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ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that efficiently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user effort than the well-known Wrangler system.

Keywords
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1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data

wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-
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Figure 1: A spreadsheet of business contact information
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Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are difficult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High Effort : The amount of user effort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user effort. Unlike Wrangler, which asks
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the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an effective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an efficient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both effective and efficient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user effort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be difficult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state
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Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High Effort). Lines 5–6 require a good understanding of the
Unfold operation, causing difficulty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are different from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
difficult to discover, further illustrating the High Skill issue.

Consider another scenario where the same task becomes
much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values
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1 Delete row 1

2 Delete row 2

3 Delete rows where column 2 is null

4 Split column 2 on ’:’

5 Fill split with values from above

6 Unfold column 2 on column 3

Figure 5: Program created with Wrangler

1 t = split(t, 1, ’:’)

2 t = delete(t, 2)

3 t = fill(t, 0)

4 t = unfold(t, 1)

Figure 6: Program synthesized with Foofah

We assume that the input data should be transformed without
any extra semantic information, so, for example, transforming
“NY” to “New York” is not possible (previous projects [1,9,37]
have addressed such semantic transformations). Transforma-
tions should not add new information that is not in the input
table, such as adding a column header. We provide another
example use case in Appendix B.

3. PROBLEM DEFINITION
To help the user synthesize a correct data transformation

program, we take a Programming By Example (PBE) ap-
proach: the user provides an input-output example pair, and
the system generates a program satisfying the example pair
and hopefully can correctly transform the full dataset R.

3.1 Problem Definition
With all notations summarized in Table 1, we define this

problem formally:
Problem Given a user’s set of input-output examples
E = (ei, eo), where ei is drawn from raw dataset R and
eo is the desired transformed form of ei, synthesize a data
transformation program P, parameterized with a library of
data transformation operators, that will transform ei to eo.

Like previous work in data transformation [17, 22], we
assume the raw data R is a grid of values. R might not be
relational but must have some regular structure (and thus
may have been programmatically generated). Further, R may
contain schematic information (e.g., column or row headers)
as table values, and even some extraneous information (e.g.,
“Bureau of I.A.” in Figure 1).

Once the raw data and the desired transformation meet
the above criteria, the user must choose the input sample and
specify the corresponding output example. More issues with
creating quality input-output examples will be discussed in
detail in Section 4.5.

3.2 Data Transformation Programs
Transforming tabular data into a relational table usually re-

quire two types of transformations: syntactic transformations
and layout transformations [13]. Syntactic transformations
reformat cell contents (e.g., split a cell of ”mm/dd/yyyy”
into three cells containing month, day, year). Layout trans-
formations do not modify cell contents, but instead change
how the cells are arranged in the table (e.g., relocating cells
containing month information to be column headers).

We find that the data transformation operators shown in
Table 2 (defined in Potter’s Wheel project [33,34] and used
by state-of-art data transformation tool Wrangler [22]) are

Notation Description

P = {p1, . . . , pn} Data transformation program
pi = (opi, par1, . . . ) Transformation operation with operator

opi and parameters par1, par2, etc.
R Raw dataset to be transformed
ei ∈ R Example input sampled from R by user
eo = P(ei) Example output provided by user, trans-

formed from ei
E = (ei, eo) Input-output example table pair, pro-

vided as input to the system by user

Table 1: Frequently used notation

Operator Description

Drop Deletes a column in the table
Move Relocates a column from one position to an-

other in the table
Copy Duplicates a column and append the copied

column to the end of the table
Merge Concatenates two columns and append the

merged column to the end of the table
Split Separates a column into two or more halves

at the occurrences of the delimiter
Fold Collapses all columns after a specific column

into one column in the output table
Unfold “Unflatten” tables and move information from

data values to column names
Fill Fill empty cells with the value from above
Divide Divide is used to divide one column into two

columns based on some predicate
Delete Delete rows or columns that match a given

predicate
Extract Extract first match of a given regular expres-

sion each cell of a designated column
Transpose Transpose the rows and columns of the table
Wrap (added) Concatenate multiple rows conditionally

Table 2: Data transformation operators used by Foofah

expressive enough to describe these two types of transfor-
mations. We use these operations in Foofah: operators like
Split and Merge are syntactic transformations and operators
like Fold, and Unfold are layout transformations. To illustrate
the type of operations in our library, consider Split. When
applying Split parameterized by ‘:’ to the data in Figure 7,
we get Figure 8 as the output. Detailed definitions for each
operator are shown in Appendix A.

Our proposed technique is not limited to supporting Pot-
ter’s Wheel operations; users are able to add new operators
as needed to improve the expressiveness of the program syn-
thesis system. We assume that new operators will match our
system’s focus on syntactic and layout transformations (as
described in Section 2); if an operator attempts a seman-
tic transformation, our system may not correctly synthesize
programs that use it. As we describe below, the synthesized
programs do not contain loops, so novel operators must be
useful outside a loop’s body.

We have tuned the system to work especially effectively
when operators make ”conventional” transformations that
apply to an entire row or column at a time. If operators
were to do otherwise — such as an operator for “Removing
the cell values at odd numbered rows in a certain column”,
or for “Splitting the cell values on Space in cells whose
values start with ‘Math”’ — the system will run more slowly.
Experimental results in Section 5.5 show evidence that adding
operators can enhance the expressiveness of our synthesis
technique without hurting efficiency.
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Figure 7: Pre-Split data
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Figure 8: After Split on ‘:’

Program Structure — All data transformation operators
we use take in a whole table and output a new table. A
reasonable model for most data transformation tasks is to
sequentially transform the original input into a state closer to
the output example until we finally reach that goal state. This
linear process of data transformation results in a loop-free or
straight-line program, a simple control structure successfully
applied in many previous data transformation projects [17,
22, 23, 42]. We use the operators mentioned above as base
components. Synthesizing loops is usually unnecessary in our
case because the operators in our operator library are defined
to potentially apply to multiple values. Nevertheless, the loop-
free program structure could restrict us from synthesizing
programs that require an undetermined number of iterations
of a data transformation operation, or could lead to verbose
programs with ”unrolled loops.” For example, if the user
wants to ”Drop column 1 to column bk/2c where k is the
number of columns in the table” our system will be unable
to synthesize a loop-based implementation and instead will
simply repeat Drop many times.

Motivated by the above considerations, we formally define
the data transformation to be synthesized as follows:

Definition 3.1 (Data transformation program P). P is a
loop-free series of operations (p1, p2, ..., pk) such that: 1. Each
operation pi = (opi, par1, . . . ) : tin → tout. pi includes op-
erator opi with corresponding parameter(s) and transforms
an input data table tin to an output data table tout. 2. The
output of operation pi is the input of pi+1.

4. PROGRAM SYNTHESIS
We formulate data transformation program synthesis as a

search problem. Other program synthesis approaches are not
efficient enough given the huge search space in our problem
setting (Section 4.1). We thus propose an efficient heuris-
tic search method, inspired by the classic A* algorithm. In
Section 4.2, we introduce a straw man heuristic and then
present our novel operator-independent heuristic, Table Edit
Distance Batch (TED Batch), based on a a novel metric,
Table Edit Distance (TED), which measures the dissimilarity
between tables. In addition, we propose a set of pruning rules
for data transformation problems to boost search speed (Sec-
tion 4.3). We compare the time complexity of our technique
with other previous projects (Section 4.4). Finally, we discuss
issues about creating examples and validation (Section 4.5).

4.1 Program Synthesis Techniques
In Section 3.2, we described the structure of our desired

data transformation program to be component-based and
loop-free. Gulwani et al. proposed a constraint-based program
synthesis technique to synthesize loop-free bit-manipulation
programs [15, 21] using logic solvers, like the SMT solver.
However, the constraint-based technique is impractical for our
interactive PBE system because the number of constraints
dramatically increases as the size of data increases, scaling
the problem beyond the capabilities of modern logic solvers.

Other methods for synthesizing component programs in-
clude sketching and version space algebra. Solar-Lezama’s

work with sketching [40] attempts to formulate certain types
of program automatically through clever formulation of SAT
solving methods. This approach focuses on programs that
are “difficult and important” for humans to write by hand,
such for thread locking or decoding compressed data streams,
so it is acceptable for the solver to run for long periods. In
contrast, our aims to improve productivity on tasks that are
“easy but boring” for humans. To preserve interactivity for
the user, our system must find a solution quickly.

