Overlap Set Similarity Join

Dong Deng




Problem Definition

* Input.
— a collection of sets R
— a constant integer threshold ¢
* Qutput.
— all pairs (X,Y) ERXRs.t.|[XNY|=¢c




Example

. J ) wd | set
nput: Ry | {e1,e2,€e3}
R Ry | {e1,e3,eq,€7}

Rs | {e1,e3,€e5,€e7}

_ Ry | {e2,€4,€5,€6}
—c=2 Rs | {e2,ea,e5,€6,€8,€9,€10,€11}
Re | {e11,e12,€13,€14,€15, €16, €17, €18}
° Output R7 | {e11,e12,€13, €14, €15, €16, €17, €18, €19 }

— all set pairs with overlap size no smaller than ¢

|R] ﬂR3| — 2,

leR2| :2,

R,NR;| =3,

R,NRs| =4,

R,NR,|=8




Application - Friend Recommendation




More Applications

* Data Management
— Data Integration and Cleaning
— Keyword Subscription
* Data Mining
— Frequent Pattern Mining
— Recommendation
* Computer Vision
— Scene Reconstruction
* Machine Learning
— Large Entries Retrieval in Matrix Productions
— Non-negative Matrix Factorization

— Singular Value Decomposition




Challenge

Facebook Inc. Dominates the Social Media Landscape Number of social network users worldwide from 2010 to 2019 (in billions)
Monthly active users of selected social networks and messaging services" 3

B racebook inc. [l Tencent Inc. Others

whatsopp (3 | o0 :
azone 7o | 0 1

Instagram r@ _500m 05
Twitter gff 310m

2.5

15

Number of users in billions

0
Snapchat 8 300m 2010 2011 2012 2013 2014 2015 2016+ 2017%  2018% 2019+
i Y
Weibo 236m Source: Additional Information:

eMarketer Worldwide; eMarketer; 2010 to 2015
© Statista 2016
Pinterest @ 100m




Solution?




Naive Method: ScanCount

id | set

Ry, | {e1,e2,e3}

Ry | {e1,e3,e4,€7}

R3 {61363, 65’67}

e, € €3 €4 €5 & €19

N

R4 {82384165366}

Rs | {e2,e€a4,€5,¢6,€s8,€9,€10,€11}

Re | {e11,e€12, €13, €14, €15, €16, €17, €18 }

R? {611.612.613.614.615.616-617.618. 619}

Step 1: build an inverted index

— R, R, R, R, R; R, " R,
R, R, R, R, R, R; -
R, R. R; Rs R,




Naive Method: ScanCount

id | set 85 86 819
2 61,63,64,67} l

R3 | {e1,e3,€s5,€e7} :>

Ry | {e2,€eaq,€5,¢€6} R R R "R

R5 {62:ec‘heSaeﬁaeSaegaelO’ell} 2 3 4 /
WG {ellyelih €13, €14, €15, €16, 817,818} R4 R4 R5

R7 | {e11,e12.€13,€14,€15,€16, €17, €18, €19}

° ° R5 R5

Step 1: build an inverted index

Step 2: scan each set and count Count: Ry 2 @ Ry 2 @ Ryl ® Rs:1 ®
Results: (R;,R,) (R, R;)




Naive Method: ScanCount

set €3 35 36 319
{81’62’83} l
!el,es,es,er! :>
{62,64,65,66} R R R
{e2aelheSaeG,eBaegaelO,ell} 1 3 4
{e11, €12, €13, €14, €15, €16, €17, €18 | RZ R4 R5
{ei1,e12, €13, €14, €15, €16, €17, €18, €19 } P
3

Step 1: build an inverted index

Step 2: scan each set and count Count: Rj: 2 @ Ry 2 @ Rs:1 ®
Results: (R,, R;)

EEERE - B




Analysis

How many times is this list scanned?

is scanned m times, each time takes O(m); in total O(m?)




Analysis

Some very frequent elements yield excessive long inverted lists

the long inverted lists are scanned many times.

for m=1 million, ScanCount takes ~1 trillion operations




Naive Method: Subset Enumeration

threshold ¢ = 2

{61)63364367}
e.,e, e;e, exe, e, eye
{ei,e3,€e5,e7} 1%4 ©1v7 ©3%4 ©3%7 ©4%7

1d | set

Ry | {e1,e2,e3} — €;6) €€3
Ra

R3

R4 {62, €4,€5, 66} .

