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Abstract
Every day, millions of computer end-users need to perform tasks
over large, tabular data, yet lack the programming knowledge to
do such tasks automatically. In this work, we present an automatic
technique that takes from a user an example of how the user needs
to transform a table of data, and provides to the user a program
that implements the transformation described by the example. In
particular, we present a language of programs TableProg that can
describe transformations that real users require. We then present an
algorithm ProgFromEx that takes an example input and output ta-
ble, and infers a program in TableProg that implements the trans-
formation described by the example. When the program is applied
to the example input, it reproduces the example output. When the
program is applied to another, potentially larger, table with a “sim-
ilar” layout as the example input table, then the program produces
a corresponding table with a layout that is similar to the example
output table. A user can apply ProgFromEx interactively, provid-
ing multiple small examples to obtain a program that implements
the transformation that the user desires. Moreover, ProgFromEx
can help identify “noisy” examples that contain errors.

To evaluate the practicality of TableProg and ProgFromEx,
we implemented ProgFromEx as a module for the Microsoft
Excel spreadsheet program. We applied the module to automati-
cally implement over 50 table transformations specified by end-
users through examples on online Excel help forums. In seconds,
ProgFromEx found programs that satisfied the examples and
could be applied to larger input tables. This experience demon-
strates that TableProg and ProgFromEx can significantly auto-
mate the tasks over tabular data that users need to perform.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Program Synthesis

General Terms Languages, Algorithms, Human Factors

Keywords Program Synthesis, End-user Programming, Program-
ming by Example, Spreadsheet Programming, Table Manipulation,
User Intent
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1. Introduction
More and more end users now apply computers to perform com-
plex and critical tasks on digital data. While users often clearly
understand the task that they need a computer to perform, the tools
that users may apply to communicate their task to a computer re-
main limited. At one extreme, graphical user interfaces (GUI’s) are
highly accessible. However, GUI’s typically do not allow users to
customize or personalize their program such that the user can fully
automate their task. Furthermore, as programs with GUI’s support
more and more features, users often struggle to discover the fea-
tures. On the other extreme, general programming languages serve
as a fully expressive medium for communicating a task to a com-
puter. However, even the most accessible scripting language re-
quires an amount of time and energy that a typical user is not pre-
pared, and should not be expected, to invest.

Unlike traditional programming, the techniques of end-user
programming by demonstration or by example [3, 17] allow users
to describe a computation via partial execution traces or final out-
puts resulting from a small set of inputs, without requiring the
user to describe how to perform the computation in general. A tool
based on such techniques then produces for the user a general pro-
gram that, given the example inputs, produces the corresponding
outputs. Moreover, the program is defined for many more inputs
than the examples, so users can apply the program to other inputs
to automatically obtain the outputs that they require. Programming
by example is an attractive approach, as users often naturally use
examples to express the tasks that they need to perform. On help fo-
rums that we studied, novice users express tasks through examples
so frequently that it is practically a forum convention.

Previous work in programming by example has focused pri-
marily on inferring programs that transform strings of text [9, 15].
However, techniques based on this work cannot yet be used directly
by real end users, as in practice, users need to transform rich, semi-
structured data. In particular, millions of users every day need to
transform tabular data stored in spreadsheets using office programs
such as Microsoft Excel [5] or OpenOffice [19]. Often, such trans-
formations do not change the textual content of any cell, or only
change the content in a simple way. However, the transformation
rearranges the layout of the table, i.e. the manner in which cells
are spatially arranged or grouped. Existing techniques for program-
ming by example cannot be applied to infer programs that imple-
ment such transformations.

Inferring transformations over spreadsheet tables presents unique
challenges compared to the problem of inferring views over rela-
tional tables [4]. In particular, a spreadsheet table is in general only
a two-dimensional array of cells, where each cell contains a string.
Unlike relational tables, rows of a spreadsheet tables are ordered,
different rows may contain data with different semantic relation-
ships, and the spreadsheet table may not provide names of column
fields. Spreadsheet tables also often have special layout or format-
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Example input table:
Qual 1 Qual 2 Qual 3

Andrew 01.02.2003 27.06.2008 06.04.2007
Ben 31.08.2001 05.07.2004
Carl 18.04.2003 09.12.2009

Example output table:
Andrew Qual 1 01.02.2003
Andrew Qual 2 27.06.2008
Andrew Qual 3 06.04.2007

Ben Qual 1 31.08.2001
Ben Qual 3 05.07.2004
Carl Qual 2 18.04.2003
Carl Qual 3 09.12.2009

Figure 1. Example input and output tables from an online Excel
help forum thread “Using a macro to extract and rearrange data.”

ting attributes, such as sub-headers, footers, filler cells (blank cells
or cells with some special characters to aid visual readability of
table content) [1]. In this paper, we only consider the problem of
inferring transformations over spreadsheet tables. All references to
“tables” refer to spreadsheet tables, unless otherwise noted.

Example 1. The tables in Fig. 1 are an example of a common table
transformation that a user would like to perform automatically. The
tables are from a real Excel help forum thread. 1 The thread was
started by a novice user, who needed to transform a large table in
a given layout into a table in a different layout. To express their
transformation, the user provided a small, representative input
table, along with the output table that should result from applying
the transformation to the input table. Both tables are in Fig. 1. The
example input table contains a set of dates on which tests where
given, where each date is in a row corresponding to the name of
the test taker, and in a column corresponding to the name of the
test. For every date, the user needs to produce a row in the output
table containing the name of the test taker, the name of the test,
and the date on which the test was taken. If a date cell in the input
table is empty, then no corresponding row should be produced in
the output table. The rows should be produced in the order that the
dates are ordered in the input table by row-major order.

In the help thread, the novice user described their required
transformation in a few paragraphs of English, but the novice
also included the example input and output tables in Fig. 1 (the
output table has been simplified slightly for illustrative purposes;
the full implementation of our technique can infer a program for the
original example). In about half an hour, an expert user responded
with a link to an Excel macro that the expert suspected would be
useful for the novice. Twenty minutes after the expert responded, the
novice confirmed that the macro implemented the transformation
that he or she required.

In this paper, we describe a method for inferring table trans-
formations from examples by applying a general research method-
ology for designing systems that support programming by exam-
ple [8]. The steps of this general methodology are:

1. Identify a domain of data on which a large class of users strug-
gle to perform repetitive operations that they can clearly de-
scribe with examples.

2. Design a programming language that describes a large propor-
tion of operations that users need to perform on the data domain
in practice.

1 http://www.excelforum.com/excel-programming/
698490-using-a-macro-to-extract-and-rearrange-data.html

3. Design an algorithm that efficiently infers programs in the lan-
guage from example inputs and outputs.

In previous work, we applied the above methodology to infer pro-
grams that transform strings of text [9]. In this work, we apply the
methodology to infer programs that transform tables.

In this paper, we first present a language of programs that
implement transformations over tables. While the language cannot
describe all transformations over tables, we designed it by studying
the transformations that users require in practice, and defining
a language that can describe combinations of the most common
transformations.

We then present an algorithm that takes an example input and
output table and automatically infers in seconds a program in the
language that implements a transformation that satisfies the exam-
ple. If the program is applied to the example input, then the program
produces the example output, and if the program is applied to an-
other table with a layout similar to that of the example input, then
the program produces a corresponding table with a layout similar to
the example output table. End users can apply our language and al-
gorithm to automatically obtain programs that transform multiple,
huge tables. To do so, they construct small, representative input and
output example tables, and give the example tables to our inference
algorithm. The inference algorithm then infers a program which the
user can apply to their large input tables. The user in Ex. 1 can apply
our algorithm to the example tables in Fig. 1 and in seconds obtain
a program that implements their desired table transformation.