Version space algebra requires a complete search space of
programs between two states, which make it more suitable for
a Programming By Demonstration problem where the user
explicitly provides intermediate states and the search space
between these states is small [27] or for PBE problems that
can be easily divided into independent sub-problems [12]. In
our problem, the search space of the synthesized programs is
exponential, and thus version space algebra is not practical.

Search-based techniques are another common approach
used by previous program synthesis projects [25,30,32,35].
For our problem, we formulate program synthesis as a search
problem in a state space graph defined as follows:

Definition 4.1 (Program synthesis as a search problem).
Given input-output examples E = (ei, eo), we construct a
state space graph G(V,A) where arcs A represent candidate
data transformation operations, vertices V represent inter-
mediate states of the data as transformed by the operation
on previously traversed arcs, ei is the initial state v0, and
eo is the goal state vn. Synthesizing a data transformation
program is finding a path that is a sequence of operations
leading from v0 to vn in G.

Graph Construction — To build a state space graph G,
we first expand the graph from v0 by adding out-going edges
corresponding to data transformation operators (e.g., Drop,
Fold) with all possible parameterizations (parameters and
their domains for each operator are defined both in [34] and
Appendix A). The resulting intermediate tables become the
vertices in G. Since the domain for all parameters of our
operator set is restricted, the number of arcs is still tractable.
More importantly, in practice, the pruning rules introduced
in Section 4.3 trim away many obviously incorrect operations
and states, making the actual number of arcs added for each
state reasonably small (e.g., the initial state ei in Figure 10
has 15 child states, after 161 are pruned).

If no child of v0 happens to be the goal state vn, we
recursively expand the most promising child state (evaluated
using the method introduced in Section 4.2) until we finally
reach vn. When the search terminates, the path from v0 to vn
is the sequence of operations that comprise the synthesized
data transformation program.

4.2 Search-based Program Synthesis
Due to our formulation of the synthesis problem, the search

space is exponential in the number of the operations in the
program. Searching for a program in a space of this size can
be difficult. Brute-force search quickly becomes intractable.
As a PBE solution needs to be responsive to preserve interac-
tivity, we are exposed to a challenging search problem with
a tight time constraint. To solve the problem, we develop a
heuristic search algorithm for synthesizing data transforma-
tion programs inspired by the classic A* algorithm [18]. With
appropriate pruning rules and careful choice of exploration
order, we are able to achieve good performance.
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Operator Description

Add Add a cell to table
Delete Remove a cell from table
Move Move a cell from location (x1, y1) to (x2, y2)
Transform Syntactically transform a cell into a new cell

Table 3: Table Edit Operators

A* is a common approach to address search problems and
has been successfully applied in previous work on program
synthesis [25, 35]. To find a path in the graph from the
initial state to the goal state, the A* algorithm continually
expands the state with the minimum cost f(n) = g(n)+h(n),
where g(n) is the cost to reach state n from the initial
state and heuristic function h(n) is the approximate cost
of the cheapest path from state n to the goal state. The
definition of cost depends on the performance measure of
the search task. In robotic pathfinding, the cost is typically
distance traveled. In our problem, we prefer shorter programs
over longer ones, because we believe shorter programs will
be easier to understand. For these programs, correctness
and readability are far more important than the program’s
computational efficiency (our operators all have complexity
linear in the size of the input file), so we do not search for
computationally “cheap” programs. We define cost as follows:

Definition 4.2 (Data transformation cost). Given any two
states (vi, vj) in graph G, cost is the minimum number of
data transformation operations needed to transform vi to vj .

Note that we treat all operators equally. Although, some
operators like Fold might be conceptually more complex for
users to understand, we observe that such operators rarely
occur more than once in our benchmarks.

Additionally, an admissible heuristic helps synthesize a
program with the minimum number of data transformation
operations. This is ideal but not necessary. By relaxing the
need for admissibility, we may accept a program that is
slightly longer than the program with the minimal length.

Näıve Heuristic — Possibly the most straightforward heuris-
tic is a rule-based one. The intuition is that we create some
rules, based on our domain knowledge, to estimate whether
a certain Potter’s Wheel operator is needed given E , and use
the total count as the final heuristic score in the end. An
example heuristic rule for the Split operator is “number of
cells from Ti[k] (i.e., the row k in Ti) with strings that do not
appear fully in To[k], but do have substrings that appear in
To[k].” (This is a reasonable rule because the Split operator
splits a cell value in the input table into two or more pieces
in the output table, as in Figures 7 and 8.) The details about
this näıve heuristic are presented in Appendix C.

Although this näıve heuristic might appear to be effective
for our problem, it is weak for two reasons. First, the es-
timation is likely to be inaccurate when the best program
entails layout transformations. Second, the heuristic is de-
fined in terms of the existing operators and will not easily
adapt to new operators in the future. We expect different
operators to be helpful in different application scenarios and
our framework is designed to be operator independent.

To overcome these shortcomings, we have designd a novel
heuristic function explicitly for tabular data transformation.

4.2.1 Table Edit Distance
The purpose of the heuristic function in A* is guiding the

search process towards a more promising direction. Inspired

Frank K. Tel: (615)564-6500
Tel: (918)781-4600Jean H.
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(800) 645-8397Tel

Tel: (800)645-8397
Tel: (918)781-4600
Tel: (615)564-6500

Frank

Niles
Jean

K. Tel: (615)564-6500
Tel: (918)781-4600H.
Tel: (800)645-8397C.

ei eo

c2

c1

split(0,‘ ’)

drop(0)

Figure 9: An example data transformation task
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Figure 10: Cell-level edit operations composing the trans-
formation from Table ei to Table eo in Figure 9 (circles are
cells, bold arrows are Transforms, dashed arrows are Deletes)

by a previous research [35], which used edit distance as the
heuristic function, we define Table Edit Distance (TED),
which measures the table dissimilarity:

TED(T1, T2) = min
(p1,...,pk)∈P (T1,T2)

k∑
i=i

cost(pi) (1)

TED is the minimum total cost of table edit operations needed
to transform T1 to T2, where P (T1, T2) denotes the set of edit
paths transforming T1 to T2 and cost(pi) is the cost of each
table edit operation pi. The table edit operations include
Add, Delete, Move, Transform (see Table 3 for definition).

Inspired by the graph edit distance algorithm [31], we
designed an algorithm to calculate the exact TED. Unfor-
tunately, computing TED in real time is not practical: it
is equivalent to computing graph edit distance, which is
NP-complete [11]. (See Appendix D for this algorithm.)

We therefore designed an efficient greedy algorithm to
approximate TED, shown in Algorithm 1. The idea behind
Algorithm 1 is to greedily add the cheapest operations among
the candidate operations to formulate each cell in the output
table eo, building up a sequence of edits until we obtain a
complete edit path. The edit path formulates the entire output
table. The final heuristic score is the total cost of this path.

Algorithm 1 consists of three core steps. We use Figure 10,
which describes the edit path found to transform input table
ei to eo in Figure 9, as an example to explain each step.

Step 1. (lines 3–19) For each unprocessed cell in the output
table (picked in row-major order), we choose the cheapest
cell-specific operation sequence (a tie is broken by row-major
order of the cell from the input table), from one of:

1. Transformation from an unprocessed cell in ex into a
cell in eo. Transformation sequences for a pair of cells
is generated by the function “AddCandTransform” and
can include a Move operator (if the cell coordinates
differ), a Transform operator (if the cell contents differ),
or both operators (if both conditions apply).