Rs | {e2,ea4,e€s5,¢€6,€5,€9,€10,€11} : (R;, R))
Re | {€e11,e€12,€13, €14, €15, €16, €17, €18 } :

R7 | {e11,e12,€13, €14, €15, €16, €17, €18, €19 }

Step 1. foreach set, enumerate all subsets of size ¢ (c-subset for short)

Step 2. outputall set pairs sharing a common c-subset




Analysis

how many c-subsets are generated from each set?

(T) c-subsets.




Analysis

some very large sets yield a huge number of c-subsets.

for m=1000 and c=3, it generates 166 million!




DossJoin: Combination of two methods

Ry | {e1,e2,e3} Ry | {e1,e2,e3}
Small Sets Ro | {e1,e3,eq4,e7} M R2 | {e1,es3,eq,e7}

Rs {61,83,65,87} Rs {61,63,65767}

R4 {62,64,65,66} Ry {62,64,65,66}

Naive Algorithm 1 — Subset Enumeration

size boundary: x ========-"="-"-"“" - """ - - - m———————————-
R, {('1,1'2.0'3}
fl") {f’.].(";{.t ;.t’,-}
Rs {62,64,65,66,68,69,610,611} .RJ | ((-'l-(-';j.(’.',.(.'T
Large Sets Re | {e11,e12, €13, €14, €15, €16, €17, €18 } M Ry | {€2,€4,€5,¢6)
R7 | {e11,e12, €13, €14, €15,€16, €17, €18, €19 } Rs | {e2, e4,€s,€6,€s,€0,€10,€11}

Rt, {*‘11-"12-“‘13.91t.f’l.'..f“u‘..f’l.'.f’n.}
Rz | {€11.€12,€13, €14, €15, €16, €17, €15, €19}

Naive Algorithm 2 — ScanCount




DossJoin: Combination of two methods

Rl {617 €2, 63}
Small Sets Rs | {e1,es3,e4,e7}
R3 | {e1,e3,e5,er}

Ry | {e2,e4,€5,66}
C y;

Y bounded by X
Size boundary: X == == == === == == e e e e e e -

R~ {611,612,613,614,615,616,617,618,619}

Rs | {e2,e4,es5,€6,€8,€9,€10,€11} n
Lal"ge Sets Re | {e11, €12, €13, €14, €15, €16, €17, €18} bounded by — Why?
X

1. each large set has at least x elements
2. thereare n elementsin total




Time Complexity Analysis for Large Sets

Size boundary: X ======== === == m e m o e e e

R, {‘71“"2-('3}
R2 {(‘_’ ,(:;,f’.z.(f7}
Rs {62,64,65,66,68,69,610,611} Ry | {ey,e3,e5.€7}
Large Sets Re | {e11,€e12, €13, €14, €15, €16, €17, €18 } M Ry | {ez2,€e4,€5,€6}
R~ {611,612,613,614,615,616,617,618,619} Hs {02&4,!“:,-06."&,4‘9.010-011}
Rt. {F‘n-f-’m.f‘lmf?MJ’i.’nf‘m.f’l?.f’m}
R? {Cn-(-'12.¢‘1:i.t‘1.1.(.'15‘6-'16,t‘l?.em.t:m}

Naive Algorithm 2 — ScanCount




Time Complexity Analysis for Large Sets

Size boundary: X ======== === == m e m o e e e
€; € ef €y €5 €g €9

Rs | {e2,eu4,e5,€6,€s8,€9,€10,€11}

Large Sets Re | {e11,€e12, €13, €14, €15, €16, €17, €18 } R, R, R R, R, R, - R
R | {e11,e12,€13,€14, €15, €16, €17, €18, €19 } ! ! ! 2 34 ’
7 11, €12, €13, €14, €15, €16, €17, €18, €19

R; R; R; Rs R;

invertedindex on all sets




Time Complexity Analysis for Large Sets

Size boundary: X ======== === == m oo e e

€; € ej ef €5 €4 eljg
Rs | {e2,e4,e5,e€s,e€s, €9, €10, €11}

LargeSets Re | {e11,€e12, €13, €14, €15, €16, €17, €18 } R, R R R R. R, --- R
R7 | {e11,e12, €13, €14, €15, €16, €17, €18, €19 } . ! ! ? 3 ? /
7 11, €12, €13, €14, €15, €16, €17, €18, €19
R, R, R, R, R, R; ...
R3 R5 R3 R5 R5

each set takes O(n) time

Why?