The algorithm is highly scalable because it divides the problem
of inferring a program that transforms an entire table into subprob-
lems of inferring programs that transform subtables of the original
table. It then infers simple programs that transform the subtables,
and efficiently combines the simple programs to construct a pro-
gram that transforms the original table.

On some examples, our algorithm may infer a program that
satisfies the input and output pair given by the user, but does not
implement the general transformation that the user requires. In
this case, the user can refine the inferred program by providing a
larger, more descriptive input-output example that demonstrates the
behavior on which the original program behaves incorrectly, or by
providing multiple input and output examples that together describe
the required behavior.

In this paper, we make the following contributions:

1. We present a language of programs, TableProg, that can ex-
press a rich set of practical transformations over tabular data.
TableProg is designed to express table transformations re-
quired by real users, but is conceptually simple and is described
by a small semantics.

2. We present a novel algorithm, ProgFromEx, for inferring
TableProg programs from example input and output tables.
We show the correctness of ProgFromEx, and analyze its com-
plexity.

3. We report our experience using ProgFromEx. We imple-
mented ProgFromEx as a plug-in module for the Microsoft
Excel spreadsheet program, and applied the module to auto-
matically infer TableProg programs that implement over 50
transformations specified by examples in online Excel help fo-
rums.

The rest of this paper is organized as follows. In §2, we use
the example in Fig. 1 to illustrate the challenges of inferring table
transformations, the structure of programs in TableProg, and how
ProgFromEx infers a program that satisfies the example. In §3, we
present TableProg in detail, and in §4, we present ProgFromEx
in detail. In §5, we report our experience applying ProgFromEx
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to infer table programs from real-world examples. In §6 we discuss
related work, and in §7, we conclude.

2. Overview
Users often need to transform the layout of tables in non-trivial
ways. In this section, we use the running example in Fig. 1 to
observe in more detail the challenges in inferring a transformation
from an example input and output. From these observations, we
motivate the design of our language TableProg of table programs
and our algorithm for inferring TableProg programs.

2.1 An Example Table Program
Consider a program that, given the example input table from Fig. 1,
produces the example output table (i.e. a program that satisfies the
examples). One insight into a possible structure of such a program
is guided by the following property of example tables, which we
have observed to hold over almost all example tables given by real
users.
Remark 1. Often, a subset of the cells in an output table (i.e. a
substructure of the output table) can be produced by treating the
cells in the input table as a sequence ordered by row-major order,
selecting some cells in the sequence, and spatially rearranging the
selected cells while preserving their row-major order.

Guided by Remark 1, we initially suppose that a table program
makes a series of passes over the input table in row-major order. In
each pass, the program selects a subset of cells in the input table,
and produces cells in the output table that hold the same text as the
selected cells, though they may be produced in a different spatial
arrangement. We call each pass a filter program, and say that a filter
program reads the cells of the input table in row-major order, and
checks if each cell satisfies a mapping condition. If an input cell
satisfies the mapping condition, then the filter program produces a
new cell in the output table that contains the same text as the input.
The new cell is produced at the bottom of a column determined by
an output sequencer.

Example 2. Remark 1 can be applied to the tables in Fig. 1 to
derive a filter program F that produces column 3 (we adopt the
convention of most spreadsheet programs and describe tables using
1-based indexing). To produce column 3, a filter program passes
over the cells in the input table in row-major order, and checks each
cell against the mapping condition that the cell is not in row 1, not
in column 1, and is non-empty. If the input cell satisfies the mapping
condition, then the filter program’s output sequencer determines
that filter program should add the new cell to column 3.

Ex. 2 illustrates that filter programs are often powerful enough
to produce substructures of an output table. However, Fig. 1 demon-
strates that filter programs on their own are often insufficient or im-
practical for producing an entire output table. First, to produce col-
umn 1 of the output table, a filter program would need to perform
complex reasoning. When the filter program would check the in-
put cell containing “Andrew,” it would add cells holding this text to
column 1 of the output three times in sequence. However, when the
filter program would check the cells with texts “Ben” and “Carl”,
it would only add cells to column 1 of the output two times each.
To produce column 2 of the output table, a filter program would
need to apply different complex reasoning. Such a program would
check the input cells containing the texts “Qual k,” and would pro-
duce column 2 of the output table by interleaving multiple cells
with these texts. Intuitively, it seems difficult to derive a language
of filter programs that can perform such reasoning in a single pass
over the input table. To derive programs that can produce such sub-
structures of the output, we apply a new observation.

Remark 2. Two cells in an output table that are in the same row or
column often hold the same text as two cells in the input table that
are in the same row or the same column.

Example 3. For Fig. 1, let cell c be any cell in column 1 of the
output table, and let cell d be in column 3 of the same row as c.
Then c and d hold the same text as cells in columns 1 and 3 of some
row of the input table.

To apply Remark 2, we first enrich our notion of a filter pro-
gram. Above, we described a filter program as taking a table as
input and producing a substructure of a table as output. We now
describe a filter program as taking a table as input, and computing
a map from coordinates of cells in the input table to the coordinates
of cells that will be in the output table. In general, a map may be
an arbitrary binary relation pairing input and output coordinates; it
need not be a function. A table program applies a coordinate map
to an input table to produce a substructure of the output table; for
every entry (c, d) in the map, the table program produces a new cell
in the output table at coordinate d, and fills the cell with the text in
the input table at c. If a coordinate map maps every cell that will be
in a column k of an output table, then we say that the map maps to
column k.

Example 4. In Ex. 2, we described a filter program F as producing
column 3 of the output table. If we redefine F as computing a map
mF from coordinates of cells in the input table to coordinates of
cells that will be in column 3 of the output table, then mF for the
example tables in Fig. 1 is the following set of pairs of input and
output coordinates:

mF =

8<: ((2, 2), (1, 3)), ((2, 3), (2, 3)), ((2, 4), (3, 3)),
((3, 2), (4, 3)), ((3, 4), (5, 3)),
((4, 3), (6, 3)), ((4, 4), (7, 3))

9=;
By defining filter programs to compute maps between coordi-

nates, we can build associative programs from filter programs. Like
a filter program, an associative program computes a map from co-
ordinates of cells in the input table to coordinates of cells to be in
the output table. However, to do so, an associative program uses
a filter program F to compute an initial map between coordinates,
and then alters each pair of coordinates in the map to produce its
own map. The associative program alters the map computed by F
by applying a relative function R1 to each input coordinate to ob-
tain a new input coordinates, and applying another relative function
R2 to each output coordinate to obtain new output coordinates. We
denote such an associative program as (F,R1,R2).