2. Add a new cell to eo.
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Algorithm 1: Approximate TED Algorithm

Data: Intermediate Table ex = {u1, u2, . . . , u|ex|},
where ui represents a cell from ex; Example
Output Table eo = {v1, v2, . . . , v|eo|}, where vi
represents a cell from eo

Result: cost, edit path
1 pfinal ← ∅;
2 ptemp ← ∅;
3 for w in ex do
4 add AddCandTransform(w, v1) to ptemp;

5 add Add(v1) to ptemp;
6 pfinal ← argmin∀p∈ptempcost(p) ;
7 Let {u1, . . . , uj} & {v1, . . . , vk} be processed cells;
8 while j <| ex | and k <| eo | do
9 ptemp ← ∅;

10 for w ∈ {uj+1, . . . , u|ex|} do
11 add AddCandTransform(w, vk+1) to ptemp;

12 add Add(vk+1) to ptemp;
13 if cost(argmin∀p∈ptempcost(p)) ≥ ∞ then
14 ptemp ← ∅;
15 for w ∈ {u1, . . . , u|ex|} do
16 add AddCandTransform(w, vk+1) to ptemp;

17 add Add (vk+1) to ptemp;

18 pfinal ← pfinal ∪ argmin∀p∈ptempcost(p) ;
19 Let {u1, . . . , uj} & {v1, . . . , vk} be processed cells;

20 if j <| ex | then
21 for w ∈ {uj+1, . . . , u|ex|} do
22 add Delete (w) to pfinal

23 if k <| eo | then
24 for q ∈ {vk+1, . . . , v|eo|} do
25 ptemp ← ∅;
26 for w ∈ {u1, . . . , u|ex|} do
27 add AddCandTransform(w, q) to ptemp;

28 add Add (q) to ptemp;
29 pfinal ← pfinal ∪ argmin∀p∈ptempcost(p) ;

30 Return cost(pfinal), pfinal

After picking an operation sequence, we hypothesize an
edit path (ptemp) for each cell that consists of all edits made
so far, plus the chosen operation. We measure the cost of
each edit path using the cost function. By default, all table
edit operations have equal cost; however, we assign a cost of
infinity to: (1) Transform operations between cells with no
string containment relationship and (2) Add operations for
non-empty cells. (These fall into the category of tasks beyond
the scope of our technique described in Section 2.)

For example, for O1 in Figure 101, Algorithm 1 finds that
transforming from I2 to O1 to is the best, because the costs
of transforming from I1, I3, and I5 are all infinite (no string
containment), and although transforming from I4 or I6 costs
the same as transforming from I2, I2 has a higher row-major
order in the input table. For O2, we find that transforming
from any unprocessed cell in the input example (i.e., I1,3,4,5,6)
to O2 yields an infinite cost, so using only the unprocessed
cells would not result in a reasonable edit path. We fix this
problem by adding transformations from the processed cells
in lines 13–18; this helps find the cheapest edit operation to
formulate O2: transforming from I2 to O2.

1On means cell n from eo. Im means cell m from ei.

Step 2. (line 20–22) Delete all unprocessed cells from ex.

In our running example, after we have discovered edit
operations for all cells in the output example, we find that
cells 1, 3, and 5 from the input example remain unprocessed.
We simply add Delete operations to remove them.

Step 3. (line 23–29) When we have unprocessed cells in eo,
but no remaining unprocessed cells in ex, our only options
are to: (1) Transform from a processed cell in ex, (we process
every input cell at least one time before processing any cell
for a second time) OR (2) Add a new cell.

The edit path discovered in Figure 10 is as follows:2

P0 =



Transform((1,2),(1,1)), Move((1,2),(1,1))
Transform((1,2),(1,2)), Transform((2,2),(2,1))

Move((2,2),(2,1)), Transform((2,2),(2,2))
Transform((3,2),(3,1)), Move((3,2),(3,1))
Transform((3,2),(3,2)), Delete((1,1))

Delete((2,1)), Delete((3,1))


Figure 9 shows a data transformation task, where ei is the

input example and eo is the output example. c1 and c2 are
two child states of ei representing outcomes of two possible
candidate operations applied to ei. Below we define P1 and
P2, the edit paths discovered by Algorithm 1 for c1 and c2:

P1 =


Transform((1,1),(1,1)), Transform((1,1),(1,2))
Move((1,1),(1,2)) , Transform((2,1),(2,1))

Transform((2,1),(2,2)), Move((2,1),(2,2))
Transform((3,1),(3,1)), Transform((3,1),(3,2))

Move((3,1),(3,2))



P2 =



Transform((1,3),(1,1)), Move((1,3),(1,1))
Transform((1,3),(1,2)), Move((1,3),(1,2))
Transform((2,3),(2,1)), Move((2,3),(2,1))
Transform((2,3),(2,2)), Move((2,3),(2,2))
Transform((3,3),(3,1)), Move((3,3),(3,1))
Transform((3,3),(3,2)), Move((3,3),(3,2))

Delete((1,1)), Delete((2,1))
Delete((3,1)), Delete((1,2)),
Delete((2,2)), Delete((3,2))


. The actual cost of edit paths P0, P1, and P2 are 12, 9, and
18, respectively. These costs suggest that the child state c1,
as an intermediate state, is closer to the goal than both its
“parent” ei and its “sibling” c2. Those costs are consistent
with the fact that Drop(0) is a more promising operation
than Split(0,‘ ’) from the initial state. (Only one operation—
Split(1,‘:’)—is needed to get from c1 to eo, whereas three
operations are needed to transform c2 to eo). This example
shows that our proposed heuristic is effective in prioritizing
the good operations over the bad ones.

4.2.2 Table Edit Distance Batch
Although TED seems to be a good metric for table dissim-

ilarity, it is not yet a good heuristic function in our problem
because (1) it is an estimate of the cost of table edit path
at a cell level which is on a scale different from our data
transformation operations cost defined in Definition 4.2 and

2Transform((a1,a2),(b1,b2)) means Transform the cell at
(a1,a2) in ei to the cell at (b1,b2) in eo.
Move((a1,a2),(b1,b2)) means Move the cell from (a1,a2) in ei
to (b1,b2) in eo
Delete((c1,c2)) means Delete the cell at (c1,c2) in ei.
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Algorithm 2: Table Edit Distance Batch

Data: pfinal = {ui1 → v1, . . . , ui|T2| → v|T2|}, patterns
from Table 4

Result: cost
1 batchtemp ← ∅;
2 batchfinal ← ∅;
3 Gtype ← Group pfinal by table edit operators type ;
4 for g ∈ Gtype do
5 for p ∈ patterns do
6 batchtemp ← batchtemp ∪Group g by p;

7 while
⋃

batchfinal is not a complete edit path do
8 batchmax ← argmaxb∈batchtempsize(b) ;
9 if batchmax ∩

⋃
batchfinal = ∅ then

10 add batchmax to batchfinal;

11 batchtemp ← batchtemp\batchmax;

12 cost← 0;
13 for group ∈ batchfinal do
14 sum← 0;
15 for editOp ∈ group do
16 sum← sum + cost(editOp);

17 cost← cost + sum/size(group);

18 Return cost;

(2) the TED score depends on the number of cells in the
example tables The scaling problem in our setting cannot be
fixed by simply multiplying the cost by a constant like has
been done in other domains [20], because different Potter’s
Wheel operators affect different number of cells.

We have developed a novel method called Table Edit
Distance Batch (TED Batch) (Algorithm 2) that approx-
imates the number of Potter’s Wheel operators by grouping
table edit operations belonging to certain geometric patterns
into batches and compacting the cost of each batch. The
intuition behind this methodology is based on the observa-
tion that data transformation operators usually transform,
remove or add cells within the same column or same row or
that are geometrically adjacent to each other. Consider Split,
for example: it transforms one column in the input table into
two or more columns, so instead of counting the individual
table edit operations for each affected cell, the operations
are batched into groups representing the affected columns.

The definitions of the geometric patterns and related data
transformation operators are presented in Table 4. For exam-
ple, “Vertical to Vertical” captures the edit operations that
are from vertically adjacent cells (in the same column) in the
input table to vertically adjacent cells in the output table.
In Figure 10, Deletes of I1,3,5 are a batch of edit operations
that follow “Vertical to Vertical” pattern.

To recalculate the heuristic score using this idea, we pro-
pose Algorithm 2, which consists of the following three steps.
We use Figure 10 and P0 to demonstrate each step.

Step 1. (lines 3 –6) Find all sets of edit operations (from the
edit path obtained by Algorithm 1) following each geometric
pattern. Each set is a candidate batch. Each edit operator
could only be batched with operators of same type (e.g., Move
should not be in the same batch as Drop); line 3 first groups
operations by types.

In P0, Transform((1,2),(1,1)) (I2 to O1 in Figure 10) should
be grouped by pattern “Vertical to Vertical” with Trans-
form((2,2),(2,1)) (I4 to O3) and Transform((3,2),(3,1)) (I6 to

O5). Meanwhile, it could also be grouped by pattern “One
to Horizontal” with Transform((2,2),(2,2)) (I2 to O2).

