can occur The lmear algorithm shows
no lump, mdlcatmg agam that lmear node
sphts account for only a small part of the
cost of mserts.

No node sphts occurred durmg the
deletion tests vJlth the lmear configuration,
because of the relaxed node fill requn-e-
ment and the small nurnber of data items.
As a result the curve shows only a small
hump where the number of tree levels
mcreases Deletion mth the quadratic

.
Q = Quadratic algorithm,, m=M/3
L = Lmear algolrtb m=2

1000 2ooo 3000 4000 5000
Number of records

Figure 4 7
CPU cost of mserts and deletes

vs amount of data

configuration produced only 1 to 6 node
sphts, and the resultmg curve 1s very
rough When allowance 1s made for vma-
tlons due to the small sample size, the
tests show that msert and delete cost 1s
mdependent of tree mdth but 1s afTected
by tree height, wluch grows slowly pnth the
nur&er of data items

Figures 4 8 and 4.9 confirm that the
two configurations have nearly the same
search performance Each search
retneved between 3% and 6% of the data
The downward trend of the curves 1s to be
expected, because the cost of processmg
lgher tree nodes becomes less significant
as the amount of data retlreved m each
search mcreases The mcrease m the
number of tree levels kept the cost from
droppmg between the first and second
data pomts. The low CPU cost per quahfy-
mg record, less than 150 nncroseconds for
larger amounts of data, shows that the
mdex 1s quite effective m narrowmg
searches to small subtrees

The straght lures m Figure 4 10 reflect
the fact that almost all the space m an R-
tree mdex 1s used for leaf nodes, whose
number vmes lmearly mth the amount of
data For the Lmear-2 test configuration
the total space occupied by the R-tree was
about 40 bytes per data item, compared to
20 bytes per item for the mdex records
alone The correspondmg figure for the
Quadratic-l /3 configuration was 33 Bytes
per item

15

Pages
touched 1

per
W~YW.2
record

05

Q = &adrab &orkhm, &M/3
L = Lmear algorithm m=2

1000 2000 3000 4000 50

Number of records

Figure 4 8
Search performance vs amount of data*

Pages touched

55

CPU usec
Per

record 150 .

100 .

50 - Q = Quadratlc algonthm, m=M/3 -
L = Lmear algonthm, m=2

1000 2000 3000 4000 5000

Number of records

Figure 4 9
Search performance vs amount of data

CPU cost

200k

150k
Bytes
reqwed

1OOk

50k

Q = Quadratic algonthm, m=M/3, L

L = hear algorithm,, m=2
Q

DO0 2000 3000 4000 5(
Number of records

Figure 4 10
Space requned for R-tree

vs amount of data

l(

5. Conclusions

I

The R-tree structure has been shown to
be useful for mdexmg spatial data oblects
that have non-zero size Nodes
correspondmg to disk pages of reasonable
slse (e g 1024 bytes) have values of A4 that
produce good performance With smaller
nodes the structure should also be
effective as a mam-memory mdex, CPU per-
formance would be comparable but there
would be no I/O cost

The hnear node-spht algornhm proved
to be as good as more expensive tech-
mques It was fast, and the shghtly worse
quahty of the sphts did not affect search
performance noticeably

Prehnnnary mvestxatlon Indicates that
R-trees would be easy to add to any rela-
tional database system that supported
conventional access methods, (e g INGRES
[9], SystemR [l]) Moreover, the new
structure would work especially weII m
conJunction wnh abstract data types and
abstract mdexes [14] to streambne the
handbng of spatial data

6. References
1

2

3

4

5

6

7

8

9

10

M Astrahan, et aI , System R*
Relational Approach to Database
Management, AC.@ Runsactzons MZ
Database &stems 1, 2 (June 1976)
97-137
R Bayer and E McCrelght,
Orgamzation and Mamtenance of
Large Ordered Indices, Proc 1970
ACM-SIGFTDET WOrkshop on Data
lkscrzphon and Access, Houston,
Texas, Nov. 1970, 107-141
J L Bentley, MuItldnnenslonaI Bmary
Search Trees Used for Assoclatlve
Searckung, Communications of the
ACM 18,9 (September 1975) 509517
J L Bentley, D F. Stanat and E H
WiIhams, Jr, The complexity of fixed-
radius near neighbor searchmg, hzf
Proc L&t 6, 6 (December 1977) 209
212
J L Bentley and J H Flredman, Data
Structures for Range Searchmg,
ComputZng Surveys 11, 4 (December
1979) 397-409
D Comer, The Ublqutous B-tree,
Computmg Surveys 11, 2 (1979) 121-
138
R A Fmkel and J L Bentley, Quad
Trees - A Data Structure for RetnevaI
on Co

“p
oslte

4, (1974)
Keys, Acta Informutica

1-9
A Guttman and M Stonebraker, Usmg
a Relational Database Management
System for Computer &ded Design
Data, IEEE LMubase IZkgineerkng 5, 2
(June 1982)
G Held, M Stonebraker and E Wong,
INGRES - A RelatIonal Data Base
System Proc MIPS 1975 NCC 44,
(1975) 409-416
K Huulchs and J Nlevergelt, The Gnd
File A Data Structure Designed to
Support Proxmnty Queues on Spatial
CbIects, Nr 54, Inst1tut fur

56

Informat&, Eldgenosslsche Techmsche
Hochschule, Zumh, July 1983

11. M G. H Katevenls, R. W Sherburne, D
A Patterson and C H SCqum, The
RISC II &cro-Archtecture, Proc I.&S!!
83 Conference , Trondhem, Norway,
August 1983

12 J K Ousterhout, Corner Stltchmg A
Data Structurmg Techmque for VLSI
Layout Tools, Computer Science
Report Computer Science Dept
82/114, Uruverslty of Califorma,
Berkeley, 1982

13. J T Robmson, The K-D-B Tree A
Search Structure for Large
Multldimenslonal Dynarmc Indexes,
4CM-SIGMOD Conference Proc , April
1981, lo-18

14 M Stonebraker, B Rubenstem and A
Guttman, Apphcatlon of Abstract Data
Types and Abstract Indices to CAD
Data Bases, Memorandum No
UCE /ERL M83/3, Electromcs Research
Laboratory, Umverslty of Q&forma,
Berkrley, January 1983

15 K C Wong and M Edelbepg, Interval
tierarches and Thew Apphcatlon to
Predicate Flies, ACM IP)unsuctzom on
lhtubuss S&terns 2, 3 (September
1977), 223-232

16. G. Yuval, Fmdmg Near Neighbors m
k-dmmmcmal Space, Inf Proc L.&t 3,
4 (March 1975), 113-114

57