Example 5. For Fig. 1, an associative program A1 maps to column
1 of the output table. A1 first uses F to compute the map mF from
Ex. 4. A1 alters the input coordinates of mF by applying to each
input coordinate a relative function RELCOL1 that computes the
coordinate in the same row and in column 1. A1 alters the output
coordinates ofmF by applying RELCOL1 to each output coordinate.
The resulting map mA1 maps coordinates in column 1 of the input
table to coordinates of cells to be produced in column 1 of the
output table:

mA1 =

8<: ((2, 1), (1, 1)), ((2, 1), (2, 1)), ((2, 1), (3, 1)),
((3, 1), (4, 1)), ((3, 1), (5, 1)),
((4, 1), (6, 1)), ((4, 1), (7, 1))

9=;
A second associative program A2 maps to column 2 of the

output table. Like A1, A2 first uses F to computemF. A2 alters each
input coordinate in mF by applying a relative function RELROW1

that computes the coordinate in the same column but in row 1. A2

alters each output coordinate inmF by applying a relative function
RELCOL2, where RELCOL2 is defined analogously to RELCOL1. The
resulting map mA2 maps coordinates in row 1 of the input to
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coordinates of cells to be produced in column 2 of the output:

mA2 =

8<: ((1, 2), (1, 2)), ((1, 3), (2, 2)), ((1, 4), (3, 2)),
((1, 2), (4, 2)), ((1, 4), (5, 2)),
((1, 3), (6, 2)), ((1, 4), (7, 2))

9=;
An associative program may use a map computed by a filter pro-

gram, but may in general also use a map computed by another asso-
ciative program. This is because an associative program only uses
a filter program to compute a map over table coordinates, but asso-
ciative programs themselves compute maps over table coordinates.
We thus refer to both filter programs and associative programs as
component programs, and say that in general, an associative pro-
gram can be built from a component program.

A table program P built from filter and associative programs can
take the example input table from Fig. 1 and produce the example
output table. P computes the coordinate map of the filter program
F described in Ex. 4, the map of the associative program A1, and
the map of A2 described in Ex. 5, and then applies the coordinate
maps to produce a table. When P is applied to the example input
from Fig. 1, it produces the example output. P is a program in the
language TableProg, which is presented formally in §3.

2.2 Inferring the Example Table Program
The table program P described in §2.1 satisfies the example tables
from Fig. 1. The algorithm ProgFromEx, when given the exam-
ple tables from Fig. 1, automatically infers P. Like P, each table
program is a set of two different types of component programs: fil-
ter programs and associative programs. Thus ProgFromEx infers
a table program in two steps, building component programs of a
particular type in each step. In step 1), ProgFromEx builds a set
of filter programs. In step 2), ProgFromEx iteratively builds asso-
ciative programs from component programs that it has already built
until it finds a set of component programs that map to all cells in
the example output table.

In step 1), ProgFromEx infers a set of filter programs from a
fixed set of candidate-map rules. Each candidate-map rule, given
example input and output tables, produces a set of consistent maps
between coordinates in the example tables. A map is consistent for
an example input and output if, when applied to the example input,
the map produces a substructure of the example output. Unlike a
filter program, candidate-map rules cannot compute a map from
only an input table. They are applied to an example input and
output to suggest a map that a filter program may compute when
the program is applied to the example input. Thus we call such a
map a candidate map. From a candidate map, ProgFromEx infers
a general filter program that computes the candidate map when
applied to the example input, but also computes analogous maps
when applied to other input tables.

Example 6. ProgFromEx uses a candidate-map rule to sug-
gest the coordinate map mF from Ex. 4. ProgFromEx is given
candidate-map rules that specify: “map a coordinate in the input
table to a coordinate in column k of the output table if and only if
the values at those coordinates are equal,” with one such rule for
each column k in the example output table. The rule for k = 3 gen-
erates a candidate map from each coordinate holding a date in the
input table to the coordinate in the output table holding the same
date. This map is mF.

Given a candidate map, ProgFromEx attempts to infer a filter
program that computes the map when the program is applied to the
example input. To infer a filter program, ProgFromEx must first
infer the filter program’s mapping condition. For a filter program
to compute the candidate map, the program’s mapping condition
must be satisfied by every input cell mapped by the candidate map,
and must not satisfied by any input cell that is not mapped by the

candidate map. ProgFromEx infers the mapping condition as a
conjunction over a fixed set of atomic predicates and their negations
using a greedy algorithm, discussed in §4.1. Each atomic predicate
describes some feature of a cell.

Example 7. ProgFromEx infers a filter program to implement the
candidate map mF suggested by a candidate-map rule in Ex. 6. To
infer a filter program, ProgFromEx first infers the filter program’s
mapping condition. The mapping condition must be satisfied by
all of the cells in the example input that are mapped by mF, and
must not be satisfied by any of the cells in the example input that
are not mapped by mF. Suppose that ProgFromEx is given a
predicate that decides if a cell is in row 1, a predicate that decides
if a cell is empty, and for each column k in the example input
table, a predicate that decides if a cell is in column k. Given these
predicates, ProgFromEx infers the conjunctive mapping condition
stated informally in Ex. 2.

To infer a filter program that computes a candidate map,
ProgFromEx must also infer an output sequencer for the filter
program. To infer an output sequencer, ProgFromEx orders the
output coordinates in the candidate map by the order in which the
filter program must map them; i.e., ProgFromEx orders the output
coordinates by the row-major ordering of the input cells that map to
them. ProgFromEx then checks if the ordered sequence of output
coordinates matches the output coordinates described by some out-
put sequencer in a fixed set of sequencers. If so, then ProgFromEx
builds a filter program by pairing the matching sequencer with the
corresponding mapping condition.

Example 8. For ProgFromEx to infer a filter program that com-
putes the candidate map mF from Ex. 6, it must infer an output
sequencer that describes the output coordinates mapped to by mF.
To infer a sequencer, ProgFromEx orders the output coordinates
mapped to bymF by the row-major order of the input cells that map
to them undermF. The output coordinates ordered in this way form
column 3 of the example output table. ProgFromEx thus builds
a filter program that computes mF from a sequencer that maps to
coordinates in column 3, as opposed to a sequencer that maps to
coordinates in column 1 or 2.

In step 1), ProgFromEx generates a set of candidate maps, and
infers filter programs that implement the candidate maps; the in-
ferred filter programs serve as an initial set of component programs
for step 2) In step 2), ProgFromEx iteratively builds associative
programs from the component programs that it has already built.
As described in §2.1, an associative program is built from a compo-
nent program and two relative functions. ProgFromEx thus builds
associative programs by combining component programs that it has
already built with relative functions drawn from a fixed set. If the
resulting associative program computes a map that is consistent for
the example tables, then ProgFromEx retains the associative pro-
gram as a component program from which to build more associa-
tive programs.

Example 9. ProgFromEx builds the associative programs A1

and A2 described in Ex. 5 from the filter program F described
in Ex. 2. ProgFromEx finds A1 by combining filter program F
and relative functions RELCOL1 to build the associative program
A1 = (F, RELCOL1, RELCOL1). A1 is consistent with the example
input and output table, so ProgFromEx retains it as a component
program. Similarly, ProgFromEx finds A2 from Ex. 5 by combin-
ing F and the relative functions RELROW1 and RELCOL1 to build
the associative program A2 = (F, RELROW1, RELCOL1). A2 is also
consistent with the example tables, so ProgFromEx retains it as a
component program.

ProgFromEx may also build other associative programs, such
as (F, RELCOL1, RELCOL2) and (F, RELROW1, RELCOL1). However,
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TableProg :=TABPROG(CompProg1, . . . ,CompProgn)

CompProg :=FilterProg | AssocProg

FilterProg :=FILTER(MapCond, SEQi,j,k)

MapCond :=AND(MapPred1,MapPred2, . . . ,MapPredn)

MapPred :=ROWEQ(TERM1, TERM2) | COLEQ(TERM1, TERM2)

| DATAEQ(TERM1, TERM2) | NOT(MapPred)

AssocProg :=ASSOC(CompProg,RelFunc1,RelFunc2)

RelFunc :=RELCOLi | RELROWi

Figure 2. The syntax of TableProg.