Step 2. (lines 7 – 11) One edit operation might be included
in multiple batches in Step 1. To finalize the grouping, Al-
gorithm 2 repeatedly chooses the batch with the maximum
number of edit operations, and none of the operations in this
batch should be already included batchfinal . The finalization
terminates when batchfinal covers a complete edit path.

In the example in Step 1, Transform((1,2),(1,1)) will be
assigned to the “Vertical to Vertical” group because it has
more members than the “One to Horizontal” group.

Step 3. (lines 13 – 17) The final heuristic score is the sum
of the mean cost of edit operations within each chosen batch.

In this case, the cost of the batch with Transform((1,2),(1,1)),
Transform((2,2),(2,1)) and Transform((3,2),(3,1)) will be 1,
not 3. Finally, the batched form of P0 is {p1, p2, p3, p4}, where

p1 = {Transform((1,2),(1,1)),Transform((2,2),(2,1)),

Transform((3,2),(3,1))},
p2 = {Transform((1,2),(1,2)),Transform((2,2),(2,2)),

Transform((3,2),(3,2))},
p3 = {Move((1,2),(1,1)),Move((2,2),(2,1)),Move((3,2),(3,1))},
p4 = {Delete((1,1)),Delete((2,1)),Delete((3,1))}.

The estimated cost of P0 is reduced to 4 which is closer to
the actual Potter’s Wheel cost and less related to the number
of cells than using TED alone. Likewise, cost of P1 is now 3
and cost of P2 is now 6. In general, this shows that the TED
Batch algorithm effectively ”scales down” the TED heuristic
and reduces the heuristic’s correlation to the table size.

4.3 Pruning Techniques for Better Efficiency
If we indiscriminately tried all possible operations dur-

ing graph expansion, the search would quickly become in-
tractable. However, not all the potential operations are valid
or reasonable. To reduce the size of the graph and improve
the runtime of the search, we created three global pruning
rules (which apply to all operators) and two property-specific
pruning rules (which apply to any operators with certain
specified properties). The following pruning rules are de-
signed to boost efficiency; our proposed data transformation
program synthesis technique is still complete without them.

Global Pruning Rules — These pruning rules apply to
all operations in the library.

• Missing Alphanumerics — Prune the operation if any
letter (a–z, A–Z) or digit (0–9) in eo does not appear
in the resulting child state. We assume transformations
will not introduce new information, thus if an operation
completely eliminates a character present in eo from
current state, no valid path to the goal state exists.

• No Effect — Prune the operation that generates a child
state identical to the parent state. In this case, this
operation is meaningless and should be removed.

• Introducing Novel Symbols — Prune the operation if it
introduces a printable non-alphanumeric symbol that
is not present in eo. If an operator were to add such
a symbol, it would inevitably require an additional
operation later to remove the unneeded symbol.
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Pattern Formulation (X is a table edit operator) Related Operators

Horizontal to Horizontal {X((xi, yi), (xj , yj)), X((xi, yi + 1), (xj , yj + 1)), . . . } Delete(Possibly)
Horizontal to Vertical {X((xi, yi), (xj , yj)), X((xi, yi + 1), (xj + 1, yj)), . . . } Fold, Transpose
Vertical to Horizontal {X((xi, yi), (xj , yj)), X((xi + 1, yi), (xj , yj + 1)), . . . } Unfold,Transpose
Vertical to Vertical {X((xi, yi), (xj , yj)), X((xi + 1, yi), (xj + 1, yj)), . . . } Move, Copy, Merge, Split, Extract, Drop
One to Horizontal {X((xi, yi), (xj , yj)), X((xi, yi), (xj , yj + 1)), . . . } Fold(Possibly), Fill(Possibly)
One to Vertical {X((xi, yi), (xj , yj)), X((xi, yi), (xj + 1, yj)), . . . } Fold, Fill
Remove Horizontal {X((xi, yi)), X((xi, yi + 1)), . . . } Delete
Remove Vertical {X((xi, yi)), X((xi + 1, yi)), . . . } Drop, Unfold

Table 4: Geometric patterns

Property-specific Pruning Rules — The properties of
certain operators allow us to define further pruning rules.

• Generating Empty Columns — Prune the operation if
it adds an empty column in the resulting state when it
should not. This applies to Split, Divide, Extract, and
Fold. For example, Split adds an empty column to a
table when parameterized by a delimiter not present in
the input column; this Split useless and can be pruned.

• Null In Column — Prune the operation if a column in
the parent state or resulting child state has null value
that would cause an error. This applies to Unfold, Fold
and Divide. For example, Unfold takes in one column
as header and one column as data values: if the header
column has null values, it means the operation is invalid,
since column headers should not be null values.

4.4 Complexity Analysis
The worst-case time complexity for our proposed program

synthesis technique is O((kmn)d), where m is the number
of cells in input example ei, n is the number of cells in
the output example eo, k is the number of candidate data
transformation operations for each intermediate table, and d
is the number of components in the final synthesized program.
In comparison, two of the previous works related to our
project, ProgFromEx and FlashRelate, have worst-case
time complexities that are exponential in the size of the
example the user provides. ProgFromEx’s worst-case time
complexity is O(mn), where m is the number of cells in the
input example and n is the number of cells in the output
example. FlashRelate’s worst-case complexity is O(tt−2),
where t is the number of columns in the output table.

In practice, we believe the complexity exponential in input
size will not cause a severe performance issue because none of
the three PBE techniques require large amount of user input.
However, if a new usage model arises in the future that allows
the user to provide a large example easily, ProgFromEx
might become impractical.

4.5 Synthesizing Perfect Programs
Since the input-output example E is the only clue about the

desired transformation provided by the user, the effectiveness
of our technique could be greatly impacted by the quality of
E . We can consider its fidelity and representativeness.

Fidelity of E — The success of synthesizing a program
is premised on the fidelity of the user-specified example E :
the end user must not make any mistake while specifying E .
Some common mistakes a user might make are: typos, copy-
paste-mistakes, and loss of information. This last mistake
occurs when the user forgets to include important informa-
tion, such as column headers, when specifying E . When such
mistakes occur, our proposed technique is almost certain to

fail. However, the required user input is small, and, as we
show in Section 5.6, our system usually fails quickly. As a
result, it is easy for the user to fix any errors. In Section 7,
we describe future work that allows tolerance for user error.

Representativeness of E — Once a program P is gener-
ated given the user input, the synthesized program is guar-
anteed to be correct : P must transform the input example ei
to the output example eo. However, we do not promise that
P is perfect, or guarantees to transform the entire raw data
R as the user may expect. How well a synthesized program
generalizes to R relies heavily on the representativeness of E ,
or how accurately E reflects the desired transformation. Our
proposed synthesis technique requires the user to carefully
choose a representative sample from R as the input example
to formulate E . With a small sample from R, there is a risk
of synthesizing a P that will not generalize to R (similar
to overfitting when building a machine learning model with
too few training examples). Experimentally, however, we see
that a small number (e.g., 2 or 3) of raw data records usually
suffices to formulate E (Section 5).

Validation — In Section 1, we mentioned that one way the
user can validate the synthesized program is by understanding
the semantics of the program. Alternatively, the user could
follow the sampling-based lazy approach of Gulwani et al. [17]
To the best of our knowledge, no existing work in the PBE
area provides guarantees about the reliability of this approach
or how many samples it may require. Of course, not only PBE
systems, but work in machine learning and the program test
literature must wrestle with the same sampling challenges.
Our system neither exacerbates nor ameliorates the situation,
so we do not address these issues here.

5. EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency

of our PBE data transformation synthesis technique and how
much user effort it requires. We implemented our technique
in a system called Foofah. Foofah is written in Python
and C++ and runs on a 16-core (2.53GHz) Intel Xeon E5630
server with 120 GB RAM.

We first present our benchmarks and then evaluate Foofah
using the benchmarks to answer several questions:

• How generalizeable are the synthesized programs out-
put by Foofah? (Section 5.2)

• How efficient is Foofah at synthesizing data transfor-
mation programs? (Section 5.2)

• How is the chosen search method using the TED Batch
heuristic better than other search strategies, including
BFS and a näıve rule-based heuristic? (Section 5.3)

• How effectively do our pruning rules boost the search
speed? (Section 5.4)
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• What happens to Foofah if we add new operators to
the operator library? (Section 5.5)

• How much effort does Foofah save the end users com-
pared to the baseline system Wrangler? (Section 5.6)

• How does Foofah compare to other PBE data trans-
formation systems? (Section 5.7)

Overall, when supplied with an input-output example com-
prising two records, Foofah can synthesize perfect data trans-
formation programs for over 85% of test scenarios within five
seconds. We also show Foofah requires 60% less user effort
than a state-of-art data transformation tool, Wrangler.

