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ABSTRACT

In this paper, we present ForeCache, a general-purpose tool for ex-
ploratory browsing of large datasets. ForeCache utilizes a client-
server architecture, where the user interacts with a lightweight client-
side interface to browse datasets, and the data to be browsed is re-
trieved from a DBMS running on a back-end server. We assume a
detail-on-demand browsing paradigm, and optimize the back-end
support for this paradigm by inserting a separate middleware layer
in front of the DBMS. To improve response times, the middleware
layer fetches data ahead of the user as she explores a dataset.

‘We consider two different mechanisms for prefetching: (a) learn-
ing what to fetch from the user’s recent movements, and (b) us-
ing data characteristics (e.g., histograms) to find data similar to
what the user has viewed in the past. We incorporate these mech-
anisms into a single prediction engine that adjusts its prediction
strategies over time, based on changes in the user’s behavior. We
evaluated our prediction engine with a user study, and found that
our dynamic prefetching strategy provides: (1) significant improve-
ments in overall latency when compared with non-prefetching sys-
tems (430% improvement); and (2) substantial improvements in
both prediction accuracy (25% improvement) and latency (88% im-
provement) relative to existing prefetching techniques.

1. INTRODUCTION

Exploratory browsing helps users analyze large amounts of data
quickly by rendering the data at interactive speeds within a view-
port of fixed size (e.g., a laptop screen). This is of particular interest
to data scientists, because they do not have the time or resources to
analyze billions of datapoints by hand. One common interaction
pattern we have observed in data scientists is that they analyze a
small region within a larger dataset, and then move to a nearby
region and repeat the same analysis. They initially aggregate or
sample these regions when looking for a quick answer, and zoom
into the raw data when an exact answer is needed. Thus, we focus
on supporting a detail-on-demand browsing paradigm, where users
can move to different regions within a single dataset, and zoom into
these regions to see them in greater detail.

While users want to be able to drill down into specific regions of
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Figure 1: A diagram of ForeCache’s tile storage scheme.

a dataset, they also want their actions within the browsing tool to be
fluid and interactive. Even one second of delay after a pan or zoom
can be frustrating for users, hindering their analyses and distracting
them from what the data has to offer [17, 15]. Thus, the goal of this
project is to make all user interactions extremely fast (i.e., 500 ms
or less), thereby providing a seamless exploration experience for
users. However, although modern database management systems
(DBMS’s) allow users to perform complex scientific analyses over
large datasets [20], DBMS’s are not designed to respond to queries
at interactive speeds, resulting in long interaction delays for brows-
ing tools that must wait for answers from a backend DBMS [2].
Thus, new optimization techniques are needed to address the non-
interactive performance of modern DBMS’s, within the context of
exploratory browsing.

In this paper, we present ForeCache, a general-purpose tool for
exploratory browsing of large datasets at interactive speeds. Given
that data scientists routinely analyze datasets that do not fit in main
memory, ForeCache utilizes a client-server architecture, where users
interact with a lightweight client-side interface, and the data to be
explored is retrieved from a back-end server running a DBMS. We
use the array-based DBMS SciDB as the back-end [23], and insert
a middleware layer in front of the DBMS, which utilizes prefetch-
ing techniques and a main-memory cache to speedup server-side
performance.

When the user performs zooms in ForeCache, she expects to see
more detail from the underlying data. To support multiple levels
of detail, we apply aggregation queries to the raw data. However,
complex scientific analyses take time, and may not execute at inter-
active speeds in the DBMS. To ensure that zooms are fast in Fore-
Cache, we compute each level of detail, or zoom level, beforehand,
and store them on disk. A separate materialized view is created for
each zoom level, and we partition each zoom level into equal-size
blocks, or data tiles [16].

The user cycles through the following steps when browsing data
in ForeCache: (1) she analyzes the result of the previous request,
(2) performs an action in the interface to update or refine the request
(e.g., zooms in), and then (3) waits for the result to be rendered on
the screen. ForeCache eliminates step 3 by prefetching neighbor-



ing tiles and storing them in main memory while the user is still
in step 1, thereby providing the user with a seamless browsing ex-
perience. At the middleware level, we incorporate a main-memory
cache for fetching computed tiles, shown in Figure 1. When tiles
are prefetched, they are copied from SciDB to the cache. However,
in a multi-user environment, there may be too little space on the
server to cache all neighboring tiles for every user. Furthermore,
we may only have time to fetch a small number of tiles before the
user’s next request. Thus, we must rank the tiles first, and fetch
only the most likely candidates.

While prefetching is known to be effective, ForeCache needs ac-
cess to the user’s past interactions with the interface to predict fu-
ture data requests. We have observed that the client has extensive
records of the user’s past interactions, which we can leverage to im-
prove our prefetching strategy. For example, the client knows what
regions the user has visited in the past, and what actions she has
recently performed. One straightforward optimization is to train a
Markov model on the user’s past actions, and to use this model to
predict the user’s future actions [6, 8]. We refer to these prediction
techniques as recommendation models throughout this paper.

However, the user’s actions are often too complex to be described
by a single model (which we will show in Section 5). Thus, existing
models only cover a fraction of possible analysis goals, leading to
longer user wait times due to prediction errors. A comprehensive
approach is needed, such that we can consistently prefetch the right
tiles over a diverse range of high-level analysis goals.

To address the limitations of existing techniques, we have de-
signed a new two-level prediction engine for our middleware. At
the top level, our prediction engine learns the user’s current analy-
sis phase (i.e., her current frame of mind), given her most recent ac-
tions. The user’s analysis phase hints at her current analysis goals,
and thus provides context for which actions in the interface she may
use to reach her goals. Furthermore, users frequently employ sev-
eral low-level browsing patterns within each analysis phase (e.g.,
panning right three times in a row). Therefore at the bottom level,
our prediction engine runs multiple recommendation models in par-
allel, each designed to model a specific low-level browsing pattern.
Using this two-level design, our prediction engine tracks changes in
the user’s current analysis phase, and updates its prediction strategy
accordingly. To do this, we increase or decrease the space allotted
to each low-level recommendation model for predictions.

Taking inspiration from other user analysis models [19], we have
observed that the space of user interaction patterns can be parti-
tioned into three separate analysis phases: Foraging (analyzing in-
dividual tiles at a coarse zoom level to form a new hypothesis),
Sensemaking (comparing neighboring tiles at a detailed zoom level
to test the current hypothesis), and Navigation (moving between
coarse and detailed zoom levels to transition between the previous
two phases). The user’s goal changes depending on which phase
she is currently in. For example, in the Navigation phase, the user
is shifting the focus of her analysis from one region in the dataset
to another. In contrast, the user’s goal in the Foraging phase is to
find new regions that exhibit interesting data patterns.

We consider two separate mechanisms for our low-level recom-
mendation models: (a) learning what to fetch based on the user’s
past movements (e.g., given that the the user’s last three moves were
all to “pan right,” what should be fetched?) [8]; and (b) using data-
derived characteristics, or signatures, to identify neighboring tiles
that are similar to what the user has requested in the past. We use
a Markov chain to model the first mechanism, and a suite of sig-
natures for the second mechanism, ranging from simple statistics
(e.g., histograms) to sophisticated machine vision features.

To evaluate ForeCache, we conducted a user study, where do-

main scientists explored satellite imagery data. Our results show
that ForeCache achieves (near) interactive speeds for data explo-
ration (i.e., average latency within 500 ms). We also found that
ForeCache achieves: (1) dramatic improvements in latency com-
pared with traditional non-prefetching systems (430% improvement
in latency); and (2) higher prediction accuracy (25% better ac-
curacy) and significantly lower latency (88% improvement in la-
tency), compared to existing prefetching techniques.
In this paper, we make the following contributions:

1. We propose a new three-phase analysis model to describe
how users generally explore array-based data.

2. We present a tile-based data model for arrays, and architec-
ture for enabling interactive exploration of tiles in SciDB,

3. We present our two-level prediction engine, with an SVM
classifier at the top level to predict the user’s current analysis
phase, and recommendation models at the bottom to predict
low-level interaction patterns.

4. We present the results from our user study. Our results show
that our approach provides higher prediction accuracy and
significantly lower latency, compared to existing techniques.