ProgFromEx determines that these associative programs are not
consistent with the example input and output, and thus does not
retain them as component programs.

In steps 1) and 2) described above, ProgFromEx infers com-
ponent programs that map from coordinates of an example input to
coordinates of an example output. ProgFromEx must determine
when it has inferred enough component programs to produce a ta-
ble program that satisfies the example. A table program is a set of
component programs that map to coordinates of cells to be pro-
duced in the output table. A set of component programs forms a ta-
ble program that satisfies an example if every component program
in the set is consistent with the example, and for every coordinate
in the example output table, some component program in the set
maps to the coordinate.

Example 10. ProgFromEx finds a set of component programs
that map to all coordinates in the output table after executing step
1) and one iteration of step 2). In step 1), ProgFromEx finds the
filter program F described in Ex. 2, which maps to column 3 of
the example output table. In one iteration of step 2), ProgFromEx
finds the associative program A1 = (F, RELCOL1, RELCOL1), which
maps to column 1 of the example output, and the associative pro-
gram A2 = (F, RELROW1, RELCOL2), which maps to column 2 of
the example output. ProgFromEx combines F, A1, and A2 to build
a table program that maps to all cells of the example output, and
thus satisfies the example.

3. A Language of Table Programs
We now present a language of table programs, TableProg, that
can express table transformations required by real users. We first
present the syntax of TableProg, and then define the semantics of
a program in TableProg as a function from an input table to an
output table.

3.1 Syntax of Table Programs
By the formal syntax for TableProg given in Fig. 2, a table pro-
gram (TableProg) is a set of component programs (CompProg).
A component program is either a filter program (FilterProg) or an
associative program (AssocProg). A filter program makes a sin-
gle pass over an input table. During the pass, the filter selects cer-
tain cells from the input table and maps them to a substructure of
the output table. This is reflected in the syntax of a FilterProg
as follows. A FilterProg consists of a mapping condition over
states of a filter program (MapCond) and an output coordinate se-
quencer (SEQi,j,k). The MapCond selects which input coordinates
are mapped to the output table, and the SEQi,j,k for natural num-
bers i, j, and k defines the output coordinate to which the selected
input cell maps. A MapCond is a conjunction of cell predicates
(MapPred). Each MapPred is an equality (or disequality) predi-

JTABPROG({Ci})K =λTI .


(c2, d) | (c1, d) ∈ TI ,

(c1, c2) ∈
S
i{JCiK(TI)}

ff
JFILTER(G, S)K =λTI . FilterIterG,S(InitState)

JAND({Li})K =λσ.

n̂

i=1

JPiK(σ)

JROWEQ(T1,T2)K =λσ.

0@„λ((r1, c2), d1), ((r2, c2), d2).
r1 = r2

«
(σ(T1), σ(T2))

1A
JSEQi,j,kK =λ(r, c).

0@ if r < i then (i, j)
else if c < j then (r, c+ 1)
else (r + 1, j)

1A
JASSOC(C,R1,R2)K =λTI .


(JR1K(r1, c1), JR2K(r2, c2)) |
((r1, c1), (r2, c2)) ∈ JCK(TI)

ff
JRELCOLiK =λ(r, c).(r, i)

JRELROWiK =λ(r, c).(i, c)

FilterIterG,S(σ) =

„
if JGK(σ)
then {(σ(CurIn), σ(CurOut))} else ∅

«
∪
„

if IsLastCell(σ(CurIn)) then ∅
else FilterIterG,S(IterUpdateS(σ))

«
IterUpdateS(σ) =σ

»
CurIn← NextInCoord(σ),
CurOut← JSK(σ)

–
Figure 3. The semantics of TableProg.

cate over cell terms. Specifically, a MapPred is an equality predi-
cate either over the row, column, or data in cell TERM’s. A cell TERM
is either a variable bound to a particular cell (such as the input cell
being checked by the filter program) or a constant cell value.

An associative program AssocProg is built from a component
program CompProg and two relative functions RelFunc1,RelFunc2.
A relative function can be RELCOLi or RELROWi, where i is a fixed
natural number.

3.2 Semantics of Table Programs
We now present the semantics of TableProg. The semantics of
TableProg is defined formally in Fig. 3 by the semantic function
J·K that interprets syntactic forms of TableProg as semantic val-
ues. The domain of semantic values is defined as follows. Let a
coordinate (r, c) with r, c ∈ N be an ordered pair built from a row
and column number, and let a cell ((r, c), d) be an ordered pair built
from a coordinate (r, c) and data string d. A table T is a set of cells.
A table program P = TABPROG( {Ci}i) is a function from a table to
a table. Each component program Ci is interpreted as a partial map
from coordinates of cells in the input table to coordinates of cells
that will be produced in the output table. For each cell ((r, c), d) in
the input table with (r, c) a coordinate in the domain of some map
JCiK, P produces a cell (JCiK(r, c), d) in the output table.

Every component program is either a filter program or an asso-
ciative program. A filter program FILTER(G, S) maps coordinates
of cells in the input table to output coordinates by checking each
cell in the input table in a fixed order, such as row-major order. In
Fig. 3, this order is defined by a constant InitState that defines
the coordinate of the first input cell (e.g. (0, 0) in row-major or-
der), a predicate IsLastCell that decides if a coordinate is the last
in the order, and a function NextInCoord from input coordinates
to input coordinates that takes an input coordinate and computes
the next coordinate in the order. As the filter program checks input
cells, it maintains a state σ, which distinguishes certain key cells,
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such as the current input cell (CurIn) and the current output cell
(CurOut), by binding the cells to corresponding variables. When
the filter program checks each cell of the input table, it updates σ so
that the variable CurIn points to the cell to be checked. The filter
program then checks if σ satisfies the filter’s mapping condition,
G = AND({Li}i). A state σ satisfies G if and only if σ satisfies ev-
ery literal Li. The semantics of each literal is standard; Fig. 3 gives
the semantics of the predicate ROWEQ(TERM1, TERM2) as an exam-
ple. Whether or not σ satisfies a predicate is decided by the values
in σ of cell terms, such as the variables CurIn and CurOut. If σ
satisfies the mapping condition G, then the filter program maps the
current input coordinate, which is bound to CurIn, to the current
output coordinate, which is bound to CurOut.

If the filter program maps the current input coordinate, it up-
dates the coordinate of the current output cell according to the fil-
ter program’s output sequencer S. Whenever an output sequencer
S = SEQi,j,k is applied, it updates the current output coordinate
to be the next coordinate in the output table by row major order
that is at or below row i and between columns j and k. Because
j and k are fixed, such a sequencer can be applied by a filter pro-
gram to produce columns with an unbounded number of rows, but
it cannot be applied to produce an unbounded number of columns.
In this paper, we assume that an example output table has the same,
fixed number of columns as all tables that the user expects the ta-
ble program to produce. However, we can extend TableProg to
infer programs that produce an unbounded number of columns by
extending the set of output sequencers.

Like a filter program, an associative program A = ASSOC(C,
R1, R2) maps coordinates in the input table to coordinates of cells
to be produced in the output table. A maps coordinates by first
computing the map mC of its component program C. From mC,
A computes its own map by applying the relative function R1 to
each input coordinate in mC, and by applying the relative function
R2 to each output coordinate in mC. A relative function RELCOLi
takes a coordinate and computes the coordinate in the same row,
but in column i, where i is a fixed constant. A relative function
RELROWi takes a coordinate and computes the coordinate in the
same column, but in row i. In this way, an associative program
A computes a coordinate map by altering the coordinate map of a
component program C.