Time Complexity Analysis for Large Sets

Size boundary: X ======== === == m oo e e

€; € ej ef €5 €4 eljg
Rs | {e2,e4,e5,e€s,e€s, €9, €10, €11}

LargeSets Re | {e11,€e12, €13, €14, €15, €16, €17, €18 } R, R R R R. R, --- R
R7 | {e11,e12, €13, €14, €15, €16, €17, €18, €19 } . ! ! ? 3 ? /
7 11, €12, €13, €14, €15, €16, €17, €18, €19
R, R, R, R, R, R; ...

n
at most — large sets as discussed R; R; R; Rs R;

each set takes O(n) time




Time Complexity Analysis for Large Sets

Size boundary: X ======== === == m oo e e

€; € ej ef €5 €4 eljg
Rs | {e2,e4,e€s5,€6,¢€s,€9,€10,€11}

LargeSets Re | {e11,€e12, €13, €14, €15, €16, €17, €18 } ‘ R] R] R] R2 R3 R4 R7
Ry {611,612,613,614,615,616,617,618,819}
R, R, R, R, R, R; ...

n
at most — large sets as discussed R; R; R; Rs R;

each set takes O(n) time

2
n
Time Complexity: O (7)




Time Complexity Analysis for Small Sets

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

R: {61, ez, 63} < (|R1|>

C
Ro | {e1,e3,e4,e7}

R3 {617 €3, €5, 67} |.R. .|
4
R4 {62,64765766}_) S( C )




Time Complexity Analysis for Small Sets

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

|R|

)S |Rq|€
c

R4 {61,62,63} —> S(

Ro | {e1,e3,e4,e7}

R3 {617 €3, €5, 67} |.R. .|
4
Ry | {e2,e4,€5,e6}— S(

) < IRAI¢
Cc




Time Complexity Analysis for Small Sets

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

< |R1| < Cc < c—1
{61,62,63} —> =1, < |Rq|" < [Ry| * x

Ry
Ry | {e1,e3,es,e7}
Rs3 | {e1,es,es5,e7}
R4

|Ral c c-1
{ea,eq,e5,e6}—> <[ | | S IRl <|[Ra| % x

Z|Rsmall| £ n




Time Complexity Analysis for Small Sets

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

R1 {61, €2, 63} —> = (l}ill) < |R1|¢ < |Rq| * x¢71

Ro {617 €3, €4, 67} < nx¢-1
R3 {61763765767} IR, | N

R4 {62,64765,66}—> S( C4>S|R4|CS|R4|*xC_1

Z|Rsmall| £ n

total # of c-subsets < nx¢1




Time Complexity Analysis for Small Sets

Step 2: output all set pairs sharing a c-subset

Rl {61,82,63}

{627 €4, €5, 66}

Ry | {ei,es,es,e7} build an inverted index for all c-subsets
Rs | {e1,es3,e5,e7} . . :
I for each inverted list, output all pairs of sets

51, €164 | €165 €2€3 | €264 | €265 | €266 | €364 | €365 | €367 | €45 | €46 | €467 | €56 | €5€7

~

€ey
] [ I
]

w

| x| | X
N

Ny

L LE

N




Time Complexity Analysis for Small Sets

Step 2: output all set pairs sharing a c-subset

€€y | €1€3 | €€y | €165 | €1€7 | €x€3 | €€ | €)€5 | €x€5 | €36 | €365 | €3€7 | €4€5 | €464 | €4€7
R, 1IN N [
R, I N /= [ [ 1
R, i N N I
R, : I . I

what’s the total length of all inverted lists?

exactly the total # of c-subsets < nx¢~1




Time Complexity Analysis for Small Sets

Step 2: output all set pairs sharing a c-subset

€€y | €1€3 | €€y | €165 | €1€7 | €x€3 | €€ | €)€5 | €x€5 | €36 | €365 | €3€7 | €4€5 | €464 | €4€7
R, 'HHE =HH ]
R, I [ 1 1 1
R; [ I I
R, - I B . I

what’s the maximum length of any inverted list?