1.1 Background

Here, we provide an overview of the main concepts, some of
which were introduced in Section 1.

User Interactions/Moves: The user’s interactions with ForeCache
are the actions she makes in the front-end interface to explore her
data. We also refer to these interactions as moves.

User Session: A user session refers to a single session for which
the user has logged into ForeCache and explored a single dataset.

Data Model: The ForeCache data model defines: (1) the struc-
ture and layout of data tiles, and (2) how to build data tiles. We
explain the ForeCache data model in detail in Section 2.

Analysis Model: Our analysis model is defined by our three anal-
ysis phases, and how these phases interact with each other. We
explain our analysis model in detail in Section 4.2.

Analysis Phase: The user’s current analysis phase represents her
frame of mind while exploring data in ForeCache. Analysis phases
can be inferred through the user’s interactions; we explain how we
predict analysis phases in Section 4.2.2.

Browsing Patterns: Low-level browsing patterns are short chains
of interactions repeated by the user (e.g., zooming in three times).
We explain how we predict these patterns in Section 4.3.

Recommendation Model: A recommendation model is an al-
gorithm used to predict low-level browsing patterns (e.g., Markov
chains). ForeCache employs two kinds of recommendation models:
Action-Based (Section 4.3.2) and Signature-Based (Section 4.3.3).

2. DATA MODEL

In this section, we describe the kinds of datasets supported by
ForeCache, and our process for building zoom levels and data tiles.

2.1 Datasets Supported by ForeCache

The datasets that work best with ForeCache share the same prop-
erties that make SciDB performant: (a) the majority of column
types are numerical (integers, floats, etc.), and (b) the relative posi-
tion of points within these columns matters (e.g., comparing points
in time, or in latitude-longitude position). These properties ensure
that the underlying arrays are straightforward to aggregate, parti-
tion, and visualize in ForeCache. The following three example
datasets share these properties: geospatial data (e.g., satellite im-
agery in Figure 2a), multidimensional data (e.g., iris flower classi-
fication in Figure 2b), and time series data (e.g., heart rate moni-
toring in Figure 2c). Beyond these three examples, SciDB has also
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Figure 2: Potential tiling schemes for three types of data.

been used for efficiently analyzing genomics data [24] and astron-
omy data [22]. Given its extensive support for complex analyt-
ics over multidimensional datasets, we use SciDB as the back-end
DBMS in ForeCache.

Consider Figure 2a, where the user is exploring an array of snow
cover measurements computed from satellite imagery. Each array
cell has been mapped to a pixel, where orange and yellow pixels
correspond to snow. We have partitioned the current zoom level
along the array’s two dimensions (latitude and longitude), resulting
in four data tiles. The user’s current viewport is located at the top
left data tile; the user can move to other tiles by panning in the
client-side interface. The user can also zoom in or out to explore
different zoom levels.

2.2 Interactions Supported by ForeCache

In this paper, we focus on supporting data exploration through
two-dimensional (2D) views, where exploration means that the user
can browse, but not modify the underlying dataset. In addition, we
assume that users are interacting with the data using consistent,
incremental actions that only retrieve a fraction of the underlying
dataset. For example, if the user wants to go from zoom level 0
to 4 in ForeCache, she must go through levels 1, 2, and 3 first.
Otherwise, users are essentially performing random accesses on the
underlying data, which are generally difficult to optimize for any
back-end DBMS (e.g., “jumping” to any location in the dataset).

These assumptions define a specific class of exploration inter-
faces, characterized by the following four rules: (a) the interface
supports a finite set of interactions (i.e., no open-ended text boxes);
(b) these interactions cannot modify the underlying dataset; (c)
each interaction will request only a small fraction of data tiles;
and (d) each interaction represents an incremental change to the
user’s current location in the dataset (i.e., no “jumping”). Note that
given rule (c), ForeCache does not currently support interactions
that force a full scan of the entire dataset, such as searches (e.g.,
find all satellite imagery pixels with a snowcover value above 0.7).

2.3 Building Data Tiles

To improve performance, ForeCache builds all data tiles in ad-
vance, and stores them on disk in SciDB. In this section, we ex-
plain how ForeCache builds zoom levels and data tiles in advance,
which is done in three steps: (1) building a separate materialized
view for each zoom level; (2) partitioning each zoom level into
non-overlapping blocks of fixed size (i.e., data tiles); and (3) com-
puting any necessary metadata (e.g., data statistics) for each data
tile. The most detailed zoom level (i.e., highest resolution) is just
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the raw data without any aggregation.

Building Materialized Views: To build a materialized view, we
apply an aggregation query to the raw data, where the aggregation
parameters dictate how detailed the resulting zoom level will be.
These parameters form a tuple (ji,/3,...,j4), Where d is the number
of dimensions. Each parameter j specifies an aggregation interval
over the corresponding dimension, where every j array cells along
this dimension are aggregated into a single cell. Consider Figure 3,
where we have a 16x16 array (on the left), with two dimensions
labeled x and y, respectively. Aggregation parameters of (2,2) cor-
respond to aggregating every 2 cells along dimension x, and every
2 cells along dimension y (i.e., the red box in Figure 3). If we com-
pute the average cell value for each window in the 16x16 array, the
resulting array will have dimensions 8x8 (right side of Figure 3).

Partitioning the Views: Next, we partition each computed zoom
level into data tiles. To do this, we assign a tiling interval to each di-
mension, which dictates the number of aggregated cells contained
in each tile along this dimension. For example, consider our aggre-
gated view with dimensions 8x8, shown in Figure 4. If we specify
a tiling window of (4,4), ForeCache will partition this view into
four separate data tiles, each with the dimensions we specified in
our tiling parameters (4x4).

We choose the aggregation and tiling parameters such that one
tile at zoom level i translates to four higher-resolution tiles at level
i+ 1. To do this, we calculated our zoom levels bottom-up (i.e.,
starting at the raw data level), multiplying our aggregation intervals
by 2 for each coarser zoom level going upward. We then applied
the same tiling intervals to every zoom level. Thus, all tiles have
the same dimensions (i.e., tile size), regardless of zoom level.

Computing Metadata: Last, ForeCache computes any necessary
metadata for each data tile. For example, some of our recommen-
dation models rely on data characteristics, or signatures, to be com-
puted for each tile, such as histograms or machine vision features
(see Section 4 for more detail). As ForeCache processes each tile
and zoom level, this metadata is computed and stored in a shared
data structure for later use by our prediction engine.

Choosing a Tile Size: Pre-computing tiles ensures that Fore-
Cache provides consistently fast performance across zoom levels.
However, choosing a bad tile size can negatively affect performance.
For example, increasing the tile size reduces the number of tiles
that can be stored in the middleware cache (assuming a fixed cache
size), which could reduce ForeCache’s prefetching capabilities. In
our evaluation (Section 5), we take this into account by varying
the number of tiles that are prefetched by ForeCache in our experi-
ments. We plan to perform an in-depth study of how tiling param-
eters affect performance as future work.

3. ARCHITECTURE
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Figure 5: Overview of the ForeCache architecture.

ForeCache has four primary components in its client-server ar-
chitecture: a web-based visualization interface on the client; a pre-
diction engine; a tile cache manager; and the back-end DBMS. Fig-
ure 5 illustrates the relationship between these components. The
visualizer sends tile requests to the tile prediction engine, and the
prediction engine then sends these requests to the cache manager
for retrieval. To anticipate the user’s future requests, the prediction
engine sends predictions to the cache manager to be fetched ahead
of time. The cache manager stores predicted tiles in the middleware
tile cache, and retrieves tiles requested by the client from either the
middleware cache or SciDB. We elaborate on the first three com-
ponents of the ForeCache architecture in the rest of this section.

Front-End Visualizer: ForeCache is agnostic to the front-end
visualizer, which can be implemented in any language or platform
on the client. The only requirement for the visualizer is that it must
interact with the back-end through tile requests. As the user inter-
acts with the client-side interface, requests are sent to the back-end
to retrieve the corresponding tiles. For our experiments, we imple-
mented a lightweight, front-end interface that runs in a web browser
on the client machine (see Section 5 for more details).