5.1 Benchmarks
To empirically evaluate Foofah, we constructed a test

set of data transformation tasks. Initially, we found 61 test
scenarios used in related work including ProgFromEx [17],
Wrangler [22], Potter’s Wheel (PW) [33,34] and Proactive
Wrangler (Proactive) [16] that were candidate benchmark
tests. However, not all test scenarios discovered were appro-
priate for evaluating Foofah. One of our design assumptions
is that the output table must be relational; we eliminated
11 scenarios which violated this assumption. In the end, we
created a set of benchmarks with 50 test scenarios3, among
which 37 are real-world data transformation tasks collected
in Microsoft Excel forums (from ProgFromEx [17]) and the
rest are synthetic tasks used by other related work.

For test scenarios with very little data, we asked a Com-
puter Science student not involved with this project to synthe-
size more data for each of them following a format similar to
the existing raw data of the scenario. This provided sufficient
data records to evaluate each test scenario in Section 5.2.

5.2 Performance Evaluation
In this section, we experimentally evaluate the response

time of Foofah and the perfectness of the synthesized pro-
grams on all test scenarios. Our experiments were designed
in a way similar to that used by an influential work in spread-
sheet data transformation, ProgFromEx [17], as well as
other related work in data transformation [4, 24].

Overview — For each test scenario, we initially created
an input-output example pair using a single data record
chosen from the raw data and sent this pair to Foofah
to synthesize a data transformation program. We executed
this program on the entire raw data of the test scenario
to check if the raw data was completely transformed as
expected. If the inferred program did transform the raw
data correctly, Foofah synthesized what we term a perfect
program. If the inferred program did not transform the raw
data correctly, we created a new input-output example that
included one more data record chosen from the raw data,
making the example more descriptive. We gave the new
example to Foofah and again checked if the synthesized
program correctly transformed the raw data. We repeated
this process until Foofah found a perfect program, giving
each round a time limit of 60 seconds.

Results — Figure 11a shows numbers of data records re-
quired to synthesize a perfect program. Foofah was able
to synthesize perfect programs for 90% of the test scenarios
(45 of 50) using input-output examples comprising only 1

3https://github.com/markjin1990/foofah benchmarks

or 2 records from the raw data. Foofah did not find per-
fect programs for 5 of the 50 test scenarios. The five failed
test scenarios were real-world tasks from ProgFromEx, but
overall Foofah still found perfect programs for more than
85% of the real-world test scenarios (32 of 37).

Among the five failed test scenarios, four required unique
data transformations that cannot be expressed using our
current library of operators; Foofah could not possibly syn-
thesize a program that would successfully perform the desired
transformation. The remaining failed test scenario required a
program that can be expressed with Foofah’s current opera-
tions. This program has five steps, which contain two Divide
operations. Foofah likely failed in this case because Divide
separates a column of cells in two columns conditionally,
which requires moves of cells following no geometric patterns
we defined for TED Batch. The TED Batch heuristic overesti-
mates the cost of paths that include Divide. Foofah required
more computing time to find the correct path, causing it to
reach the 60 second timeout.

Figure 11b shows the average and worst synthesis time of
each interaction in all test scenarios. The y-axis indicates
the synthesis time in seconds taken by Foofah; the x-axis
indicates the percentage of test scenarios that completed
within this time. The worst synthesis time in each interaction
is less than 1 second for over 74% of the test scenarios (37
of 50) and is less than 5 seconds for nearly 86% of the test
scenarios (43 of 50), and the average synthesis time is 1.4
seconds for successfully synthesized perfect programs.

Overall, these experiments suggest that Foofah, aided by
our novel TED Batch heuristic search strategy, can efficiently
and effectively synthesize data transformation programs. In
general, Foofah can usually find a perfect program within in-
teractive response times when supplied with an input-output
example made up of two data records from the raw data.

5.3 Comparing Search Strategies
In this section, we evaluate several search strategies to

justify our choice of TED Batch.

Overview — We considered Breadth First Search (BFS) and
A* search with a rule-based heuristic (Rule), both mentioned
in Section 4, and a baseline, Breadth First Search without
pruning rules (BFS NoPrune). Based on the conclusion from
Section 5.1, we created a set of test cases of input-output
pairs comprising two records for all test scenarios. In this
experiment, each search strategy was evaluated on the en-
tire test set and the synthesis times were measured. The
perfectness of the synthesized programs was not considered.
A time limit of 300 seconds was set for all tests. When a
program was synthesized within 300 seconds, we say Foofah
was successful for the given test case.

Results — Figure 11c shows that TED Batch achieves the
most successes among all four search strategies and signif-
icantly more than the baseline “BFS NoPrune” over the
full test suite. To understand the performance of the search
strategies in different type of data transformation tasks, we
examined the data for two specific categories of test cases.

We first checked the test cases requiring lengthy data
transformation programs, since program length is a key factor
affecting the efficiency of the search in the state space graph.
We considered the a program to be lengthy if it required four
or more operations. Figure 11c shows the success rate for
all four search strategies in lengthy test cases. TED Batch
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Figure 11: (a) and (b) show number of records and synthesis time required by Foofah in the experiments of Section 5.1; (c)
Percentage of successes for different search strategies in the experiments of Section 5.3.
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Figure 12: (a) Percentage of tests synthesized in ≤ Y seconds using different search strategies; (b) Percentage of tests synthesized
in ≤ Y seconds with different pruning rules settings; (c) Percentage of tests synthesized in ≤ Y seconds adding Wrap variants.

achieves the highest success rate of any of the strategies,
with a margin larger than that for over all test cases. This
indicates that our proposed strategy, TED Batch, is effective
at speeding up the synthesis of lengthy programs.

Since end users often feel frustrated when handling com-
plex data transformations, we wished to know how TED
Batch fared compared to other search strategies on complex
tasks. We considered test cases that required the operators
Fold, Unfold, Divide, Extract to be complex. Figure 11c shows
the success rate for those complex test cases. TED Batch
outperforms the other three strategies.

Figure 12a shows the time required to synthesize the pro-
grams for our set of tests for each search strategy. The TED
Batch search strategy is significantly the fastest, with over
90% of the tests completing in under 10 seconds.

5.4 Effectiveness of Pruning Rules
One contribution of our work is the creation of a set of

pruning rules for data transformation. We examine the effi-
ciency of Foofah with and without these pruning rules to
show how effectively these pruning rules boost the search
speed, using the benchmarks from Section 5.1.

Figure 12b presents the response times of Foofah with
pruning rules removed. The pruning rules do improving the
efficiency of the program synthesis. However, the difference
between the response time of Foofah with and without prun-
ing rules is only moderate in size. This is because the search
strategy we use—TED Batch—is itself also very effective in
“pruning” bad states, by giving them low priority in search. In
fact, if we look at “BFS NoPrune” and “BFS” in Figure 12a,
the difference between their response time is quite significant,
showing that the pruning rules are indeed quite helpful at
reducing the size of the search space.

5.5 Adaptiveness to New Operators
A property of our program synthesis technique is its operator-

independence, as we discussed in Section 4. To demonstrate
this, we compared the efficiency of our prototype, Foofah,
with and without a newly added operator: Wrap (defined in
Appendix A). Wrap has three variants: Wrap on column x
(W1), Wrap every n rows (W2) and Wrap into one row (W3).
We examined the responsiveness of Foofah on all test cases
as we sequentially added the three variants of Wrap.

Figure 12c shows the response time of Foofah as we add
new variants of Wrap, using the same set of test cases as
in Section 5.3. The addition of the Wrap operations allowed
more test scenarios to be successfully completed, while the
synthesis time of overall test cases did not increase. This
is evidence that the system can be improved through the
addition of new operators, which can be easily incorporated
without rewriting the core algorithm.

5.6 User Effort Study
Foofah provides a Programming By Example interaction

model in hopes of saving user effort. In this experiment, we
asked participants to work on both Wrangler and Foofah
and compared the user effort required by both systems.