number of results = L* < k L <k




Time Complexity Analysis for Small Sets

Step 2: output all set pairs sharing a c-subset

ey | eres | ereq| ejes| ees| ezes | erey | eres | ereq | esey | eses | ese; | epes | epes | ee; | eses| ese;
R, I HH 1
R, ___ M . / 1 —
R, = __ M __I1 1
R, i __ __ 1
L] cee L5 coe cee coe i]7
< |L{|*|L4q| < |Ls|* |Ls] maximum length of any inverted list < |L17]| * |[L17]
</|L,| * Vk <|Ls| *Vk total length of all inverted lists </|Ly7] * VK
\ )

Y
<nx Wk




Time Complexity Analysis

2
overall time complexity: QO (’n,_ + :Ec_ln\/E)
x

let x = (n/Vk)'/®
the time complexity is O (nz_%k%c> =o(n%) + 0(k)

case 1: k = o(n?)

why? case 2: k = 0(n?)




Two Practical Problems

* Needs to enumerate all c-subsets, whose number can be huge in practice.

* The size boundary x set by the theoretical analysis 1s not practical, as it
overestimates the cost for small sets a lot.




Skip Unnecessary c-subsets

€1€2 | €163 | €164 | €165 | €167 | €2€3 | €264 | €265 | €2€6 | €34 | €365 | €367 | €465 | €466 | €467 | €5 | €5€7
R, Il HN [
R, __ M 1 = [ ]
R; - I N I —
R, N . I . ]

[N I O O O

Observation 1: Unique c-subsets cannot generate any result and we can skip them




Skip Unnecessary c-subsets

€€,

€1€3

6164

€1€s

€€y

€€z

6234

€)€s

€X6

e3e4

€3€5

6465

6466

€47

€5€6

€sey

~

w

€se,
1
]

|| |
N

N

Observation 2: Redundant c-subsets only generate duplicate results and we can skip them

DT




How to skip the unnecessary c-subsets?




Heap-based Method

> Global Order

€1€2 | €163 | €164 | €165 | €167 | €2€3 | €264 | €2€5 | €2C6 | €364 | €365 | €3€7 | €4€5 | €4€6 | €467 | ©5% | ©€5€7
R, (@ =
R, / [ 7 1 [
Ry I Il 1
R, @ = == — LI
O min-subset: the smallest unvisited c-subset in each set e;e;

Goal: generate all the c-subsets in
the global order, one by one

R, R, R, R,

€e;eé e;e; e;e; €réy




Heap-based Method

> Global Order

€1€2 | €163 | €164 | €165 | €167 | €2€3 | €264 | €2€5 | €2C6 | €364 | €365 | €3€7 | €4€5 | €4€6 | €467 | ©5% | ©5€7
R, 'R L]
R, [ [ 1 ] -
R, I I —
R, @ = == — LI
O min-subset: the smallest unvisited c-subset in each set e;e; Pop & Push e e, €R

R, R, R, R,

e;e; e;e; e;e; €réy




Heap-based Method

> Global Order

€1€2 | €163 | €164 | €165 | €167 | €263 | €264 | €2€5 | €2C6 | €364 | €365 | €3€7 | €4€5 | €4€6 | €467 | ©5% | ©€5€7
5 - -
R, [ [ 1 1 [

Ry I I 7
R, @ = == — LI
O min-subset: the smallest unvisited c-subset in each set e;e; Pop & Push e e, €R,

e e; € R

R, R, R, R,

€r¢€3 e;e; e;e; €réy




Heap-based Method

> Global Order

€164 | €165 | €167 | €263 | €264 | €265 | €2C6 | €364 | €365 | €367 | €4€5 | €4€6 | €467 | ©5% | ©5€7
R, -
R, & == — I —
R I I 1
R, @ == == — I Il
O min-subset: the smallest unvisited c-subset in each set e;e; Pop & Push e e, €R,
€63 é Rl
€63 é Rz

R, R, R, R,

€r¢€3 €€y €;e; €réy




Heap-based Method

> Global Order

€1€2 | €163 | €164 | €165 | €167 | €263 | €264 | €2€5 | €2C6 | €364 | €365 | €3€7 | €4€5 | €4€6 | €467 | ©5% | ©€5€7
R, 'HHEH HH G
R, mE == 1 — -
R, ;- @ | . —
R, . @ = == — LI
O min-subset: the smallest unvisited c-subset in each set e;ey Pop & Push e e, €R,
e e; € R
e e; €R,
e;e; € R,