Prediction Engine: The purpose of the prediction engine is to
manage ForeCache’s tile requests, which consists of two major
tasks: responding to tile requests from the client; and managing
both the high-level (analysis phase classifier) and low-level (rec-
ommendation models) predictions used to infer the user’s future
requests. To fulfill existing tile requests, the prediction engine re-
trieves requested tiles from the cache manager, and sends them
back to the client for visualization. This component also man-
ages ForeCache’s predictions. At the top-most level, this compo-
nent runs an SVM classifier that predicts the user’s current analysis
phase. At the lower level, the prediction engine manages several
tile recommendation models running in parallel. These recommen-
dation models make suggestions for what data tiles to fetch, and the
actual fetching of the tiles is left to the cache manager. After each
user request, the prediction engine retrieves a separate list of pre-
dictions from each recommender, and forwards these predictions
to the cache manager for further processing. We describe our SVM
classifier and recommendation models in detail in Section 4.

Tile Cache Manager: The cache manager decides which tiles
will be stored in the main-memory middleware cache. Each rec-
ommendation model is allotted a limited amount of space in this
cache to make predictions. The remaining space in the middleware
cache is used to store the last n tiles requested by the interface.
We refer to the allocations made to our recommendation models
as the cache manager’s current allocation strategy. This allocation
strategy is reevaluated after each request to ensure that space is al-
located efficiently across all models. We explain how we update
these allocations in Section 4. The cache manger then uses the tile
recommendations from the prediction engine to fill the cache once
the allocations have been updated.

4. PREDICTION ENGINE DESIGN

The goal of our prediction engine is to identify changes in the

user’s browsing patterns, and update its prediction strategy accord-
ingly. In this way, our prediction engine ensures that the most rel-
evant prediction algorithms are being used to prefetch data tiles.
To do this, our prediction engine makes predictions at two separate
levels. At the top level, it learns the user’s current analysis phase.
At the bottom level, it models the observed analysis phase with a
suite of recommendation models.

We chose a two-level design because we have found that users
frequently switch their browsing patterns over time. In contrast,
recommendation models make strict assumptions about the user’s
browsing patterns, and thus ignore changes in the user’s behavior.
For example, Markov chains assume that the user’s past moves will
always be good indicators of her future actions. However, once
the user finds a new region to explore, the panning actions that
she used to locate this region will be poor predictors of the future
zooming actions she will use to move towards this new region. As a
result, we have found that recommendation models only work well
in specific cases, making any individual model a poor choice for
predicting the user’s entire browsing session.

However, if we can learn what a user is trying to do, we can
identify the analysis phase that best matches her current goals, and
apply the corresponding recommendation model(s) to make predic-
tions. To build the top level of our prediction engine, we trained a
classifier to predict the user’s current analysis phase, given her past
tile requests. To build the bottom level of our prediction engine, we
developed a suite of recommendation models to capture the differ-
ent browsing patterns exhibited in our analysis phases. To combine
the top and bottom levels, we developed three separate allocation
strategies for our middleware cache, one for each analysis phase.

In the rest of this section, we explain the top and bottom level
designs for our prediction engine, and how we combine the two
levels using our allocation strategies.

4.1 Prediction Formalization

Here, we provide definitions for all inputs to and outputs from
ForeCache, and a formalization of our general prediction problem.

User Session History: The user’s last n moves are constantly
recorded by the cache manager and sent to the prediction engine as
an ordered list of user requests: H = [r1, 77, ..., ry|. Each request
r; € H retrieves a particular tile 7,;. Note that n (i.e., the history
length) is a system parameter set before the current session starts.

Training Data: Training data is used to prepare the prediction
engine ahead of time, and is supplied as a set of traces: {Uj, Ua,
...}. Each trace U represents a single user session, and consists of
an ordered list of user requests: U; = [r1 ,72 .13 ,...].

Allocation Strategy: The cache manager regularly sends the cur-
rent allocation strategy to the prediction engine: {ky, k ,...}, were
k1 is the amount of space allocated to recommendation model ;.

General Prediction Problem: Given a user request r for tile 7},
a set of recommender allocations {kj, k7, ...}, and session history
H, compute an ordered list of tiles to prefetch P = [T} ,T5 ,T3 ,...],
where each tile 7; € P is at most d moves away from 7. The first
tile (77) has highest priority when prefetching tiles. d is a system
parameter set before the current session starts (default is d = 1).

4.2 Top-Level Design

In this section, we explain the three analysis phases that users
alternate between while browsing array-based data, and how we
use this information to predict the user’s current analysis phase.

4.2.1 Learning Analysis Phases

We informally observed several users browsing array-based data
in SciDB, searching for common interaction patterns. We used



Table 1: Input features for our SVM phase classifier, computed
from traces from our user study (see Section 5 for more details).

Feature Name Information Accuracy for
Recorded this Feature
X position (in tiles) | X position 0.676
Y position (in tiles) | Y position 0.692
Zoom level zoom level ID 0.696
Pan flag 1 (if user panned), or 0 | 0.580
Zoom-in flag 1 (if zoom in), or O 0.556
Zoom-out flag 1 (if zoom out), or 0 0.448

these observed patterns to define a user analysis model, or a general-
purpose template for user interactions in ForeCache. Our user anal-
ysis model was inspired in part by the well-known Sensemaking
model [19]. However, we found that the Sensemaking Model did
not accurately represent the behaviors we observed. For exam-
ple, the Sensemaking model does not explicitly model navigation,
which is an important aspect of browsing array data. Thus, we
extended existing analysis models to match these observed behav-
iors. We found that our users alternated between three high-level
analysis phases, each representing different user goals: Foraging,
Sensemaking, and Navigation. Within each phase, users employed
a number of low-level interaction patterns to achieve their goals.
We model the low-level patterns separately in the bottom half of
our prediction engine, which we describe in detail in Section 4.3.
In the Foraging phase, the user is looking for visually interesting
patterns in the data and forming hypotheses. The user will tend to
stay at coarser zoom levels during this phase, because these levels
allow the user to scan large sections of the dataset for visual pat-
terns that she may want to investigate further. In the Sensemaking
phase, the user has identified a region of interest (or ROI), and is
looking to confirm an initial hypothesis. During this phase, the user
stays at more detailed zoom levels, and analyzes neighboring tiles
to determine if the pattern in the data supports or refutes her hy-
pothesis. Finally, during the Navigation phase, the user performs
zooming operations to move between the coarse zoom levels of the
Foraging phase and detailed zoom levels of the Sensemaking phase.

4.2.2  Predicting the Current Analysis Phase

The top half of our two-level scheme predicts the user’s current
analysis phase. This problem is defined as follows:

Sub-Problem Definition: given a new user request r and the
user’s session history H, predict the user’s current analysis phase
(Foraging, Sensemaking, or Navigation).

To identify the current analysis phase, we apply a Support Vec-
tor Machine (SVM) classifier, similar to the work by Brown ef al.
[3]. SVM’s are a group of supervised learning techniques that are
frequently used for classification and regression tasks. We used a
multi-class SVM classifier with a RBF kernel. We implemented
our classifier using the LibSVM Java Library!.

To construct an input to our SVM classifier, we compute a fea-
ture vector using the current request r, and the user’s previous re-
quest r,, € H. The format and significance of each extracted feature
in our feature vector is provided in Table 1. Because this SVM
classifier only learns from interaction data and relative tile posi-
tions, we can apply our classification techniques to any dataset that
is amenable to a tile-based format. To build a training dataset for
the classifier, we collected user traces from our user study. We then
hand-labeled each user request from the user traces with its corre-
sponding analysis phase. We describe our user study and evaluate
the accuracy of the analysis phase classifier in Section 5.

Uhttps://github.com/cjlin1/libsvm

Algorithm 1 Pseudocode to update the last ROI after each request.