Overview — We invited 10 graduate students in Computer
Science with no experience in data transformation to par-
ticipate in our user study. From our benchmark test suite,
we chose eight user study tasks of varied length and com-
plexity, shown in Table 5. Column “Complex” indicates if a
task requires a complex operator: Fold, Unfold, Divide, and
Extract. Column “≥ 4 Ops” indicates if a task requires a data
transformation program with 4 or more operations.

Before the experiment, we educated participants on how to
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Wrangler Foofah

Test Complex ≥ 4 Ops Time Mouse Key Time vs Wrangler Mouse Key

PW1 No No 104.2 17.8 11.6 49.4 ↘52.6% 20.8 22.6
PW3 (modified) No No 96.4 28.8 26.6 38.6 ↘60.0% 14.2 23.6
ProgFromEx13 Yes No 263.6 59.0 16.2 145.8 ↘44.7% 43.6 78.4
PW5 Yes No 242.0 52.0 15.2 58.8 ↘75.7% 31.4 32.4
ProgFromEx17 No Yes 72.4 18.8 11.6 48.6 ↘32.9% 18.2 15.2
PW7 No Yes 141.0 41.8 12.2 44.4 ↘68.5% 19.6 35.8
Proactive1 Yes Yes 324.2 60.0 13.8 104.2 ↘67.9% 41.4 57.0
Wrangler3 Yes Yes 590.6 133.2 29.6 137.0 ↘76.8% 58.6 99.8

Table 5: User study experiment results

use both Wrangler and Foofah with documentation and
a complex running example. During the experiment, each
participant was given four randomly selected tasks, covering
complex, easy, lengthy, and short tasks, to complete on both
systems. Each task had a 10 minute time limit.

Evaluation Metrics — To quantify the amount of user
effort on both systems, we measured the time a user spends
to finish each user study task. In addition to time, we also
measured the number of user mouse clicks and key strokes.

Results — Table 5 presents the measurement of the average
user efforts on both Wrangler and Foofah over our 8
user study tasks. The percentages of time saving in each test
is presented to the right of the time statistics of Foofah.
The timing results show that Foofah required 60% less
interaction time in every test on average. Foofah also saved
more time on complex tasks. On these tasks, Foofah took
one third as much interaction time as Wrangler. On the
lengthy and complex“Wrangler3”case, 4 of 5 test takers could
not find a solution within 10 minutes using Wrangler, but
all found a solution within 3 minutes using Foofah.

Additionally, in Table 5 we see that Foofah required an
equal or smaller number of mouse clicks than Wrangler.
This partially explains why Foofah required less interaction
time and user effort. Table 5 also shows that Foofah required
more typing than Wrangler, mainly due to Foofah’s in-
teraction model. Typing can be unavoidable when specifying
examples, while Wrangler often only requires mouse clicks.

Another observation from the user study was that partici-
pants often felt frustrated after 5 minutes and became less
willing to continue if they could not find a solution, which
justifies our view that a Programming By Demonstration
data transformation tool can be hard to use for näıve users.

5.7 Comparison with Other Systems
Foofah is not the first PBE data transformation system.

There are two other closely related pieces of previous work:
ProgFromEx [17] and FlashRelate [4]. In general, both
ProgFromEx and FlashRelate are less expressive than
Foofah; they are limited to layout transformations and
cannot handle syntactic transformations. Further, in practice,
both systems are likely to require more user effort and to be
less efficient than Foofah on complex tasks.

Source code and full implementation details for these sys-
tems are not available. However, their published experimental
benchmarks overlap with our own, allowing us to use their
published results in some cases and hand-simulate their re-
sults in other cases. As a result, we can compare our system’s
success rate to that of ProgFromEx and FlashRelate on
at least some tasks, as seen in Table 6. Note that syntactic
transformation tasks may also entail layout transformation
steps, but the reverse is not true.

5.7.1 ProgFromEx
The ProgFromEx project employs the same usage model

as Foofah: the user gives an “input” grid of values, plus a
desired “output” grid, and the system formulates a program
to transform the input into the output. A ProgFromEx
program consists of a set of component programs. Each com-
ponent program takes in the input table and yields a map,
a set of input-output cell coordinate pairs that copies cells
from the input table to some location in the output table.

A component program can be either a filter program or an
associative program. A filter program consists of a mapping
condition (in the form of a conjunction of cell predicates) plus
a sequencer (a geometric summary of where to place data in
the output table). To execute a filter program, ProgFromEx
tests each cell in the input table, finds all cells that match
the mapping condition, and lets the sequencer decide the
coordinates in the output table to which the matching cells
are mapped. An associative program takes a component
program and applies an additional transformation function
to the output cell coordinates, allowing the user to produce
output tables using copy patterns that are not strictly one-
to-one (e.g., a single cell from the input might be copied to
multiple distinct locations in the output).

Expressiveness — The biggest limitation of ProgFromEx
is that it cannot describe syntactic transformations. It is de-
signed to move values from an input grid cell to an output
grid cell; there is no way to perform operations like Split or
Merge to modify existing values. Moreover, it is not clear how
to integrate such operators into their cell mapping framework.
In contrast, our system successfully synthesizes programs for
100% of our benchmark syntactic transformation tasks, as
well as 90% of the layout transformation tasks (see Table 6).
(Other systems can handle these critical syntactic transfor-
mation tasks [16,22,34], but Foofah is the first PBE system
to do so that we know of). ProgFromEx handles slightly
more layout transformations in the benchmark suite than
our current Foofah prototype, but ProgFromEx’s perfor-
mance comes at a price: the system administrator or the user
must pre-define a good set of cell mapping conditions. If the
user were willing to do a similar amount of work on Foofah
by adding operators, we could obtain a comparable result.

User Effort and Efficiency — For the subset of our bench-
mark suite that both systems handle successfully (i.e., cases
without any syntactic transformations), ProgFromEx and
Foofah require roughly equal amounts of user effort. As
we describe in Section 5.1, 37 of our 50 benchmark test sce-
narios are borrowed from the benchmarks of ProgFromEx.
For each of these 37 benchmarks, both ProgFromEx and
Foofah can construct a successful program with three or
fewer user-provided examples. Both systems yielded wait
times under 10 seconds for most cases.

11



Layout Trans. Syntactic Trans.

Foofah 88.4% 100%
ProgFromEx 97.7% 0%
FlashRelate 74.4% 0%

Table 6: Success rates for different techniques on both layout
transformation and syntactic transformation benchmarks

5.7.2 FlashRelate
FlashRelate is a more recent PBE data transforma-

tion project that, unlike ProgFromEx and Foofah, only
requires the user to provide output examples, not input ex-
amples. However, the core FlashRelate algorithm is similar
to that of ProgFromEx: it conditionally maps cells from
a spreadsheet to a relational output table. FlashRelate’s
cell condition tests are more sophisticated than those in
ProgFromEx (e.g., they can match on regular expressions
and geometric constraints).

Expressiveness — Like ProgFromEx, FlashRelate can-
not express syntactic transformations, because FlashRelate
requires exact matches between regular expressions and cell
contents for cell mapping. Moreover, certain cell-level con-
straints require accurate schematic information, such as col-
umn headers, in the input table. FlashRelate achieves a
lower success rate than Foofah in Table 6. In principle,
FlashRelate should be able to handle some tasks that
ProgFromEx cannot, but we do not observe any of these
in our benchmark suite.

User Effort and Efficiency — FlashRelate only requires
the user to provide output examples, suggesting that it might
require less overall user effort than Foofah or ProgFromEx.
However, on more than half of the benchmark cases processed
by both FlashRelate and Foofah, FlashRelate required
five or more user examples to synthesize a correct transforma-
tion program, indicating that the effort using FlashRelate
is not less than either ProgFromEx or Foofah. Published
results show that more than 80% of tasks complete within 10
seconds, suggesting that FlashRelate’s runtime efficiency
is comparable to that of Foofah and ProgFromEx.

6. RELATED WORK
Both program synthesis and data transformation have been

the focus of much research, which we discuss in depth below.

Program Synthesis — Several common techniques to syn-
thesize programs have been discussed in Section 4.1: constraint-
base program synthesis [15,21] does not fit our problem be-
cause existing logic solvers could not scale to solve a large
number of constraints quadratic in the input size; sketch-
ing [40] is computationally unfeasible for interactive data
transformation; version space algebra [12,23] is usually ap-
plied in PBD systems. Therefore, we formulate our problem
as a search problem in the state space graph and solve it
using a search-based technology with a novel heuristic—TED
Batch—as well as some pruning rules.