Example 11. The table program P from Ex. 10 is represented for-
mally as follows. Let CONSTCELLCOL(n) be a cell at column n, let
CONSTCELLROW(n) be a cell at row n, and let CONSTCELLDATA(d)
be a cell with data d. Let

G =AND

0@NOT(ROWEQ(CURCELL, CONSTCELLCOL(1))),
NOT(COLEQ(CURCELL, CONSTCELLROW(1))),
NOT(DATAEQ(CURCELL, CONSTCELLDATA(””)))

1A
F =FILTER(G, SEQ1,3,3)

The table program is then

TABPROG

„
F,ASSOC(F, RELCOL1, RELCOL1),
ASSOC(F, RELROW0, RELCOL2)

«

4. Inferring Table Programs from Examples
We now give an algorithm ProgFromEx that, given example input
and output tables, infers a TableProg program that satisfies the
examples. We then claim that ProgFromEx is correct, and analyze
its performance.

Input: example input table TI , example output table TO ,
Output: TableProg program InferredProg, where

InferredProg(TI) = TO , or unmapped output table.
/* Step 1): collect filter programs. */

for CandMap ∈ EnumCandMaps(TI , TO , CandRules) do1
MapCond← CondFromMap(CandMap, StatePreds) ;2
OutCoordSeq← SeqFromMap(CandMap, Seqs) ;3
FilterProgram← FILTER(MapCond,OutCoordSeq) ;4
FilterPrograms← AddDistMap(FilterPrograms,5
FilterProgram) ;

end6
/* Step 2): collect associative programs. */

Comps← ∅ ;7
Worklist← FilterPrograms ;8
while NewComps 6= ∅ do9

CompProg← Choose( Worklist) ;10
Worklist←Worklist \{CompProg} ;11
for Rel1,Rel2 ∈ RelFuncs do12

AssocPrg← ASSOC(CompProg,Rel1,Rel2) ;13
if IsConsistent(AssocPrg, TI , TO) and14
Map(AssocPrg) /∈ Maps( Comps ∪Worklist) then

Worklist← AddDistMap(Comps, AssocPrg) ;15
end16

end17
end18
if IsOnto(Maps(Comps)) then19

return TABPROG(Comps) ;20
else21

return UnmappedOutput(Comps) ;22
end23

Figure 4. The inference algorithm ProgFromEx.

4.1 An Inference Algorithm for TableProg

ProgFromEx, given example input and output tables, infers a table
program in TableProg that satisfies the example. ProgFromEx
infers programs “bottom-up,” in that it iteratively collects a set
of component programs that may be combined to form a table
program. If ProgFromEx finds a set of component programs that
form a table program that satisfies the example, then ProgFromEx
returns the table program. If ProgFromEx cannot find such a table
program, then ProgFromEx provides to the user the substructure
of the output table to which no component program maps.

ProgFromEx, given in Fig. 4, takes from the user an exam-
ple input table TI and example output table TO . ProgFromEx
also is defined over four fixed sets of objects: a set CandRules
of candidate-map rules, a set StatePreds of predicates for map-
ping conditions, a set Sequencers of output sequencers, and a set
RelativeFuncs of relative functions. These sets are fixed, perhaps
configured by an expert user or administrator.

ProgFromEx finds a table program to satisfy the example in
two steps. In step 1), ProgFromEx collects a set of filter programs
that map to substructures of TO (Fig. 4, lines [4.1]–[4.1]). To find
a set of such filter programs, ProgFromEx applies CollectFilters
(line [4.1]), which first collects a set of candidate maps over the
example tables by applying the candidate-map rules CandRules.

Definition 1. A candidate map is a map from coordinates of cells
in TI to coordinates of cells in TO . Each candidate map satisfies
the following conditions:

1. The candidate map maps input coordinates to output coordi-
nates with equal data (i.e. the candidate map is consistent). For-
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mally, if the candidate map contains an entry ((r1, c1), (r2, c2))
with ((r1, c1), d1) ∈ TI and ((r2, c2), d2) ∈ TO , then d1 =
d2.

2. The candidate map maps to coordinates described by an output
sequencer. Formally, the candidate map maps to every coordi-
nate in TO at or below row i between columns j and k of the
output table for some i, j, and k.

3. The candidate map preserves row-major order. The sequence of
pairs in the candidate map ordered by the row-major ordering of
the input coordinates is equal to the sequence of entries ordered
by the row-major ordering of the output coordinates.

For each candidate map CandMap generated by CandRules,
ProgFromEx attempts to infer a filter program that computes
CandMap (lines [4.1]–[4.1]). To infer such a filter program, it must
infer a mapping condition (line [4.1]) and an output sequencer
(line [4.1]). To infer a mapping condition, ProgFromEx applies
CondFromMap, which computes the states of a hypothetical filter
program as it reads, and potentially maps, each cell in the example
input table. If in a given state, a filter program reads a cell that is
mapped by the candidate map, then let this state be a read state of
the filter program. For a set of read states RS, CondFromMap con-
structs the following MapCond, which is the strongest condition
that is satisfied by all read states:

AND

 \
σ∈RS

{l | p ∈ StatePreds, l ∈ {p, NOT(p)}, σ(l)}

!
Where σ(l) denotes that the literal l is satisfied in σ. CondFromMap
then checks if any non-read state satisfies MapCond. If so, then no
conjunction of literals from StatePreds may act as a mapping con-
dition for CandMap. If not, then MapCond acts as a mapping
condition for CandMap. For G, ProgFromEx can immediately
infer an output coordinate sequencer OutCoordSeq (line [4.1]) us-
ing conditions (2) and (3) from Defn. 1. ProgFromEx then pairs
condition MapCond and sequencer OutCoordSeq to build a filter
program that computes CandMap (line [4.1]).

In step 2) (lines [4.1]–[4.1]), ProgFromEx uses the filter pro-
grams found in step 1) to build associative programs until it can use
the set of filter and associative programs to build a table program
that satisfies TI and TO , or it determines that no such table program
exists. ProgFromEx iteratively builds associative programs as fol-
lows. Over each iteration of the loop at line [4.1], ProgFromEx
maintains a worklist (Worklist) of component programs that it will
use to build more associative programs, and a set of component
programs (Comps) from which it has already built associative pro-
grams. At the beginning of the first iteration, Worklist is initialized
to all of the filter programs found in step 1) (line [4.1]), and Comps
is initialized to be empty (line [4.1]).

ProgFromEx executes an iteration of step 2) as follows. First,
ProgFromEx chooses an element CompProg from its worklist
(line [4.1]). ProgFromEx then builds associative programs from
CompProg. An associative program consists of a component pro-
gram and a pair of relative functions. Thus to build associative
programs from a component program CompProg, ProgFromEx
enumerates over all pairs of relative functions (line [4.1]). For
relative functions RelFunc1 and RelFunc2, ProgFromEx builds
the corresponding associative program AssocProg (line [4.1]).
ProgFromEx then decides if AssocProg computes a map that
is consistent for TI and TO (line [4.1]). If so, and if the map
computed by AssocProg is not computed by any component pro-
gram in Comps or Worklist, then ProgFromEx adds AssocProg
to Worklist (line [4.1]).

