Overlap Set Similarity Join

Dong Deng

Problem Definition

• Input:

- a collection of sets R
- a constant integer threshold *c*
- Output:

- all pairs $(X, Y) \in R \times R s.t. |X \cap Y| \ge c$

Example

• Input:

-R

 С	=	2
-		_

id	set
R_1	$\{e_1, e_2, e_3\}$
R_2	$\{e_1, e_3, e_4, e_7\}$
R_3	$\{e_1, e_3, e_5, e_7\}$
R_4	$\{e_2, e_4, e_5, e_6\}$
R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
R_7	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$

• Output:

- all set pairs with overlap size no smaller than c

 $|R_1 \cap R_3| = 2$, $|R_1 \cap R_2| = 2$, $|R_2 \cap R_3| = 3$, $|R_4 \cap R_5| = 4$, $|R_6 \cap R_7| = 8$

Application - Friend Recommendation

User 1

User 2

More Applications

- Data Management
 - Data Integration and Cleaning
 - Keyword Subscription
- Data Mining
 - Frequent Pattern Mining
 - Recommendation
- Computer Vision
 - Scene Reconstruction
- Machine Learning
 - Large Entries Retrieval in Matrix Productions
 - Non-negative Matrix Factorization
 - Singular Value Decomposition

Challenge

2.72 2.55 2.5 2.39 2.22 2.04 2 1.87 1.59 Se 1.5 1.4 1.22 0.97 1 0.5 0 2010 2011 2012 2013 2014 2015 2016* 2017* 2018* 2019* Source: Additional Information: eMarketer Worldwide; eMarketer; 2010 to 2015 © Statista 2016 statista 🖍

Number of social network users worldwide from 2010 to 2019 (in billions)

Solution?

Naïve Method: ScanCount

id	set	e_1	e_2	e_3
R_1	$\{e_1, e_2, e_3\}$			
R_2	$\{e_1, e_3, e_4, e_7\}$		\downarrow	\downarrow
R_3	$\{e_1, e_3, e_5, e_7\}$		 Image: A set of the set of the	-
R_4	$\{e_2, e_4, e_5, e_6\}$	R_1	R_{1}	R_1
R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$			
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$	K_2	K_4	K_2
R_7	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$	P	P	R

Step 1: build an inverted index

Naïve Method: ScanCount

id	set
R_1	$\{e_1, e_2, e_3\}$
R_2	$\{e_1, e_3, e_4, e_7\}$
R_3	$\{e_1, e_3, e_5, e_7\}$
R_4	$\{e_2, e_4, e_5, e_6\}$
R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
R_7	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$

Step 1: build an inverted index

Step 2: scan each set and count

Naïve Method: ScanCount

id	set
R_1	$\{e_1, e_2, e_3\}$
R_2	$\{e_1, e_3, e_4, e_7\}$
R_3	$\{e_1, e_3, e_5, e_7\}$
R_4	$\{e_2, e_4, e_5, e_6\}$
R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
R_7	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$

Step 1: build an inverted index

Step 2: scan each set and count

		$\overline{\downarrow}$	e_3		\downarrow	\downarrow	•••	e_{19}
	\mathbf{R}_1	R_1	R_1	R_2	R_3	R_4	•••	R_7
]	R_2	R_4	R_2	R_4	R_4	R_5	•••	
1	\mathbf{R}_3	R_5	R_3	R_5	R_5			
Count: R_3 Results: (R			R ₄ : 2		R_{s}	5:16	•	

How many times is this list scanned?

$$e \longrightarrow R_1 R_2 R_3 \dots R_m$$

is scanned m times, each time takes O(m); in total $O(m^2)$

Some very frequent elements yield excessive long inverted lists the long inverted lists are scanned many times.

$$e \longrightarrow R_1 R_2 R_3 \dots R_m$$

for m=1 million, ScanCount takes ~1 trillion operations

Naïve Method: Subset Enumeration

Step 1. for each set, enumerate all subsets of size *c* (*c*-subset for short)

Step 2. output all set pairs sharing a common *c*-subset

how many c-subsets are generated from each set?

$$R = \{e_1 \ e_2 \ e_3 \ \dots \ e_m\}$$

 $\binom{m}{c}$ *c*-subsets.

some very large sets yield a huge number of c-subsets.

$$R = \{e_1 \ e_2 \ e_3 \ \dots \ e_m\}$$

for m=1000 and c=3, it generates 166 million!

DossJoin: Combination of two methods

Small Sets

R_1	$\{e_1, e_2, e_3\}$		R_1	$\{e_1,e_2,e_3\}$
R_2	$\{e_1, e_3, e_4, e_7\}$	\bowtie	R_2	$\{e_1, e_3, e_4, e_7\}$
R_3	$\{e_1, e_3, e_5, e_7\}$	\mathbf{N}		$\{e_1, e_3, e_5, e_7\}$
R_4	$\{e_2, e_4, e_5, e_6\}$		R_4	$\{e_2, e_4, e_5, e_6\}$

Naïve Algorithm 1 – Subset Enumeration

size boundary: x

R_1	$\{e_1, e_2, e_3\}$
R_2	$\{e_1, e_3, e_4, e_7\}$
R_3	$\{e_1, e_3, e_5, e_7\}$
R_4	$\{e_2, e_4, e_5, e_6\}$
R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
R_7	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$

Naïve Algorithm 2 – ScanCount

DossJoin: Combination of two methods

size boundary: x ------

Large Sets

R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
R_7	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$