Input: A user request r for tile 7,
Output: ROI, a set of tiles representing the user’s last visited ROL.
1: ROI — {}
2: tempror — {}
3: inFlag « False
4: procedure UPDATEROI(r)

5: if r.move =“zoom-in” then
6: inFlag < True
7. tempror — {1}
8: else if r.move =“zoom-out” then
9: if inFlag = True then
10: ROI «+ tempgoy
11: inFlag « False
12: tempror — {}
13: else if inFlag = True then
14: add 7, to tempgoy

15: return RO/

4.3 Bottom-Level Design

Once the user’s current analysis phase has been identified, Fore-
Cache employs the corresponding recommendation model(s) to pre-
dict specific tiles. ForeCache runs these models in parallel, where
each model is designed to predict specific low-level browsing pat-
terns. These recommendation models can be categorized into two
types of predictions: (a) Action-Based (AB): learning what to pre-
dict from the user’s previous moves (e.g., pans and zooms); and (b)
Signature-Based (SB): learning what to predict by using data char-
acteristics, or signatures, from the tiles that the user has recently
requested (e.g., histograms). For an individual recommendation
model m, the prediction problem is as follows:

Sub-Problem Definition: given a user request r, a set of can-
didate tiles for prediction C, and the session history H, compute
an ordering for the candidate tiles P, = [T}, T3, ...]. The ordering
signifies m’s prediction of how relatively likely the user will re-
quest each tile in C. The prediction engine trims P, as necessary,
depending on the amount of space allocated to m.

Here, we describe: (1) the inputs and outputs for our recommen-
dation models; (2) how the individual models were implemented;
and (3) how we allocate space to each model per analysis phase.

4.3.1 General Recommendation Model Design

Our Signature-Based recommendation model requires one addi-
tional input in order to make predictions: the last location in the
dataset that the user explored in detail, which we refer to as the
user’s most recent Region of Interest, or ROIL. Here we explain how
we derive C, and the user’s most recent ROI.

Candidate Tiles for Prediction: We compile the candidate set by
finding all tiles that are at most d moves away from r. For example,
d = 1 represents all tiles that are exactly one move away from r.

Most Recent ROI: We represent the user’s most recent ROI as a
set of data tiles, and use a simple heuristic to compute this set; the
pseudocode is provided in Algorithm 1. When a new user request
is received, the prediction engine calls UPDATEROI to update the
user’s most recent ROIL. To find the most recent ROI, this heuris-
tic searches through H for a match to the following pattern: one
zoom-in, followed by zero or more pan’s, followed by one zoom-
out. In lines 5-7 of Algorithm 1, a zoom-in triggers the collection of
a new temporary ROI (temppgoy), and the requested tile 7, is added
to temppro; (line 7). We track zoom-in’s using the inF'lag variable
(line 6). In contrast, an observed zoom-out tells the prediction en-
gine to stop adding tiles to tempgo; (lines 8-12). If the inFlag was
set while the zoom-out occurred, we replace the user’s old ROI
with tempro; (lines 9-10). Then, tempproy is reset (line 12). Last,



if r.move = pan while the inFlag is true, T, (i.e., the requested tile)
is added to temppoy (lines 13-14).

Algorithm 2 Pseudocode showing the Markov chain transition fre-
quencies building process.

Input: For PROCESSTRACES, a set of user traces, and sequence length n.
Output: F, computed transition frequencies.
1: procedure PROCESSTRACES({U;,Us,...,Uj,...}, n)

2: F—{}

3: for user trace U; do

4: Vj < GETMOVESEQUENCE(U))

5: F — UPDATEFREQUENCIES(V;, F, n)

6: return F

7: procedure GETMOVESEQUENCE(U;)

8 Vi—[]

9: fori=1,2,...,wherei < |V;|do

10: Vjli] < Uj[i].move

11: return V;

12: procedure UPDATEFREQUENCIES(V; = [vi,v2,V3,...], F, n)
13: for i =n+1,n+2,...,wheren < i< |V;| do

14: F[sequence(Vi—pn,Vi_(n—1)sVi—(n—2), - Vi-1) = vi] += 1

15: return

4.3.2 Actions-Based (AB) Recommender

As the user moves to or from ROIs, she is likely to consistently
zoom or pan in a predictable way (e.g., zoom out three times).
Doshi et al. leverage this assumption in their Momentum model,
which predicts that the user’s next move will match her previous
move [8]. We expand on this idea with our AB recommender,
which builds an n-th order Markov chain from users’ past actions.

To build the Markov chain, we create a state for each possible
sequence of moves, where we only consider sequences of length n
(i.e., the length of H). For example, if n = 3, then the following
are two sequences that would have their own states in the Markov
chain: panning left three times (i.e., left, left, left), and zooming
out twice and then panning right (i.e., out, out, right). After creat-
ing our states, we create an outgoing transition from each state for
every possible move the user can make in the interface. In the n =3
case, if the user is in state (lef?, left, left) and then decides to pan
right, we represent this as the user taking the edge labeled “right”
from the state (left, left, left) to the state (left, left, right).

We learn transition probabilities for our Markov chains using
traces from our user study; the traces are described in Section 4.1.
Algorithm 2 shows how we calculate the transition frequencies
needed to compute the final probabilities. For each user trace U;
from the study, we extract the sequence of moves observed in the
trace (lines 7-11). We then iterate over every sub-sequence of length
n (i.e., every time a state was visited in the trace), and count how of-
ten each transition was taken (lines 12-15). To do this, for each sub-
sequence observed (i.e., for each state observed from our Markov
chain), we identified the move that was made immediately after this
sub-sequence occurred, and incremented the relevant counter (line
14). To fill in missing counts, we apply Kneser-Ney smoothing, a
well-studied smoothing method in natural language processing for
Markov chains [7]. We used the BerkeleyLM [18] Java library to
implement our Markov chains.

4.3.3 Signature-Based (SB) Recommender

The goal of our SB recommender is to identify neighboring tiles
that are visually similar to what the user has requested in the past.
For example, in the Foraging phase, the user is using a coarse view
of the data to find new ROI’s to explore. When the user finds a new
ROI, she zooms into this area until she reaches her desired zoom

ROITILES

(a) Potential snow cover (b) Tiles in the user’s history,
ROP’s in the US and Canada. after visiting ROI’s from (a).
Figure 6: Example ROI’s in the US and Canada for snow cover
data. Snow is orange to yellow, snow-free areas in green to blue.

Note that (a) and (b) span the same latitude-longitude range.

Table 2: Features computed over individual array attributes in Fore-
Cache to compare data tiles for visual similarity.

Signature Measures Visual Characteristics
Compared Captured
Normal Mean, standard average position/color/size

Distribution | deviation of rendered datapoints

1-D histogram bins position/color/size distribu-
histogram -tion of rendered datapoints
SIFT histogram built distinct “landmarks” in the

from clustered visualization (e.g., clusters
SIFT descriptors | of orange pixels)

same as SIFT distinct “landmarks” and
their positions in the
visualization

DenseSIFT

level. Each tile along her zooming path will share the same visual
features, which the user depends on to navigate to her destination.
In the Sensemaking phase, the user is analyzing visually similar
data tiles at the same zoom level. One such example is when the
user is exploring satellite imagery of the earth, and panning to tiles
within the same mountain range.

Consider Figure 6a, where the user is exploring snow cover data
derived from a satellite imagery dataset. Snow is colored orange,
and regions without snow are blue. Thus, the user will search for
ROI’s that contain large clusters of orange pixels, which are circled
in Figure 6a. These ROI’s correspond to mountain ranges.

Given the user’s last ROI (i.e., the last mountain range the user
visited), we can look for neighboring tiles that look similar (i.e.,
find more mountains). Figure 6b is an example of some tiles that
may be in the user’s history if she has recently explored some of
these ROI’s, which we can use for reference to find new ROI’s.

We measure visual similarity by computing a diverse set of tile
signatures. A signature is a compact, numerical representation of
a data tile, and is stored as a vector of double-precision values.
Table 2 lists the four signatures we compute in ForeCache. All of
our signatures are calculated over a single SciDB array attribute.
The first signature in Table 2 calculates the average and standard
deviation of all values stored within a single data tile. The second
signature builds a histogram over these array values, using a fixed
number of bins.

We also tested two machine vision techniques as signatures: the
scale-invariant feature transform (SIFT), and a variant called dens-
eSIFT (signatures 3 and 4 in Table 2). SIFT is used to identify and
compare visual “landmarks” in an image, called keypoints. Much
like how seeing the Statue of Liberty can help people distinguish
pictures of New York city from pictures of other cities, SIFT key-
points help ForeCache compare visual landmarks in two different
visualizations (e.g., two satellite imagery heatmaps with similar
clusters of orange pixels, or two line charts showing unusually high
peaks in heart-rate signals). We used the OpenCV library to com-



pute our SIFT and denseSIFT signatures?.