ProgFromEx iteratively builds associative programs until it
determines either that it has found a set of component programs that
map to all cells in TO (i.e. a set that covers TO), or determines that

it can find no such set of component programs (line [4.1]). To check
if a set of component programs covers TO , ProgFromEx checks if
every coordinate c in TO is mapped to by some component program
in the set. If ProgFromEx finds such a set, then it builds a table
program from the set and returns the table program (line [4.1]).
Otherwise, it returns the set of output cells to which no component
program maps (line [4.1]). The user can examine the output cells to
understand why ProgFromEx could not infer a program to satisfy
the examples, perhaps finding errors or noise in the example.

4.2 Correctness of ProgFromEx

We now present fundamental correctness properties of ProgFromEx.
In particular, we define notions of soundness and completeness for
inferring programs in TableProg, and claim that ProgFromEx is
both sound and complete.

Theorem 1. An table program inference algorithm is sound if
whenever it infers a table program for an example input and output,
then the program satisfies the examples. Formally, a table inference
algorithmA is sound if for each input table TI and output table TO ,
if A(TI , TO) = P , then P (TI) = TO . ProgFromEx is sound.

Proof. See [11].

We now define completeness for a table inference algorithm,
and argue that ProgFromEx is complete.

Theorem 2. A table inference algorithm A is defined for an exam-
ple input TI and example output TO only if when given the exam-
ple, it infers a table program.A is complete for a language of table
programs if whenever some table program P in the language satis-
fies TI and TO , then A is defined on TI and TO . ProgFromEx is
complete for TableProg.

Proof. See [11].

ProgFromEx is complete for inferring programs in TableProg.
However, ProgFromEx cannot, in general, infer a table program
for an arbitrary example input and output. Instead, TableProg
and ProgFromEx can serve as a framework for table program
languages and inference algorithms. To obtain a more expressive
language of table programs, one can define more expressive sets
of candidate-map rules, predicates, output sequencers, and relative
functions. We have extended TableProg in this way in our im-
plementation, and the resulting language is expressive enough to
implement many transformations required by real users.

4.2.1 Correct for Examples vs. Correct for Expectations
ProgFromEx is effective for finding a table program that satisfies
a given example. However, multiple programs in TableProg may
satisfy an example, yet in general, implement different table trans-
formations. Thus a user may provide to ProgFromEx an example,
ProgFromEx may provide to the user a program that satisfies the
example, and the user may then apply the inferred program to other
tables only to find that the program does not behave as expected.
Yet there may be a different program in TableProg that also satis-
fies the user’s examples and also behaves as the user expects when
it is applied to other inputs.

An inference algorithm can apply a variety of approaches to
provide to the user the program that the user requires. First, an in-
ference algorithm can actively query the user about the program
they require until the algorithm finds a unique program that satis-
fies the user’s requirements. This approach is analogous to the one
described in [13], and has several nice properties. In particular, if
the approach produces a program, then the program is unambigu-
ously correct for all inputs. However, such an approach may need
to query the user a prohibitively large number of times. We leave as
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future work the problem of developing an inference algorithm that
follows this approach, yet queries a user a small number of times.

We instead developed ProgFromEx to apply a lazy approach.
In a lazy approach, the inference algorithm takes an example from
the user, and infers some program that satisfies the example. The
user applies the inferred program to other inputs; if on another
input, the program produces an output that the user does not expect,
then the user provides the input and unexpected output to the
inference algorithm as an example, and the algorithm infers a new
program that satisfies both the original and new example. The
user repeats this process until the inference algorithm provides a
program that behaves as the user expects for the inputs on which
they apply it. Unlike an approach based on active querying, the lazy
approach does not guarantee that if the inference algorithm infers
a program, then the program is correct for all inputs. However,
we have observed that in practice, users do not need to apply
table programs to arbitrary input tables. Instead, users apply a
table program to a set of tables that all satisfy a strong condition.
Requiring users to specify a program’s behavior for tables that do
not satisfy this condition is unnecessary, and often causes users to
refuse to use such a technology. We now describe two extensions
of ProgFromEx that allow users to apply it using a lazy approach
to quickly infer the program that they require.

If a user applies ProgFromEx to a given example, obtains
a program, and finds that the program behaves incorrectly on a
different input, then the user can provide the second, different input,
along with a corresponding correct output, as another example for
ProgFromEx, and obtain a new program that better satisfies their
requirements. If the second input extends the first input, then the
user may apply ProgFromEx solely to the second input. However,
even if the example inputs are incomparable, ProgFromEx can
be extended to take multiple examples from a user simultaneously.
To take multiple examples, ProgFromEx as presented in Fig. 4 is
extended to find filter programs and associative programs that are
consistent for a set of multiple examples. To find filter programs
that are consistent for all examples, the loop at lines [4.1]–[4.1]
is changed to enumerate over the space of all tuples containing a
candidate map for each example. For each tuple of candidate maps,
ProgFromEx attempts to infer a map condition that classifies
exactly the cells mapped by each candidate map, and attempts to
infer an output coordinate sequencer that describes the sequence of
output cells that are mapped to in each candidate map. To find an
associative program that is consistent for all examples, the check
at line [4.1] is extended to determine if the associative program
AssocProg is consistent with each example. Finally, the checks at
lines [4.1] and [4.1] are extended so that ProgFromEx determines
that it has found a satisfying table program only when it finds a
collection of component programs that map to every cell in all
output example tables.

ProgFromEx can also be extended so that it infers a program
from a single example that is, in practice, more likely to behave
as expected when applied to other tables. Step 2) of ProgFromEx
halts when ProgFromEx finds a set of component programs that
map to every cell in the example output table. However, the result-
ing set may include multiple component programs that are redun-
dant, as a smaller set of programs would still map to the same cells.
In practice, the more component programs that form a table pro-
gram, the more likely the table program is to behave incorrectly
when applied to other tables. This satisfies an informal notion of
Occam’s Razor: the simplest table program is often the best. We
have thus extended ProgFromEx so that at Fig. 4 line [4.1], it
does not necessarily build a table program from all component pro-
grams that it finds. Instead, ProgFromEx first applies a greedy
algorithm to prune the set of all component programs found to a set
that still maps to all cells in the example output, but is locally mini-

mal. The resulting program is intuitively “simpler” than the original
program, and in practice more often behaves as expected on larger
examples.

4.3 Performance of ProgFromEx

In principle, ProgFromEx does not scale well with the size of the
tables given as examples. In the worst case, ProgFromEx may ex-
ecute in time exponential in the size of the example tables given.
This is because the time that ProgFromEx takes to execute is pro-
portional to the number of component programs that it collects with
distinct maps, and the number of distinct maps between example ta-
bles is exponential in the number of cells in the example tables. For
a detailed analysis of the complexity of ProgFromEx, see [11].

If ProgFromEx performed close to its worst-case bound, then
it would be highly impractical. Fortunately, real-world input and
output examples have properties that allow ProgFromEx to exe-
cute quickly, or that allow for heuristics that greatly improve its
performance. In particular, the dominating factor in the high com-
plexity of ProgFromEx is the set of component programs with
distinct maps that ProgFromEx may collect. In practice, this set is
quite small. This is because while many component programs may
implement a large set of distinct maps according to the combina-
torial bound, in practice only a small set of these maps are con-
sistent for the example tables. Thus candidate-map rules find few
candidate maps that are consistent with the examples, and when
ProgFromEx checks if an associative program is consistent (Fig. 4
line [4.1]), the check rules out many potential associative programs
immediately.