R_1	$\{e_1, e_2, e_3\}$
R_2	$\{e_1, e_3, e_4, e_7\}$
R_3	$\{e_1, e_3, e_5, e_7\}$
R_4	$\{e_2, e_4, e_5, e_6\}$
R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
R_7	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$

Naïve Algorithm 2 – ScanCount

inverted index on all sets

size boundary: x - - - -

Large Sets

R_5	$\{e_2, e_4, e_5, e_6, e_8, e_9, e_{10}, e_{11}\}$
R_6	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
$\overline{R_7}$	$\{e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}\}$

each set takes O(n) time

Why?

each set takes O(n) time

Time Complexity:
$$O(\frac{n^2}{x})$$

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

R_1	$\{e_1, e_2, e_3\}$ -	$\longrightarrow \leq \binom{ R_1 }{c}$
R_2	$\{e_1, e_3, e_4, e_7\}$	•••
R_3	$\{e_1, e_3, e_5, e_7\}$	$\langle R_4 \rangle$
R_4	$\{e_2, e_4, e_5, e_6\}$ -	$\longrightarrow \leq \binom{ R_4 }{c}$

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

R_1	$\underbrace{\{e_1, e_2, e_3\}} \longrightarrow \leq \binom{ R_1 }{c} \leq R_1 ^c$
R_2	$\{e_1, e_3, e_4, e_7\}$
R_3	$\{\rho_1, \rho_2, \rho_7, \rho_7\}$
R_4	$\frac{\{e_1, e_3, e_5, e_7\}}{\{e_2, e_4, e_5, e_6\}} \longrightarrow \leq \binom{ R_4 }{c} \leq R_4 ^c$

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

 Σ |Rsmall| $\leq n$

Step 1: enumerate c-subsets, takes O(total # of c-subsets)

 Σ |Rsmall| $\leq n$

total # of c-subsets $\leq nx^{c-1}$

Step 2: output all set pairs sharing a c-subset

R_1	$\{e_1,e_2,e_3\}$	
R_2	$\{e_1, e_3, e_4, e_7\}$	
R_3	$\{e_1, e_3, e_5, e_7\}$	
R_4	$\{e_2, e_4, e_5, e_6\}$	

build an inverted index for all c-subsets for each inverted list, output all pairs of sets

	$e_1 e_2$	$e_1 e_3$	$e_l e_4$	$e_1 e_5$	$e_1 e_7$	$e_2 e_3$	$e_2 e_4$	<i>e</i> ₂ <i>e</i> ₅	<i>e</i> ₂ <i>e</i> ₆	e_3e_4	<i>e</i> ₃ <i>e</i> ₅	<i>e</i> ₃ <i>e</i> ₇	$e_{4}e_{5}$	<i>e</i> ₄ <i>e</i> ₆	$e_{4}e_{7}$	$e_{5}e_{6}$	$e_{5}e_{7}$
R_1																	
R_2																	
R_3																	
R_4																	

Step 2: output all set pairs sharing a c-subset

what's the total length of all inverted lists?

exactly the total # of c-subsets $\leq nx^{c-1}$

Step 2: output all set pairs sharing a c-subset

what's the maximum length of any inverted list?

number of results =
$$L^2 \le k$$
 $L \le \sqrt{k}$

Step 2: output all set pairs sharing a c-subset

Time Complexity Analysis

overall time complexity:
$$\mathcal{O}\left(\frac{n^2}{x} + x^{c-1}n\sqrt{k}\right)$$

let $x = (n/\sqrt{k})^{1/c}$

the time complexity is
$$\mathcal{O}\left(n^{2-\frac{1}{c}}k^{\frac{1}{2c}}\right) = o(n^2) + O(k)$$

why? $case \ 1: k = o(n^2)$
 $case \ 2: k = O(n^2)$

Two Practical Problems

• Needs to enumerate all c-subsets, whose number can be huge in practice.

• The size boundary *x* set by the theoretical analysis is not practical, as it overestimates the cost for small sets a lot.

Skip Unnecessary c-subsets

Observation 1: Unique c-subsets cannot generate any result and we can skip them

Skip Unnecessary c-subsets

Observation 2: *Redundant c-subsets* only generate duplicate results and we can skip them

How to skip the unnecessary c-subsets?

Heap-based Method

Skip the Unique c-subsets using heap

Skip the redundant c-subsets using heap

 $e_1 e_2 \leftarrow \mathbf{R}_1$

How to reduce the heap-adjustment cost?

each heap adjustment takes log_2m time, where *m* is the number of small c-subsets

Heap Blocking

block by the minimum element in the c-subsets

invoke the heap-based method in each block with threshold c -1.

the heap size will be much smaller than m

How to select a practical size boundary?

Size Boundary Selection

increase x little by little, stop right after estimated benefit is less than estimated cost

Estimating large set processing cost

- For each large set, add up all its corresponding inverted list lengths
- Use the summation as the cost

Estimating small set processing cost

- Heap adjustment cost and binary search costs.
 - Sampling some blocks and run the heap-based method to get the estimation
- Result Generation Costs
 - $R = \{e_1 \ e_2 \ e_3 \ e_4\} \text{ and } S = \{e_1 \ e_2 \ e_3 \ e_5\}$
 - The pair <R, S> is generated 3 times by our method (Why?)
 - Thus the cost is proportional to the # of c-subsets shared by small sets
 - Sample a small number of set pairs
 - For each set pair, compute their overlap as P
 - The # of shared c-subsets between them is $\binom{P}{c}$

Conclusion

- $o(n^2) + O(k)$ -- Sub-quadratic Algorithm whenever possible
- Heap-based Methods for Small Sets
- Size-boundary Selection Method