R, R, R, R,

€r¢€3 €€y €;€;s €réy




Heap-based Method

> Global Order

€1€2 | €163 | €164 | €165 | €167 | €263 | €264 | €2€5 | €2C6 | €364 | €365 | €3€7 | €4€5 | €4€6 | €467 | ©5% | ©€5€7
R, 'HHEH HH Q
R, L (— ) J 1 -
R, I @ | . —
R, . @ = == — LI
O min-subset: the smallest unvisited c-subset in each set e;es Pop & Push e e, €R,
e e; € R
e e; €R,
e;e; € R,
R, R, R; Ry e;e; €R,

€r¢€3 ejeyr €;€;s €réy




Skip the Unique c-subsets using heap




Heap-based Method

> Global Order

€12 €14 | €1°5 €2€3 | €264 | €265 | €266 | €364 | €365

~

€465 | €46 | ©4€7 | ©5% | ©5¢€7

N

W

6187 e3e7
- - — —
- —

III 5
~
oQ
w

= 1RSI

N

e e, €R,
e,ey e e; € R
e e; €R,
e;e; € R,
e e, €R,

€4

R, R, R, R,

MAX e3e4 e3€5 €€y




Heap-based Method

> Global Order

€12 €14 | €1°5 €2€3 | €264 | €265 | €266 | €364 | €365

~

€465 | €46 | ©4€7 | ©5% | ©5¢€7

N

w

III ;
~
oQ
w

6187 e3e7
- - — —
= — —

= 1RSI

N

I
_
_
_
_
_

e; e, €R
€36y Pop e;e; €R
e;e; €R,
e;e; € Ry
e e, €R,

€s

Ry R, R; Ry
MAX eé3¢éy e3¢€;s €€y éR4




Heap-based Method
This is the c-subset on top of the heap
: > Global Order

€2€3 | €264 | €265 | €266 | €364 | 565 | €367 | €465 | €456 | €467 | €5 | ©5¢7

6162 6164 6165

~

= . O

N

w

€€y
[ [
I N

III 5
~
oQ
w

= 1RSI

N

.. — I ]

e e, €R,

€3¢y Pop e e; €R

e e; €R,
e;e; € R,
e e; €R,

€s

Ry R, R; Ry
MAX eé3¢éy e3¢€;s €€y éR4




Heap-based Method
: > Global Order

This is the c-subset on top of the heap

€1€2 | €163 | €164 | €165 | €167 | €2€3 | €264 | €2€5 | €2C6 | €364 | 9565 | €3€7 | €465 | €4€6 | €467 | ©5% | ©5€7
R, N IR L] ,
R, . — - ] J
R; 1 I . (- [
R, - == — I
; S =
jump to the first c-subset> e;e, e, e, €R,
8364 POp 6183 éRI
e e; €R
anything in between must be unique c-subset =3 2
yEnE 1 €5 e;e; € R,
e e; €R,
Ry, R, R; Ry
MAX eé3e; e3zé;s €€y & R4

O



Heap-based Method

ee,lee;|ee | ees|ee;|ee;lee | ees|eeslee,|eses|eze; | eels|elqsl eel;| el esey
R, I HH ] |
2 LI - == —
Ry [ e e = -
Ry Il I N g — 7
(I
Skipped unique c-subsets €€ < R,
€3€y Push e e; €R
e e; €R,
<5 e;e; €Ry
e;e; €R,
R, R, Ry Ry
MAX e3e; e3es  eyé€s e,e;, €Ry

> Global Order

O



Skip the redundant c-subsets using heap




Heap-based Method

> Global Order

€1€2 | €163 | €164 | €165 | €167 | €2€3 | €264 | €2€5 | €2C6 | €364 | €365 | €3€7 | €4€5 | €4€6 | €467 | ©5% | ©5€7
R, 1
R, 1 — = 1 —
R; __ LI —
R, __ M __ L (I
e;e; €R
€1€3