ProgFromEx as given in Fig. 4 can also be optimized by bias-
ing the order in which it picks component programs to build new
associative programs. In line [4.1] of Fig. 4, ProgFromEx non-
deterministically chooses a component program from its worklist,
and builds new associative programs from the chosen component
program. The chosen component program may mostly map to out-
put cells that are already mapped to by other component programs
in Comps, as may the associative programs built from the chosen
component program. However, ProgFromEx can instead priori-
tize the elements in its worklist so that ProgFromEx first chooses
component programs from the worklist that map to many cells not
mapped to by any component program in Comps. This may allow
ProgFromEx to more quickly find a set of component programs
that cover the example output table.

5. Experiments
We implemented an interpreter for TableProg, implemented
ProgFromEx, and experimented with the implementations to de-
termine if TableProg and ProgFromEx are useful in practice.
The experiments were designed to determine the following:

1. Is TableProg expressive enough to describe table transforma-
tions that real end-users require?

2. When a program in TableProg implements the table transfor-
mation that a user requires, could ProgFromEx find the pro-
gram quickly?

3. If ProgFromEx finds a program that satisfies a user’s initial
examples, and the program is applied to other similar inputs,
does the program produce the expected outputs? If not, how
many additional examples does a user need to provide before
ProgFromEx infers a program that behaves as expected?

We performed the experiments as follows. We searched two on-
line help forums2 for the Excel spreadsheet program to find table

2 http://www.excelforum.com and http://www.ozgrid.com/
forum/
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Figure 5. Time for ProgFromEx to infer table transformation
programs.

transformations that real users needed to perform, but could not
accomplish using the built-in GUI features of Excel. Among the
transformations, we picked 51 for which the user provided an ex-
ample input and output. We gave the input and output examples
to ProgFromEx, which inferred a table program for each exam-
ple. We used the provided examples and the English description
of the transformation to manually create a larger input example,
applied the inferred program to the larger input, and checked that
the program produced the output that we expected. If the program
did not produce the expected output, then from the unexpected out-
put, we manually derived a more descriptive example, and applied
ProgFromEx to the more descriptive example. We repeated this
process until ProgFromEx found a program that behaved as ex-
pected for successively larger, different inputs.

The experiments indicate that TableProg describes practi-
cal programs, and that ProgFromEx finds practical programs in
TableProg efficiently. The times spent by ProgFromEx to infer
programs for the 51 tests are presented in Fig. 5. For each of the
51 tests, ProgFromEx found in less than 10 seconds a program in
TableProg that satisfied the example. For a majority (31) of the
tests, ProgFromEx found a program in less than a second. For a
vast majority (48) of the tests, ProgFromEx found a program in
less than 5 seconds.

If for a given test, ProgFromEx inferred a program that did not
behave as we expected when applied to other inputs, we manually
found an input on which ProgFromEx misbehaved and reapplied
ProgFromEx to the new input. We repeated this process until
ProgFromEx inferred a program that behaved as expected. The
numbers of times that we needed to refine examples for the tests are
presented in Fig. 6. Observe that for a vast majority (42) of the tests,
ProgFromEx inferred the expected program from one example.
For the four of the tests, ProgFromEx required two examples, and
for five of the tests, it required three examples.

The large number of different help-thread requests that were
satisfied by programs in TableProg indicates that TableProg is
expressive enough to describe transformations required by real end-
users. Moreover, the transformations requested on the help threads
are diverse. To illustrate their diversity, we discuss a selection
of examples that are satisfied by programs in TableProg. The
examples are slightly simplified from their original forms to ease
presentation. For a complete list of help threads containing the
original examples on which we experimented, see [6]. For detailed
descriptions of the tests, see [11].
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Figure 6. Number of examples required by ProgFromEx to infer
programs.

Example input table:
55660 x1 $530.00
55660 x3 11/5/2007 $10.00 5 $2,130.00
90210 y1 $25.00
90210 y2 $25.00
90210 y3 11/18/2007 $25.00 13 $325.00

Example output table:
55660 11/5/2007 $10.00 $2,130.00
90210 11/18/2007 $25.00 $325.00

Figure 7. Example reproduced from an Excel help thread “Copy
Rows Where Column Cell Is Not Blank”

Filtering Key Information In many help requests, users need to
transform a table to retain a subset of the table’s original informa-
tion. This subset is defined by key cells in the table, along with cells
that are spatially related to the key cell. In a help thread titled “Copy
Rows Where Column Cell Is Not Blank,” a novice user specified a
table transformation using an example reproduced in Fig. 7. The
user wanted to transform their input table into a new table that only
contains the cells in columns 1, 3, 4, and 6 of each summary row of
the input table. According to the user’s English description, a sum-
mary row is any row in which column 6 is not empty. An expert
user replied that a GUI feature partially automates this transforma-
tion, but the novice replied that they would like to fully automate
the transformation. The expert replied with an Excel macro, which
presumably satisfied the novice. When we applied ProgFromEx
to the example given by the novice, ProgFromEx automatically
found a TableProg program that satisfies the example in 0.5 sec-
onds. However, when we reapplied the program to other input ta-
bles, we found that it placed cells from a row of the input table
in the output table if and only if column 5 was empty. To resolve
this, we extended the input to have a row in which the column 5
was empty but column 6 was non-empty, and extended the output
to contain cells from the row. Using this example, ProgFromEx
inferred a program, again in 0.5 seconds, that behaved as expected
when reapplied to other tables. The program consists of a filter pro-
gram which maps the non-empty cells in column 6 of the input to
column 4 of the output. For each of the other three columns in the
output, an associative program built from the filter program maps
the column.

Splitting and Partially Replicating Rows In many help requests,
users need to split cells in a row into different rows, while replicat-

325



Example input table:
Name Colour Price
Toyota White 2000
Nissan Red 4000

Example output table:
Toyota White
Toyota 2000
Nissan Red
Nissan 4000

Figure 8. Example reproduced from Excel help thread “arranging
data using VBA.”

Example input table:
3099 905 A4CA

NO.14 NO.14 Full Copies 6.78 2 * * 0
3200 906 AHG
9-Jun 9-Jun Covers Only 4.74 1 * * 0

Example output table:
3099 905 A4CA NO.14 Full Copies 6.78 2
3200 906 AHG 9-Jun Covers Only 4.74 1

Figure 9. Example reproduced from an Excel help thread “arrange
data.”

ing other cells in the original row. In a help forum post titled “Ar-
ranging Data Using VBA,” a novice user requested a table trans-
formation by providing only the example reproduced in Fig. 8.
The user added that though they had provided a small example,
they needed to apply a transformation to a table that had thou-
sands of rows. After more than four hours, an expert user provided
an Excel macro that presumably satisfied the novice’s request. We
applied ProgFromEx to the example from the help forum, and
ProgFromEx automatically found in 2.3 seconds a table program
that satisfies the example. When we reapplied the program to larger,
similar examples, it behaved as expected. The table program con-
sists of a filter program that maps cells in columns 2 and 3 of the
input to column 2 of the output, and a single associative program
built from the filter program that maps to column 1 of the output.

Combining and Filtering Rows In many requests, users need
to remove some cells from rows while combining adjacent rows.
In a help thread titled “arrange data,” a novice user requested a
table transformation by providing only the example reproduced in
Fig. 9. The transformation concatenates adjacent pairs of rows,
filtering out the cell in column 1 in the second row of each pair.
In twenty minutes, an expert user provided to the novice a macro
that satisfied the example, and the novice reported that they were
satisfied, although they did not understand the mechanics of the
macro. When we applied ProgFromEx to the example in Fig. 9,
it automatically found in 1.2 seconds a TableProg program that
implements the transformation requested by the user. When we
reapplied the same program to larger, similar examples, it behaved
as expected. The program is built from two filter programs that map
onto columns 6 and 7 of the output table, two associative programs
built from the filter programs that map onto columns 3 and 4 of the
output table, a third associative program, built from the associative
program that maps onto column 4, that maps onto column 2, and
finally a fourth associative program built from the third associative
program, that maps onto column 1. This example demonstrates the
benefit to the iterative approach applied by ProgFromEx to find
associative programs.