Algorithm 3 outlines how we compare candidate tiles to the user’s
last ROI using these signatures. We first retrieve all four signatures
for each candidate tile (lines 3-4). We also retrieve these four sig-
natures for each ROI tile on lines 5-6. Then we compute how much
each candidate tile (74) deviates from each ROI tile (7p), with re-
spect to each signature (lines 7-8). To do this, a distance function
for the signature is applied to the candidate tile and ROI tile (de-
noted as dists, in Algorithm 3). Since our signatures do not au-
tomatically account for the physical distance between Ty and Tp,
we apply a penalty to our signature distances based on the Man-
hattan distance between the tiles. Since all four of our current sig-
natures produce histograms as output, we use the Chi-Squared dis-
tance metric as the distance function for all signatures. We then
normalize the computed distance values (lines 10-11).

To produce a single distance measure for a given candidate-ROI
pair, we treat the four resulting distance measures as a single vec-
tor, and compute the ¢%-norm of the vector (lines 12-13). To adjust
how much influence each signature has on our final distance mea-
surements, we can modify the ¢2-norm function to include weights
for each signature. All signatures are assigned equal weight by de-
fault, but the user can update these weight parameters as necessary.

ngeighted (A7 B) = Z "Vi(di,A,B)2
Si

At this point, there will be multiple distance values calculated
for each candidate tile, one per ROI tile. For example, if we have
four ROl tiles, then there will be four distance values calculated per
candidate tile. We sum these ROI tile distances, so we have a single
distance value to compare for each candidate tile (lines 14-15). We
then rank the candidates by these final distance values.

Note that it is straightforward to add new signatures to the SB
recommender. To add a new signature, one only needs to add: (1)
an algorithm for computing the signature over a single data tile,
and (2) a new distance function for comparing this signature (if the
Chi-Squared distance is not applicable).

Algorithm 3 Computes the visual distance of each candidate tile,
with respect to a given ROL

Input: Signatures S1-S4, candidate tiles, ROI tiles

Output: A set of distance values D

1: for Signature S;, i =1—4do

: dipax — 1

for each candidate tile T, do
Retrieve signature S;(T4)

for each RO tile 73 do
Retrieve signature S;(73)

for each candidate/ROI pair (74,7p) do
diap — 2bmann (Ta T) 1 [di.vl‘sl.(si(TA),S,‘(TB))]
dimax < max(di max,diap)

10: for each candidate/ROI pair (T4,7p) do

d,
11: iAp — A
diap di Max

12: for each candidate/ROI pair (Ty,T5) do
Ls; wildiag)?

" piysical AB)

14: for each candidate tile Ty do

15: dA ‘_ZBdA,B
return D ={d;,d;,...,dy,...}
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4.4 Cache Allocation Strategies
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In this section, we describe the recommendation models gener-
ally associated with each analysis phase, and how we use this in-
formation to allocate space to each recommender in our tile cache.

In the Navigation phase, the user is zooming and panning in or-
der to transition between the Foraging and Sensemaking phases.
Thus, we expect the AB recommendation model to be most ef-
fective for predicting tiles for this phase, and allocate all available
cache space to this model.

In the Sensemaking phase, the user is mainly panning to neigh-
boring tiles with similar visual features. Therefore, we expect the
SB recommendation model to perform well when predicting tiles
for this phase, and allocate all available cache space to this model.

In the Foraging phase, the user is using visual features as cues
for where she should zoom in next. When the user finds a ROI that
she wants to analyze, the tiles she zooms into to reach this ROI will
share the same visual properties. Thus, the SB model should prove
useful for this phase. However, the user will also zoom out several
times in a row in order to return to the Foraging phase, exhibiting a
predictable pattern that can be utilized by the AB model. Therefore,
we allocate equal amounts of space to both models for this phase.

S. EXPERIMENTS

Although the goal behind ForeCache is to reduce user wait times,
we will demonstrate in Section 5.5 that there is a linear (constant
factor) correlation between latency and the accuracy of the predic-
tion algorithm. As such, we claim that we can improve the observed
latency in ForeCache by reducing the number of prediction errors
that occur when prefetching tiles ahead of the user. Our aim in
this section is to show that ForeCache provides significantly bet-
ter prediction accuracy, and thus lower latency, when compared to
existing prefetching techniques.

We validate our claims about user exploration behavior through
a user study on NASA MODIS satellite imagery data, and evaluate
the prediction accuracy of our two-level prediction engine using
traces collected from the study. To validate our hypothesis that
prediction accuracy dictates the overall latency of the system, we
also measured the average latency observed in ForeCache for each
of our prediction techniques.

To test the accuracy of our prediction engine, we conducted three
sets of evaluations. We first evaluate each prediction level sepa-
rately. At the top level, we measure how accurately we can predict
the user’s current analysis phase. At the bottom level, we measure
the overall prediction accuracy of each recommendation model,
with respect to each analysis phase, and compare our individual
models to existing techniques. Then we compare the accuracy of
the full prediction engine to our best performing individual recom-
mendation models, as well as existing techniques. Last, we evalu-
ate the relationship between accuracy and latency, and compare the
overall latency of our full prediction engine to existing techniques.

5.1 MODIS Dataset

The NASA MODIS is a satellite instrument that records im-
agery data. This data is originally recorded by NASA in a three-
dimensional array, where the dimensions are latitude, longitude
and time. Each array cell contains a vector of wavelength mea-
surements, where each separate wavelength measurement is called
a MODIS “band.”

One use case for MODIS data is to estimate snow depths in the
mountains. One well-known MODIS snow cover algorithm, which
we apply in our experiments, is the Normalized Difference Snow
Index (NDSI) [21]. The NDSI indicates whether there is snow at
a given MODIS pixel (i.e., array cell). A high NDSI value (close
to 1.0) means that there is snow at the given pixel, and a low value



(close to -1.0) corresponds to no snow cover. The NDSI uses two
MODIS bands to calculate this. We label the two bands used in
the NDSI as VIS for visible light, and SWIR for short-wave in-
frared. The NDSI is calculated by applying the following function
to each cell of the MODIS array. It is straightforward to translate
this transformation into a user-defined function (UDF) in SciDB:

NDSI — (visible light — short wave infrared)

(visible light + short wave infrared)’
5.1.1 Modifications for User Study

Our test dataset consisted of NDSI measurements computed over
one week of raw NASA MODIS data, where the temporal range of
the data was from late October to early November of 2011. We
downloaded the raw data directly from the NASA MODIS web-
site’, and used SciDB’s MODIS data loading tool to load the data
into SciDB. We applied the NDSI to the raw MODIS data as a user-
defined function, and stored the resulting NDSI calculations in a
separate array. The NDSI array was roughly 10TB in size when
stored in SciDB.

To ensure that participants could complete the study in a timely
manner, we chose to simplify the dataset to make exploring it easier
and faster. Prior to the study, The NDSI dataset was flattened into a
single, one-week window, reducing the total dimensions from three
(latitude, longitude, time) to two (latitude and longitude only). The
NDSI dataset contained four numeric attributes: maximum, mini-
mum and average NDSI values; and a land/sea mask value that was
used to filter for land or ocean pixels in the dataset. After applying
ForeCache’s tile computation process, there were nine total zoom
levels in this dataset, where each level was a separate layer of data
tiles.

5.1.2 Calculating the NSDI in SciDB

In this section, we explain how to compute the NSDI in SciDB.
We assume that we already have a NDSI UDF written in SciDB,
which we refer to as “ndsi_func”.

Let Sy ;s and Ssw g be the SciDB arrays containing recorded data
for their respective MODIS bands. We use two separate arrays, as
this is the current schema supported by the MODIS data loader for
SciDB [20]. Sy;s and Sswir share the same array schema. An
example of this schema is provided below.

Syr1s/swir(reflectance)(latitude, longitude].

The array attributes are denoted in parentheses (reflectance) and
the dimensions are shown in brackets (latitude and longitude). The
attributes represent the MODIS band measurements recorded for
each latitude-longitude coordinate.