€3

R, R, R, R,

€;é; e;e; e;e; €réey




Heap-based Method

> Global Order

€1€2 | €163 | €164 | C1°5 | €167 | €263 | €264 | €265 | €2C6 | €364 | €365 | €367 | ©4%5 | ©4%6 | €4°7 | ©5% | ©5€7
R, N ' [
R, [ 7 1 [
Ry N\ || . Il 1
R, N N . . [
\ POp 61 82 é Rl
This is the c-subset on top of the heap e;e; e e3 €R,

€3

R, R, R, R,

Lazy eje; eje; eyey

Push



Heap-based Method

> Global Order

€1€2 | €163 | €164 | C1°5 | €167 | €263 | €264 | €265 | €2C6 | €364 | €365 | €367 | ©4%5 | ©4%6 | €4°7 | ©5% | ©5€7
R, N [
R, ¢ [ [ 7 1 [
Ry . 1IN IR Il 1
R, L N I | —
\ Pop e;e; €R
This is the c-subset on top of the heap e;e; e e3 €R,
e e; €R,

€3

R, R, R, R,

Lazy Lazy eje; e ey

Push Push



Heap-based Method

> Global Order

€1€2 | €163 | €164 | C1°5 | €167 | €263 | €264 | €265 | €2C6 | €364 | €365 | €367 | ©4%5 | ©4%6 | €4°7 | ©5% | ©5€7
R, HH ‘B L]
R, R = 0/ [ [ [
R; — I N I [
R, I I [
Pop e;e; €R
This is the c-subset on top of the heap e,ey e e3 €R,
e;e; €R,
ey e;e; € R,

R, R, R, R,

Lazy Lazy eey

Push Push



Heap-based Method

> Global Order

€1€7 | €263 | €264 | €265 | €266 | €364 | €365 | €367 | €465 | €466 | €467 | €5 | ©5€7
R, — . >
R, = @ (== —
R; - — ] 1
R, I | I N .
jump to the firstc-subset>e,e4  p, x3 e e, €R
This is the c-subset on top of the heap e,ey e e3 €R,
e;e; €R,
ey e;e; € R,

R, R, R, R,

MAX eze;, ezes €€y




Heap-based Method

> Global Order

ejey | exes | exey | exes | eses| esey | eses | ese; | eses | eses| eer | eses | ese;
R, — . >
R, = - == 1
R -— [ [
R, I I [
jump to the firstc-subset>e,e4  p, x3 e e, €R
This is the c-subset on top of the heap e,ey e e3 €R,
L e e; €R
anything in between must be redundant c-subset =3 2
ey e;e; € R,

Lasy push when c-subset on top remains the same R R R R
1 2 3 4

MAX eze;, ezes €€y




How to reduce the heap-adjustment cost?

cach heap adjustment takes /og,m time, where m 1s the number of
small c-subsets




Heap Blocking

block by the minimum element in the c-subsets

Block e Block e, Blocke; Blocke, Block e;
A A A A A

. ' NG N N N

ey |eres | ejey|ejes| eey| eses| erey | eres | ereq|esey | eses| ese; | epes|epeq|ee; | eseq| ese;
R, || - '
R, __ [ [
R, — __M__ 1
R, - | - I N . A __ N [

invoke the heap-based method in each block with threshold c -1.

the heap size will be much smaller than m




How to select a practical size boundary?




Size Boundary Selection

small sets ~ x¢~1

c. threshold

X. size boundary

]SO0 oUil]

1
large sets ~ P

size boundary x

Benefit: the reduction of time spend on large sets

Cost: the increase of time spend on small sets

cost (slope) goes up smoothly
first, and then rapidly

benefit (slope) goes down
rapidly first, and then smoothly

increase x little by little, stop right after estimated benefit is less than estimated cost



Estimating large set processing cost

* For each large set, add up all 1ts corresponding inverted list lengths

e Use the summation as the cost




Estimating small set processing cost

» Heap adjustment cost and binary search costs.

— Sampling some blocks and run the heap-based method to get the estimation

* Result Generation Costs
— R={e; e e; e4}andS = {e; e, e e5}
— The pair <R, S> 1s generated 3 times by our method (Why?)
— Thus the cost is proportional to the # of c-subsets shared by small sets
— Sample a small number of set pairs

— For each set pair, compute their overlap as P

— The # of shared c-subsets between them is (IZ)




Conclusion

* 0(n?)+ O(k) -- Sub-quadratic Algorithm whenever possible
» Heap-based Methods for Small Sets

 Size-boundary Selection Method