Researchers have applied program synthesis techniques
to a variety of problem domains: parsers [25], regular ex-
pressions [5], bit-manipulation programs [14,21], data struc-
tures [39]; code snippets and suggestions in IDEs [29, 35],
and SQL query based on natural language queries [26] and
data handling logic [10], schema mappings [2]. There are
also several projects that synthesize data transformation and
extraction programs, discussed in more detail next.

Data Transformation — Data extraction seeks to extract
data from unstructured or semi-structured data. Various
data extraction tools and synthesizers have been created to
automate this process: TextRunner [3] and WebTables [6]
extract relational data from web pages; Senbazuru [7, 8] and
FlashRelate [4] extract relations from spreadsheets; FlashEx-
tract [24] extracts data from a broader range of documents
including text files, web pages, and spreadsheets, based on
examples provided by the user.

Data transformation (or data wrangling) is usually a follow-
up step after data extraction, in which the extracted content
is manipulated into a form suitable for input into analyt-
ics systems or databases. Work by Wu et al. [43–45], as
well as FlashFill [12, 38] and BlinkFill [36] are built for
syntactic transformation. DataXFormer [1] and work by
Singh and Gulwani [37] are built for semantic transforma-
tion. ProgFromEx [17] is built for layout transformation, and
Wrangler [22] provides an interactive user interface for data
cleaning, manipulation and transformation.

Some existing data transformation program synthesiz-
ers follow Programming By Example paradigm similar to
Foofah [4, 12, 13, 17, 24, 36, 43–45]. ProgFromEx [17] and
FlashRelate [4] are two important projects in PBE data
transformation which have been compared with our pro-
posed technique in Section 5.7. In general, their lack of
expressiveness for syntactic transformations prevent them
from addressing many real-world data transformation tasks.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a Programming By Ex-

ample data transformation program synthesis technique that
reduces the user effort for näıve end users. It takes descriptive
hints in form of input-output examples from the user and
generates a data transformation program that transforms the
input example to the output example. The synthesis problem
is formulated as a search problem, and solved by a heuris-
tic search strategy guided by a novel operator-independent
heuristic function, TED Batch, with a set of pruning rules.
The experiments show that our proposed PBE data transfor-
mation program synthesis technique is effective and efficient
in generating perfect programs. The user study shows that
the user effort is 60% less using our PBE paradigm compared
to Wrangler [22].

In the future, we would like to extend our system with
an interface allowing the user to easily add new data trans-
formation operators and to explore advanced methods of
generating the geometric patterns for batching. Additionally,
we would like to generate useful programs even when the
user’s examples may contain errors. We could do so by alert-
ing the user when the system observes unusual example pairs
that may be mistakes, or by synthesizing programs that yield
outputs very similar to the user’s specified example.
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APPENDIX
A. DEFINITIONS OF ALL TABLE TRANS-

FORMATION OPERATIONS
Note that all operators have R as a default input parameter,

which represents the input example table. a1, a2, . . . represent
the columns. The domains for all column indexes is {1, . . . , k},
where k is the number of columns in R.

• Drop deletes a column in the table. Its input parameter
is the column index i that will be dropped.

Definition: Drop(R, i) = {(a1, ..., ai−1, ai+1, ..., an)|(a1,
..., an) ∈ R}
• Move relocates a column from one position to another

in the table. Its input parameters are two different
column indexes, i, j, meaning column i will be moved
before column j in the table.

Definition: Move(R, i, j) = {(a1, . . . , ai−1, ai+1, . . . , aj ,
ai, aj+1, . . . , an)|(a1, . . . , an) ∈ R, if i < j}
Move(R, i, j) = {(a1, . . . , aj−1, ai, aj+1, . . . , ai−1,
ai+1, . . . , an)|(a1, . . . , an) ∈ R, if i > j}
• Copy duplicates a column and append the copied col-

umn to the end of the table. Its input parameter is the
index of the column i to be copied.
Definition: Copy(R, i) = {(a1, . . . , an, ai)|(a1, . . . , an) ∈
R}
• Merge concatenates two columns and append the merged

column to the end of the table. Its input parameters in-
clude column i and column j, representing two columns
to be merged, and an optional parameter string d in-
terposed in between. The domain for d is printable
non-alphanumerics.
Definition: Merge(R, i, j, d) = {(a1, . . . , ai−1, ai+1, . . . ,
aj−1, aj+1, . . . , an, ai ⊕ d⊕ aj)|(a1, . . . , an) ∈ R}
• Split separates a column into two or more halves from

at the occurrences of the splitter. Its input parameters
are the index of the column to be splitted and a string d
representing the splitter. The domain for d is printable
non-alphanumerics.

Definition: Split(R, i, d) = {(a1, . . . , ai−1, ai+1, . . . , an,
leftSplit(ai, d), rightSplit(ai, d))|(a1, . . . , an) ∈ R}
• Fold collapses columns starting from i until the last

column in the table into one column in the output table.
If b is True, then it will add an additional column with
the corresponding header value for each row. Its input
parameters are column index i and boolean b. Definition:
Fold(R, i, b) = {(a1, ..., ai−1, header(k), ak)|(a1, ..., an) ∈
R ∧ k ∈ {i, . . . , n}, if b = False}

Fold(R, i, b) = {(a1, ..., ai−1, ak)|(a1, ..., an) ∈ R ∧ k ∈
{i, . . . , n},
if b = True}

• Unfold “unflattens” tables and move information from
data values to column names.

Definition: Unfold(R, i, j) takes in two columns, i and
j. It creates new columns for each unique value found
in column i and takes data in column j as the column
headers of new columns.

• Divide divides one column into two columns based on
some predicate. Its input parameters include a column
index i and a predicate. The domain of predicates in
our prototype includes “if all digits”, “if all alphabets”,
“if all alphanumerics”.

Definition: Divide(R, i, predicate) = {(a1, . . . , ai−1, ai+1, . . . ,
an, ai, null)|(a1, ..., an) ∈ R, if predicate = True} ∪
{(a1, . . . ,
ai−1, ai+1, . . . , an, null, ai)|(a1, . . . , an) ∈ R, if predicate =
False}
• Extract captures the first match of a given regular

expression in the cell data of a designated column in
each row. Its input parameters include a column index
i and a regular expression. The regular expressions are
PCRE-like regular expressions, with optional prefixes
and suffixes.

Definition: Extract(R, i, regex) = {(a1, . . . , ai−1, ai,
match(ai, regex), ai+1, . . . , an)|(a1, . . . , an) ∈ R}
• Fill assign empty cells with the value from above. Its

input parameter is a column index.

• Delete removes rows that matches a given predicates.
In our case, we restrict Delete to remove rows that has
an empty cell in a given column. Its input parameter is
a column index.

• Transpose Transpose the rows and columns of the
table. It has no other input parameter.

• Wrap Wrap has three options:

1. Concatenates rows on one column. It has an input
parameter of column index i. Definition:
Wrap(R, i) = {(rx1 ∪ rx2 ∪ · · · ∪ rxn)|rx1 , rx2 , . . . ,
rm ∈ R, rm(i) equal, m = x1, x2, . . . , xn}

2. Concatenates multiple rows sequentially into one
row. It has a input parameter k representing number
of rows to be concatenated. The domain of k in our
prototype is {1, . . . , 5}. Definition: Wrap(R, k) =
{(rm∗k+1∪rm∗k+2∪· · ·∪rm∗k+k−1)|rm∗k+1, rm∗k+2, . . . ,
rm∗k+k−1 ∈ R,m = 0, 1, . . . }

3. Concatenates all rows sequentially into one row. It
has no other input parameter. Definition: Wrap(R) =
{(r1 ∪ r2 ∪ · · · ∪ rn)|rm ∈ R,m = 0, 1, . . . , n}

B. EXTRA USE CASE EXAMPLES
Example 1 — The following tables show another example
use case borrowed from [33] where the end user needs some
data extraction and table reshaping. Table 7 is the raw data
that contains some human name information. This table is
not atomic because the second column contains multiple data
items, which violates the first normal form (1NF), and hence
is not a good relational database design. The user wants to
have each person as a single data entry in the table where
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the last name is in the first column and first name in the
second column as Table 8.