The following is the SciDB query we execute to compute the
NDSI over the Sy;s and Sgy;r arrays:

Query 1: SciDB query to apply the NDSI.

1 store (

2 apply (

3 join (Svis, Sswir)

4 ndsi,

5 ndsi_func (Sy;s.reflectance,
6 Sswir -reflectance)

7 )

8 NDSI

9 1)

We first perform an equi-join, matching the latitude-longitude
coordinates of the two arrays (line 3). Note that SciDB implicitly
joins on dimensions, so latitude and longitude are not specified in
the query. We then apply the NDSI to each pair of joined array cells
by calling the “ndsi_func” UDF (lines 5-6). We pass the reflectance

3http://modis.gsfc.nasa.gov/data/

attribute of Sy ;¢ and the reflectance attribute of Sgy g to the UDE.
We store the result of this query as a separate array in SciDB named
NDSI (line 8), and the NDSI calculations are recorded in a new
“ndsi” attribute in this array (line 4).

5.2 Experimental Setup

5.2.1 Hardware/Software setup

The ForeCache front-end for the study was a web-based visual-
izer. The D3.js Javascript library was used to render data tiles. We
describe the interface in more detail below.

The data was partitioned across two servers running SciDB ver-
sion 13.3. Each server had 24 cores, 47GB of memory, and 10.1
TB of disk space. Both servers ran Ubuntu Server 12.04. The
first server was also responsible for running the ForeCache middle-
ware (prediction engine and cache manager), which received tile
requests from the client-side interface.

5.2.2 Measuring Accuracy

The number of cache misses (i.e., prediction accuracy) directly
impacts whether delays occur in ForeCache, and thus also deter-
mines the length of user wait times (i.e., the latency). Therefore, we
used prediction accuracy as one of our primary metrics for compar-
ison, similar to Lee et al. [12]. To compute this, we ran our models
in parallel while stepping through tile request logs, one request at
a time. For each requested tile, we collected a ranked list of pre-
dictions from each of our recommendation models, and recorded
whether the next tile to be requested was located within the list.

We simulated space allocations in our middleware cache by vary-
ing k in our accuracy measurements. Thus measuring prediction
accuracy becomes equivalent to measuring the hit rate of our tile
cache. For example, kK = 2 meant that ForeCache only had space
to fetch two tiles before the user’s next request. We varied k from
1 to 8 in our experiments. At k =9, we are guaranteed to prefetch
the correct tile, because the interface only supports nine different
moves: zoom out, pan (left, right, up, down), and zoom in (users
could zoom into one of four tiles at the zoom level below).

Given that ForeCache prefetches new tiles after every request,
we found that having ForeCache predict further than one move
ahead did not actually improve accuracy. Therefore, predicting be-
yond the user’s next move was irrelevant to the goals of these ex-
periments, and we only considered the tiles that were exactly one
step ahead of the user. We leave prefetching more than one step
ahead of the user as future work.

5.2.3 Comparing with Existing Techniques

To compare our two-level prediction engine with existing tech-
niques, we implemented two models proposed in [8], the “Momen-
tum” and “Hotspot” models. Several more recent systems, such as
ATLAS [6] and ImMens [16] apply very similar techniques (see
Section 7 for more information).

Momentum: The Momentum model assumes that the user’s
next move will be the same as her previous move. To implement
this, the tile matching the user’s previous move is assigned a proba-
bility of 0.9, and the eight other candidates are assigned a probabil-
ity of 0.0125. Note that this is a Markov chain, since probabilities
are assigned to future moves based on the user’s previous move.

Hotspot: The Hotspot model is an extension of the Momen-
tum model that adds awareness of popular tiles, or hotspots, in the
dataset. To find hotspots in the NDSI dataset, we counted the num-
ber of requests made for each tile visited in our user study, and
chose the tiles with the most requests. When the user is not close
to any hotspots, the Hotspot model defaults to the behavior of the
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Figure 7: ForeCache browsing interface.

Momentum model. When a hotspot is nearby, the Hotspot model
assigns a higher ranking to any tiles that bring the user closer to that
hotspot, and a lower ranking to the remaining tiles. We trained the
Hotspot model on trace data ahead of time. This training process
took less than one second to complete.

5.3 User Study

To ascertain whether prefetching was a viable strategy for ex-
ploring multidimensional scientific datasets, we worked directly
with earth and ocean scientists at the University of California Santa
Barbara (UCSB) and the University of Washington (UW) to: (1)
choose a use case of interest to our collaborators (MODIS snow
cover); and (2) develop a set of search tasks for this use case that do-
main scientists with diverse backgrounds and skill sets could com-
plete during the study. In this section, we outline the study design,
and validate whether our analysis phases are an appropriate classi-
fication of user behavior using results from the study. We avoided
biasing the behavior of our study participants by caching all data
tiles in main memory while the study was being conducted. This
prevented our participants from choosing their movements based
on response time (e.g., avoiding zooming out if it is slower than
other movements). This also ensured that all study participants had
the same browsing experience throughout the study.

5.3.1 Study Subjects

The study consisted of 18 domain scientists (graduate students,
post doctoral researchers, and faculty). Most of our participants
were either interested in or actively working with MODIS data.
Subjects were recruited at UW and UCSB.

5.3.2  Browsing Interface

Figure 7 is an example of the client-side interface. Each visu-
alization in the interface represented exactly one data tile. Partici-
pants (i.e., users) used directional buttons (top of Figure 7) to move
up, down, left, or right. Moving up or down corresponded to mov-
ing along the latitude dimension in the NDSI dataset, and left or
right to the longitude dimension. Each directional move resulted
in the user moving to a completely separate data tile. User’s left
clicked on a quadrant to zoom into the corresponding tile, and right
clicked anywhere on the visualization to zoom out.

Directional buttons ensured that users’ actions mapped to spe-
cific data tiles. Though different from existing geospatial interfaces
(e.g., Google Maps), our browsing interface provides clear and ef-
ficient button-based navigation through the dataset. Furthermore,
study participants commented that this navigation design is useful
when selecting specific data ranges for further analysis.

5.3.3 Browsing Tasks

Participants completed the same search task over three different
regions in the NDSI dataset. For each region, participants were
asked to identify four data tiles (i.e., four different visualizations)
that met specific visual requirements. The tasks were as follows:

1. Find four data tiles in the continental United States at zoom
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Figure 8: Distribution of moves (a) and phases (b), averaged across
users, partitioned by task; distribution of moves for each individual
user for Task 1 (c), Task 2 (d), and Task 3 (e). In Figures (c),
(d), and (e): panning is red, zooming in is green, and zooming
out is blue; and users with similar move distributions are grouped
together.

level 6 with the highest NDSI values.

2. Find four data tiles within western Europe at zoom level 8
with NDSI values of .5 or greater.

3. Find 4 data tiles in South America at zoom level 6 that con-
tain NDSI values greater than .25.

A separate request log was recorded for each user and task. There-
fore, by the end of the study we had 54 user traces, each consisting
of sequential tile requests.

5.3.4  Post-Study: General Observations

The most popular ROI's for each task were: the Rocky Moun-
tains for Task 1, Swiss Alps for Task 2, and Andes Mountains for
Task 3. The average number of requests per task are as follows: 35
tiles for Task 1, 25 tiles for Task2, and 17 tiles for Task 3. The
mountain ranges in Tasks 2 and 3 (Europe and South America)
were closer together and had less snow than those in task 1 (US
and Southern Canada). Thus, users spent less time on these tasks,
shown by the decrease in total requests.

We also tracked whether the request was a zoom in, zoom out,
or pan. Figure 8a shows the distribution of directions across all
study participants, recorded separately for each task. We see that
for all tasks, our study participants spent the most time zooming
in. This is because users had to zoom to a specific zoom level
for each task, and did not have to zoom back out to the top level
to complete the task. In tasks 1 and 2, users panned and zoomed
out roughly equally. In task 3, we found that users clearly favored
panning more than zooming out. We also found that large groups
of users shared similar browsing patterns, shown in Figures 8c-8e.
These groupings further reinforce the reasoning behind our analy-
sis phases, showing that most users can be categorized by a small
number of specific patterns within each task, and even across tasks.