Rearranging Groups In many requests, a user has data organized
in nested groups, and needs to preserve the grouping of the data
while rearranging the layout of the groups. In a help thread titled
“Transposing 3 columns into multiple columns,” a novice user
requested a transformation by providing the example reproduced in
Fig. 10. In the novice’s input table, grades are arranged vertically,
grouped by student and then by subject. In the novice’s output table,

Example input table:

Alice Art&Des B
CreatArt A

D&T A
English A

Geo. A*
Bob Art&Des C

CreatArt B
D&T C

English C
Geo. C

Example output table:
Art&Des CreatArt D&T English Geo.

Alice B A A A A*
Bob C B C C C

Figure 10. Example reproduced from an Excel help thread “Trans-
posing 3 columns into multiple columns.”

Example input table:
PROJ CAT SPONSOR DEPT ELTS DUE
SPEC OOH Infiniti Design elt 1 11/10
SPEC OOH Infiniti Desing elt 2
SPEC Print Design elt 3 11/30
SPEC Print Design elt 4 11/30
SPEC Print Infiniti Design elt 5 11/30

Example output table:

SPEC
OOH

Infiniti Design elt 1 11/10
Infiniti Desing elt 2

Print
Design elt 3 11/30
Design elt 4 11/30

Infiniti Design elt 5 11/30

Figure 11. Example reproduced from Excel help thread “printed
sheet in different format than worksheet.”

grades are arranged horizontally, grouped in a row per student, and
a column per subject. After the novice posted their request, one
expert user replied with a macro about 40 minutes later, and another
expert replied with a macro nearly six hours after the request was
posted.

When we applied ProgFromEx to the example in Fig. 10,
it automatically found a TableProg program in 1.4 seconds that
implements the requested transformation. When we reapplied the
same program to larger, similar tables, the program behaved as
expected. The table program includes a single filter program that
maps to all cells at or below row 2 between columns 2 and 5. One
associative program built from this filter program maps onto all
cells in column 1 of the output table. A second associative program
built from the filter program maps onto all cells in row 1 of the
output table.

In a help thread titled “printed sheet in different format than
worksheet,” a novice user provided the example reproduced in
Fig. 11. In the novice’s input table, each row of the table is a com-
plete entry for an element of a project. The novice needed to group
the elements so that the project and category (columns 1 and 2,
respectively) of the element appear as headings and subheadings,
followed by the elements that are under the heading and subhead-
ing. Although the novice suspected that elements could be grouped
semi-automatically using built-in features of Excel, they did not
know how to do so. No expert user helped the novice with their
request.

When we applied ProgFromEx to the example in Fig. 11, it
automatically found a TableProg program in 4.4 seconds that im-
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plements the required transformation. In the TableProg program,
a filter program maps to column 3 of the output. A set of three as-
sociative programs built from the filter program map to columns 1,
2, and 4, with one associative program mapping to each column.

We implemented the interpreter for TableProg and the infer-
ence algorithm ProgFromEx as an Excel plug-in module. To use
the module, a user selects in the Excel GUI a range of cells to act
as the example input, selects a range of cells to act as the example
output, selects a range of cells to act as a “full input,” selects a lo-
cation in the spreadsheet where they would like to place the output
corresponding to the full input, and pushes a button. The module
then automatically infers a program that satisfies the examples, ap-
plies the program to the full input, and places the resulting output
at the location specified by the user. We plan to extend the inter-
face so that a user may supply only examples, and the module will
provide a program that the user can add to a library. The user could
then reapply programs in the library whenever they wish.

6. Related Work
The area of program synthesis is gaining renewed interest [8], and
this paper is a work in this direction. Program synthesis has tra-
ditionally been motivated by the need to synthesize non-trivial al-
gorithms [12, 22, 23] or to discover tricky code-snippets [10, 24].
In this paper, we apply program synthesis to discovering relatively
simpler programs, but those that are cared about by a much larger
class of spreadsheet end-users, who often struggle with manipulat-
ing tabular data in spreadsheets.

There has been some work in the programming languages and
the HCI community related to inferring table transformations.
PADS [7] takes a large sample of unstructured data and infers a
format that describes the data. Users then manually define tools for
data in the format. Lenses [2] are a language of combinators that
can be applied to solve the view update problem, which is related
to but distinct from the problem of inferring a transformation over
tables from examples. The Wrangler tool, developed in the HCI
community, provides a nice visual programming-by-demonstration
interface to table transformations for data cleaning [14]. In con-
trast, we provide an interface based on examples, which is more
friendly to end users.

Program sketching [21] may be applied to synthesize programs
from examples. In program sketching, a programmer supplies to
a sketcher an incomplete version of a program (a sketch) and a
specification of correct behavior for the program, possibly as a set
of input-output examples. The sketcher then completes the program
so that the program satisfies the specification. We attempted to
apply the SKETCH [20] program sketcher to a sketch of a table
program and example tables. However, because SKETCH is a tool
for synthesizing general programs, it could not take full advantage
of the particular structure of table programs. As a result, when we
applied it to infer programs in TableProg, it typically timed out
after an hour.

The problem of inferring transformations over tables is related
to inferring queries over relations from instances of the relations.
These techniques cannot be directly applied to infer transforma-
tions over tables, as users treat tables differently from relations;
e.g., tables have a notion of order over rows that does not hold by
default for relations. In particular, in the view synthesis problem
[4], one takes a database relation and a view over the database and
infers the general query that produces the view. The technique pre-
sented in [4] only considers views that are a subset of the original
database. Thus the technique cannot be applied to any of the ex-
amples given in this paper, or many of the other real-world cases
that we studied. The problem of query by output [25] is similar to
the view synthesis problem, but the technique presented in [25] in-
fers select-project-join queries. Of the examples presented in this
paper, such queries can only be applied to satisfy the example in
Fig. 7, and such queries cannot be applied to many of the other real-
world cases that we studied. We leave as future work the problem
of applying our techniques to learn richer queries from instances of
databases and views.

The work in [9, 15, 16, 18, 26] gives techniques that take tex-
tual input-output examples and infer programs that transform text.
However, these techniques only infer transformations over plain
text, or strings. Thus they cannot be directly applied to infer trans-
formations over tables. While the techniques can, in principle, be
applied by representing tables in plain text, it is then difficult to
reason about the spatial relationships between cells in the original
table. TableProg represents spatial relationships directly, and the
relationships are critical to TableProg’s ability to express practi-
cal table transformations. Furthermore, the techniques for textual
transformations assume that it is easy to find a set of programs
that satisfy an individual example of a transformation, and focus on
combining sets of programs that satisfy different examples. How-
ever, when searching for programs that transform tables, it is non-
trivial in general to find a set of programs that satisfy even a single
example of a transformation.

7. Conclusion
End users often need to transform semi-structured, tabular data
in non-trivial ways. We have presented a language TableProg
of programs that implement table transformations that real users
require, and an algorithm ProgFromEx that from an example
input and output, infers a TableProg program that implements
the transformation specified by the example. To demonstrate that
TableProg and ProgFromEx are practical, we applied them to
infer programs for over 50 table transformations specified as input-
output examples by real end users.
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