Latimer George, Anna
Smith Joan
Bush John, Bob

Table 7: Input example

Latimer George
Latimer Anna
Smith Joan
Bush John
Bush Bob

Table 8: Output example

The program synthesized by our technique is as follows:

1 t = split(t, 1, ’,’)

2 t = split(t, 2, ’ ’)

3 t = fold(t, 1)

4 t = delete(t, 1)

Simple as the task seems, it is indeed complex (as in the
motivating example) in that it relies on syntactic transfor-
mations to extract each individual first name into a separate
column, using Split (line 1-2), and then a layout transforma-
tion to reshape the table by collapsing the second column
and third column into one column using Fold. Finally, Delete
removes the rows with no first name in the second column.

Example 2 — This example shows how our data trans-
formation technique can extract data from less-structured
text files that are initially seen as tables with a single cell.
Figure 13 is detailed directory listing information output by
the “ls -l” linux command4. The user wants to extract the
file names and the owner names. The synthesized program
(Figure 14) first splits the raw data into rows (line 1-2) and
then performs operations to extract the desired fields.

-rw-r–r– 1 mjc staff 180 Mar 12 07:18 accesses.txt
-rw-r–r– 1 mjc staff 183 Mar 12 07:15 accesses.txt∼
drwxr-xr-x 5 mjc staff 170 Mar 14 14:14 bin

Figure 13: Input example

mjc access.txt
mjc access.txt∼
mjc bin

Table 9: Output example

1 t = split(t, 0, ’\n’)

2 t = transpose(t)

3 t = extract(t, 0, ’\w+’,

suffix = ’\ staff’)

4 t = split(t, 0, ’:’)

5 t = drop(t, 0)

6 t = split(t, 0, ’ ’)

7 t = drop(t, 0)

Figure 14: Synthesized program

C. NAÏVE HEURISTIC FUNCTION
The Potter’s Wheel operators in our library can be divided

into two groups: one-to-one and many-to-many [34]. One-to-
one operations (e.g., Split) transform the same column(s) in
each row, and to estimate the required number of one-to-one
operations, it is often effective to apply some operator-specific
rules on cells in the same row of both input and output tables
(lines 4–6). In contrast, many-to-many operations, such as
Fold, structurally transform the entire table. We propose
Algorithm 3 to iteratively estimate if each Potter’s Wheel
operator should be used to transform the current state of

4https://github.com/cloudera/RecordBreaker/blob/
master/src/samples/textdata/filelisting.txt

Algorithm 3: Rule-based Näıve Heuristic

Data: Intermediate Table Ti, Target Table To

Result: cost
1 cost ← 0;
2 if # of rows in Ti = # of rows in To then
3 hscoreSet ← ∅ ;
4 for Ti[k] ∈ Ti and To[k] ∈ To do
5 for p ∈ one-to-one operator rules do
6 add p(Ti[k], To[k]) to hscoreSet

7 cost ← median(hscoreSet);

8 else
9 for p ∈ many-to-many operator rules do

10 cost← cost + p(Ti, To)

11 if existSyntacticalHeterogeneities(Ti, To) = True
then

12 cost← cost + 1

13 return cost;

the table to the goal state, and assign the total count as the
heuristic score for this intermediate table.

In Algorithm 3, we create estimates for both kinds of
operators separately: lines 4–7 estimate how many one-to-
one operators are used, while lines 9–12 estimate how many
many-to-many operators and additional one-to-one operators
are used. Line 9 checks if the number of rows in Ti equals
the number of rows in To to determine if a many-to-many
operator is needed, since we observe that many-to-many
operators usually change the total number of rows in the table,
while one-to-one operators never do. We evaluate the two
cases separately since it is easier to estimate the number one-
to-one operators that are used if many-to-many operations
can be ignored. Take Table 7 and Table 8 as an example,
neither of the two cells in the third row in Table 8 has an
exact match in cell contents in the third row in Table 7, but
both of them are substrings of the first cell in third column
of Table 7. Hence, we know that a Split operator is likely
used. Similar rules used for other operators are presented in
Table 10. We evaluate the cost individually for each row in
Ti and To and finally take the median of all the costs as the
final cost (line 7) as the final estimate.

For many-to-many operators, the estimation becomes harder,
because many-to-many operators always perform layout trans-
formations, and depending on the size of the input table and
the chosen parameterization for the operator, a many-to-
many operator may move a cell to many different locations
in the table. Fortunately, we found that each of the many-to-
many operator change the shape, width (number of columns)
and height (number of rows), of the input table in a unique
way, so there is a possibility that we can tell which operator
is used by simple comparing the shapes of Ti and To. For
example, Transpose is a many-to-many operator that flips the
table converting columns into rows and vice versa, hence the
width of Ti becomes the height of To and the height of Ti be-
comes the width of To. Other rules detecting many-to-many
operators are shown in Table 11. Note that when more than
one many-to-many operators are used in a transformation,
none of rules in Table 11 might work, making it hard to make
an estimate about which are the operators needed. In this
case, we simply assume that two many-to-many operators
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Operator Rules

Drop/Copy The absolute difference of common cells from
Ti[k] and To[k]

Move Number of cells from both Ti[k] and To[k]
but in different positions

Extract Number of cells from To[k] not in Ti[k] but
are substrings of cells from Ti[k]

Merge Number of cells from To[k] not in Ti[k] but
there are substrings of the cells in Ti[k]

Split Number of cells from Ti[k] not in To[k] but
there are substrings of the cells in To[k]

Table 10: Rules estimating the number of one-to-one opera-
tors used to transform row k in input table Ti to row k in
output table To

Operator Rules

Fold Height of To is multiple of height of Ti

Unfold Height of To is smaller than height of Ti but
width of To is greater than width of Ti

Delete Height of To does not equal to height of Ti

but width of To equals to width of Ti

Transpose Height of Ti is the width of To and height of
To is the width of Ti

Wrap Height of Ti is multiple of height of To

Table 11: Rules estimating which many-to-many operators
are used to transform input table Ti to output table To

are used, because it is rare that two or more many-to-many
operators are used in a real-world data transformation task.

When many-to-many operators are used in a transforma-
tion task, one-to-one operators can also be used (e.g., the
example in Section 2). However, given the fact that many-
to-many operators may move the cells to any position in
the output table, estimating one-to-one operators row by
row like is done lines 2–7 using the rules form Table 10 is
not feasible. We therefore give a rough estimate: assume at
least one one-to-one operator is used if there is a cell in To

without an exact match on cell content in Ti (checked by
existSyntacticalHeterogeneities in line 11).

Algorithm 4: Table Edit Distance Algorithm

Data: Intermediate Table ex = {u1, u2, . . . , u|ex|},
where {u1, u2, . . . , u|ex|} is a sequence of cells
from ex; Example Output Table eo =
{v1, v2, . . . , v|eo|}, where {v1, v2, . . . , v|eo|} is a
sequence of cells from eo

Result: cost, edit path
1 Open ← ∅;
2 for w in eo do
3 add Transform(u1, w) to Open;

4 add Delete(u1) to Open;
5 while True do
6 pmin ← argmin∀p∈Opencost(p) ;
7 Remove pmin from Open;
8 if pmin is complete edit path then
9 Return cost(pmin), pmin

10 else
11 Let pmin = {u1 → vi, . . . , uk → vik};
12 if k < | ex | then
13 for w ∈ eo\{v1, . . . , vk} do
14 add pmin ∪ {Transform(uk+1, w)} to Open;

15 add pmin ∪ {Delete(uk+1)} to Open;

16 else
17 add pmin ∪

⋃
w∈eo\{vi1,...,vik}

Add(w) to

Open;

D. OPTIMAL TED ALGORITHM
In Algorithm 4, we show an optimal Table Edit Distance

Algorithm. The set Open contains all partial edit paths (line
1). In each iteration, it selects the most promising partial
edit path with minimum total cost (line 7). It creates a set of
successors of this path by taking an unprocessed cell ui from
input table ex and substituting it with all unprocessed cells
w from output table eo and then deleting the cell ui (lines
13–17). When there are no more unprocessed cells in ex, all
remaining cells in eo will be added (line 19). The algorithm
terminates when there is an complete edit path (lines 9–10).
Finally, Algorithm 4 returns the cost of the cheapest path.
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