5.3.5 Evaluating Our Three Analysis Phases

To demonstrate some of the patterns that we found in our user
traces, consider Figure 9, which plots the change in zoom level
over time for one of our user traces. The coarsest zoom level is
plotted at the top of Figure 9, and the most-detailed zoom level
was plotted at the bottom. The x-axis represents each successive
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Figure 9: Change in zoom level per request as study participant 2
completed task 2.

tile request made by this user. A downward slope corresponds to
the user moving from a coarser to a more detailed zoom level; an
upward slope corresponds to the reverse; and a flat line (i.e., slope
of 0) to the user panning to tiles at the same zoom level.

We see that the user alternates between zooming out to a coarser
zoom level, and zooming into more detailed zoom levels. We know
that the coarser views were used to locate snow, and the high-
resolution views to find specific tiles that satisfied task 2 (hence
the four tile requests specifically at zoom level 8).

We see in Figure 9 that this user’s behavior corresponds directly
to the three exploration phases described in Section 4.2.1. The
user’s return to coarser views near the top of Figure 9 correspond
to the user returning to the Foraging phase (e.g., at request ID’s
20 to 23). The user’s zooms down to the bottom half of the plot
correspond to the user moving to the Sensemaking phase, as they
searched for individual tiles to complete the task requirements. Fur-
thermore, we found that 13 out of 18 users exhibited this same
general exploration behavior throughout their participation in the
study. 16 out of 18 users exhibited this behavior during 2 or more
tasks. Furthermore, we found that only 57 out of the 1390 total
requests made in the study were not described adequately by our
exploration model.

Therefore, we conclude that our three analysis phases provide
an accurate classification of how the vast majority of users actually
explored our NDSI MODIS dataset.

5.4 [Evaluating the Prediction Engine

Now that we have established that our three analysis phases pro-
vide a comprehensive labeling scheme for user behavior, we move
on to evaluating our two-level prediction engine. In particular, we
evaluated each level of our prediction engine separately, and then
compared the complete prediction engine to the existing techniques
described in our experimental setup.

At the top level of our prediction engine, we measured how accu-
rately we could predict the user’s current exploration phase. At the
bottom level, we measured the accuracy of each recommendation
model, with respect to each analysis phase.

The following experiments apply leave-one-out cross validation
[11], acommon cross-validation technique for evaluating user study
data. For each user, the models were trained on the trace data of the
other 17 out of 18 participants, and tested on the trace data from the
remaining participant that was removed from the training set. After
evaluating each user individually, we averaged the results across all
users to produce our final accuracy calculations.

5.4.1 Predicting the User’s Current Analysis Phase

The goal was to measure how accurately we could predict the
user’s current analysis phase. To build a training and testing set for
this experiment, we manually labeled each request in our request
logs with one of our 3 analysis phases. Figure 8b shows the dis-
tribution of phase labels. We see that users spent noticeably less

time in the Foraging phase for tasks 2 and 3 (i.e., looking for new
ROTI’s), which is consistent with our user study observations.

To test our SVM classifier, we performed leave-one-out cross
validation (see above), where all requests for the corresponding
user were placed in the test dataset, and the remaining requests
were placed in the training set. Training the classifier took less than
one second. We found that our overall accuracy across all users was
82%. For some users, we could predict the current analysis phase
with 90% accuracy or higher.

5.4.2  Accuracy of Recommendation Models

To validate the accuracy of our individual recommenders, we
conducted two sets of experiments, where we: (1) compared the
accuracy of our AB recommender to existing techniques, and (2)
measured the prediction accuracy of our SB recommender sepa-
rately for each of our four tile signatures. The goal of these ex-
periments was two-fold. First, we wanted to find the phases where
existing techniques performed well, and where there was room for
improvement. Second, we wanted to test whether our AB and SB
models excelled in accuracy for their intended analysis phases. To
do this, we evaluated how accurately our individual models could
predict the user’s next move, for each analysis phase.

Action-Based (AB) Model To evaluate the impact of history
length on our AB recommender, we implemented a separate Markov
chain for n = 2 to n = 10, which we refer to as Markov2 through
Markov10, respectively. Each Markov chain only took millisec-
onds to train. We found that n = 2 was too small, and resulted
in worse accuracy. Otherwise, we found negligible improvements
in accuracy for lengths beyond n = 3, and thus found n = 3 (i.e,,
Markov3) to be most efficient Markov chain for our AB model.

Figure 10a shows the prediction accuracy of our AB model com-
pared to the Momentum and Hotspot models, with increasing val-
ues of k. Note that k represents the total space (in tiles) that each
model was given for predictions (see Section 5.2.2 for more infor-
mation). In Figure 10a, we see that for the Foraging and Sense-
making phases, our AB model matches the performance of existing
techniques for all values of k. Furthermore, we found that our AB
model achieves significantly higher accuracy during the Navigation
phase for all values of k. This validates our decision to use the AB
model as the primary model for predicting the Navigation phase.

Signature-Based (SB) Model: Figure 10b shows the accuracy
of each of our individual signatures, with respect to analysis phase.
To do this, we created four separate recommendation models, one
per signature. Amongst our signatures, we found that the SIFT sig-
nature provided the best overall accuracy. We expected a machine
vision feature like SIFT to perform well, because users are compar-
ing images when they analyze MODIS tiles.

We found that the denseSIFT signature did not perform as well
as SIFT. denseSIFT performs worse because it matches entire im-
ages, whereas SIFT only matches small regions of an image. Here,
relevant visualizations will contain clusters of orange snow pixels,
but will not look similar otherwise. For example, the Rockies will
look very different from the Andes, but they will both contain clus-
ters of snow (orange) pixels. Thus, many relevant tiles will not
appear to be similar with regards to the denseSIFT signature.

5.4.3 Evaluating the Final Prediction Engine

We used the accuracy results for our phase predictor and best
individual recommendation models as inputs to our final two-level
prediction engine. Our prediction engine only incorporated two
recommenders, the AB recommender with n = 3 (i.e., Markov3)
and the SIFT SB recommender. Note that we updated our original
allocation strategies based on our observed accuracy results. When
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Figure 10: Accuracy of our AB model, SB model, and final prediction engine (i.e., hybrid model).

Hybrid Model vs.Existing Techniques

1.00 - Foraging Navigation Sensemaking
.0.75 - model
S —— hybrid
o
8 0.50 4 —+— hotspot
Q
< 0.25- —*— momentum
L L0 I I I I I R Y B B B B |
1 678 12345678 12 67

5
Top-k tiles Considered

Figure 11: Accuracy of the hybrid model compared to existing

techniques.

Accuracy vs. Response Time

O %750 -
EE
s 8

500 -
28
gE
&= 250 -
x £

0.50
Accuracy

Figure 12: Plot of average response time given prefetch accuracy,
for all models and fetch sizes (linear regression: Adj R*=0.99985,
Intercept=961.33, Slope=-939.08, P=1.1704e-242.

the Sensemaking phase is predicted, our model always fetches pre-
dictions from our SB model only. Otherwise, our final model fetches
the first 4 predictions from the AB model (or less if k < 4), and then
starts fetching predictions from the SB model if k > 4.

Figure 10c shows that our final prediction engine successfully
combined the strengths of our two best prediction models. It was
able to match the accuracy of the best recommender for each anal-
ysis phase, resulting in better overall accuracy than any individual
recommendation model. We also compared our final prediction en-
gine to existing techniques, shown in Figure 11. We see that for the
Foraging phase, our prediction engine performs as well (if not bet-
ter) than existing techniques. For the Navigation phase, we achieve
up to 25% better prediction accuracy compared to Momentum and
Hotspot. Similarly for the Sensemaking phase, we see a consistent
10-18% improvement in accuracy.

5.5 Latency

We used the same setup from our accuracy experiments to mea-

sure latency. To measure the latency for each tile request, we recorded

the time at which the client sent the request to the middleware, as
well as the time at which the requested tile was received by the
client. We calculated the resulting latency by taking the differ-
ence between these two measurements. On a cache hit, the mid-
dleware was able to retrieve the tile from main memory, allowing
ForeCache to send an immediate response. On a cache miss, the
middleware was forced to issue a query to SciDB to retrieve the
missing tile, which was slower. On average, the middleware took
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Figure 13: Average prefetching response times for hybrid model
and existing techniques.

19.5 ms to send tiles for a cache hit, and 984.0 ms for a cache miss.

To evaluate our claim that accuracy dictates latency, we plot-
ted the relationship between prefetching accuracy and average re-
sponse time (i.e., average latency), shown in Figure 12. Accuracy
and response times were plotted for all models and fetch sizes.
We see a strong linear relationship between accuracy and response
time, where a 1% increase in accuracy corresponded to a 10ms de-
crease in average response time (adjusted R = 0.99985). Given this
constant accuracy-latency factor, we found that the higher predic-
tion accuracy of our hybrid algorithm translates to a time savings of
150-250ms per tile request, when compared with existing prefetch-
ing techniques. The difference in latency is plotted in Figure 13,
where we calculated the average response times for three models.
We found that our hybrid model reduced response times by more
than 50% for k > 5, compared with existing techniques.

This latency evaluation indicates that ForeCache provides signif-
icantly better performance over not only traditional systems (i.e.,
exploration systems without prefetching), but also existing systems
that enable prefetching (e.g., [8, 6, 16]). Specifically, as shown in
Figure 13, with a prefetch size of 5 tiles (k = 5), our system demon-
strates a 430% improvement over traditional systems (i.e., average
latency of 185ms vs. 984ms), and 88% over existing prefetching
techniques (average latency of 185 ms vs. 349 ms for Momentum,
and 360 ms for Hotspot).

In addition, ForeCache provides a much more fluid and interac-
tive user experience than traditional (no prefetching) systems. As
shown in HCI literature, a 1 second interaction delay is at the limit
of a user’s sensory memory [4]. Delays greater than 1 second make
users feel like they cannot navigate the interface freely [17, 15]. In
this regard, traditional systems (i.e., a constant latency of 1 second
per request) are not considered interactive by HCI standards.

In contrast, ForeCache remains highly interactive during most
of the user’s interactions with the interface, with only 19.5ms of
delay per tile request. As shown in Figure 11, with a fetch size of
5 tiles (k = 5), the prediction algorithm succeeds the vast majority
of the time (82% of the time), making a cache miss (and the full
1 second delay) an infrequent event. Thus our techniques allow
systems with limited main memory resources (e.g., less than 10MB
of prefetching space per user) to operate at interactive speeds, so



that many users can actively navigate the data freely and in parallel.

6. DISCUSSION AND FUTURE WORK

While ForeCache provides significantly better performance over
other systems, there is still room for improvement. Here, we dis-
cuss an extension to ForeCache: applying our prediction engine
beyond two dimensions. In addition, we present several ideas for
further improvements to ForeCache both in performance and appli-
cability to other datasets.

6.1 Prediction Beyond 2D datasets

The current ForeCache system focuses on 2D visualization. To
support multidimensional exploration (e.g., 3D datasets), we can
employ a coordinated view design, where tiles are represented by
several visualizations at the same time. For example, to extend
our snowcover example to three dimensions (latitude, longitude
and time), we could create two navigable views: (1) a snowcover
heatmap (e.g., Figure 7); and (2) a line chart showing maximum
snow cover over time for the current tile. To navigate via latitude
and longitude, the user moves in the heatmap. To navigate via time,
the user moves in the line chart.

However, the number of tiles grows exponentially with the num-
ber of dimensions, increasing the search space and making predic-
tion more challenging. One solution is to insert a pruning level be-
tween our phase classifier and recommendation models to remove
low-probability interaction paths. A second solution is to restrict
the number of possible interactions ahead of time by having the
user choose only two dimensions to explore at a time. This tech-
nique reduces the user’s range of possible actions, enabling Fore-
Cache to still make accurate predictions. We plan to implement 3D
visualizations and pruning in ForeCache, and plan to conduct a new
user study on higher-dimensionality datasets to evaluate the accu-
racy and response time benefits provided by these new techniques.

6.2 Future Work

We describe three future directions for ForeCache: (1) extending
our tiling scheme; (2) implementing more signatures; and (3) new
prediction and caching techniques for multi-user environments.

Our proposed tiling scheme works well for arrays. However,
when considering other types of data (e.g., social graphs or patient
health records), it is unclear how to map these datasets to tiles. We
plan to develop a general-purpose tiling mechanism for relational
datasets. We also plan to study how tiling parameters affect perfor-
mance for array and non-array datasets.

We manually identified four signatures for our SB recommender,
and found that SIFT works best for the NDSI dataset. However,
other features may be more appropriate for different datasets. For
example, counting outliers or computing linear correlations may
work well for prefetching time series data. We plan to build a
general-purpose signature toolbox with more of these signatures,
and plan to extend ForeCache to learn what signatures work best
for a given dataset automatically.

To evaluate ForeCache’s new tiling scheme and signature tool-
box, we plan to conduct a user study on non-array-based datasets.
For example, we plan to support the MIMIC II medical dataset,
which provides hospital data recorded for thousands of patients and
many different data types (e.g., unstructured text data, tabular data,
and array data).

In addition, our prediction framework does not currently take
into account potential optimizations within a multi-user scheme.
For example, it is unclear how to partition the middleware cache to
make predictions for multiple users exploring different datasets, or
how to share data between users exploring the same dataset. We

plan to extend our architecture to manage coordinated predictions
and caching across multiple users.

7. RELATED WORK

Many systems use online computation, pre-computation or pre-
fetching techniques to support exploratory browsing of large datasets.
The ScalaR system [2] computes aggregates and samples in the
DBMS at runtime to avoid overwhelming the client with data. How-
ever, aggregation and sampling queries are too slow to complete at
interactive speeds. Fisher et al. [9] combine online sampling with
running summaries to improve response times. However, users
must still wait for queries to complete if they want accurate results.

Several systems instead build pre-computed data reductions to
speed up query execution. BlinkDB [1] builds stratified samples
over datasets as they are loaded into the DBMS, and provides error
and latency guarantees when querying these samples. The DICE
system [10] utilizes pre-computed samples and a distributed DBMS
environment to shorten execution times for data cube queries. The
techniques used in ForeCache can be used alongside sampling tech-
niques to further improve performance.

Two recent systems have created specialized data structures to
support data exploration. Lins et al. [14] developed new data cube
structures, which they call nanocubes, to efficiently visualize large
datasets. However, the entire nanocubes data structure must fit in
memory. Thus, nanocubes do not scale easily to larger datasets.
Similar to our approach, the imMens system [16] builds data tiles
in advance, and fetches these tiles from the backend at runtime.
However, users must build the data tiles manually, and imMens
does not utilize comprehensive prediction techniques to fetch tiles.

A number of systems use prediction algorithms to improve prefetch-
ing accuracy. Lee et al. [12] and Cetintemel et al. [5] propose us-
ing Markov chains to predict user movements. Chan et al. [6] and
Doshi et al. [8] also propose several prediction strategies—the most
sophisticated being Markov chains—to predict the user’s next re-
quests. We compare with two of these strategies, Momentum and
Hotspot, in our experiments. Yesilmurat et al. [25] propose tech-
niques similar to the Momentum model for prefetching geospatial
data. Li et al. [13] combine the Hotspot model with Markov chains
to boost prefetching performance. ForeCache builds on the tech-
niques presented in these systems with new signature-based predic-
tion algorithms and a novel adaptive framework for running multi-
ple algorithms in parallel.

8. CONCLUSION

In this paper, we presented ForeCache, a general-purpose ex-
ploration system for browsing large datasets. ForeCache employs a
client-server architecture, where the user interacts with a lightweight
client-side interface, and the data to be explored is retrieved from
a back-end server running a DBMS. We inserted a middleware op-
timization layer in front of the DBMS that uses a two-level pre-
diction engine and main-memory cache to prefetch relevant data
tiles given the user’s current analysis phase and recent tile requests.
We presented results from a user study we conducted, where 18
domain experts used ForeCache to explore NASA MODIS satel-
lite imagery data. We tested the performance of ForeCache using
traces recorded from our user study, and presented accuracy results
showing that our prediction engine provides: (1) significant accu-
racy improvements over existing prediction techniques (up to 25%
higher accuracy); and (2) dramatic latency improvements over cur-
rent non-prefetching systems (430% improvement in latency), and
existing prediction techniques (88% improvement in latency).
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