Set Similarity Join

Dong Deng

Similarity Query Processing: Re-cap

 String/Sequence, Edit Distance (first lecture) - Partition
 Set, Overlap (second lecture) - Subset Enumeration
* (Weighted) Set, Jaccard/Cosine Similarity and more (this lecture) - Prefix Filtering

» Real-value Vectors, Euclidian Distance and more (next lecture) - Approximation

Programming Assignment |

Near Duplicate Data

On one end, a winded Pete Sampras tried to summon
: enough energy to give the New York fans another
GMANEWS.TV.... memorable win to talk about it on the subway ride
mecres e som e insisias | pome O the other side, Roger Federer wore a sly
SRR RRESSRES grin like he knew age was about to catch up to the
Breaking News » Militant group te Aoy former world No. 1 - the man who owns the record of
Sports 14 Grand Slams he wants.

New User? SignUp Signin | Help

AA Boxing Golf Soccer

Photos

ideo

Home > Sports > Top Stories

Roger Federer beatg Pete Sampras in sold-out
gederer bels.(tlselSlampms in exhibition #t Madison exhijbition at MadisomSquare Garden

03/11/2008 | 11:28 A

By JAY COHEN, AP Sports Wirite
Mar 11, 4:23 am EDT

lp) Buzz Up Print

Email this | Email the Editor | £rint | Digg this | Add to del.icio.us

NEW YORK {AP)—Past and present stood across the netfro ach other during a third-set tiebreaker at Madison

Square Garden.

Onone emeras tried to summaon enough energy

MEW YORK - Past and present stood across the net from £ach other during a third-set

tiebreaker at Madison Square Garden.

give the New York fans another memorahle

win to ger Federer wore a sly grin like he knew age was
On one end ergy to give the New York fans ahout he record of 14 Grand Slams he wants.
ancther mer| 03/11/2008 | 11:28 AM | on the ather sce, roer " By JAY COHEN, AP
Federer wor o the former world No. 1 - the Spo rtS erter
h th d of 14 G d sl h ts, Curre onday night in an exhibition that featured a little hit
man who owns the record o rand Slams he wants e Mar 1 1 ’ 423 am EDT vormming o

Youth is served, indeed.

ADVERTISEMENT " ; . .
Current No. 1 Federer emerged with a 6-3, 6-7 (4), 7-6 (6) victory Monday night in an Itwas a great night for tennis,” Sampras said.
exhibition that featured a little bit of everything - some laughter, some stellar shots, uneven

play and compelling tennis.

There were moments when, if you squinted a hit, you would have sworn that was
the Sampras of old, rather than an old Sampras. There were moments when, if you
listened to the whip of the racket through the air, you would have been ahsolutely

There was even a Tiger Woods sighting. sure Federer was giving it his all.

And then there were moments when, as you watched Sampras throw his racket to

"It was a great night for tennis," Sampras said. the ground in mock disgust or saw Federer raise an index finger to celebrate four

There were moments when, if you squinted a bit, you would have sworn that was the Sampras

af ald vathar than an ald Qaranrae Thara wara rarmante whan if wvan lickanad +a tha whin Af

Fuzzy Matching: A use case :-)

* Find speeches similar to Melania Trump's RNC speech

from: https://chenli.ics.uci.edu/

Fuzz Matching: A use case :-)

Melania

Trump

RNC speech | July 18, 2016

8

From a young age, my parents impressed on me

the values that you work hard for what you want in
life, that your word is your bond and you do what
you say and keep your promise, that you treat
people with respect. They taught and showed me
values and morals in their daily lives. That is a

lesson that | continue to pass along to our son.

And we need to pass those lessons on to the many
generations to follow. Because we want our
children in this nation to know that the only limit to
your achievements is the strength of your dreams
and your willingness to work for them.”

Michelle =

Obama

DNC speech | August 25, 2008

And Barack and | were raised with so many of the
same values: that you work hard for what you want
in life; that your word is your bond and you do what
you say you're going to do; that you treat people
with dignity and respect, even if you don’t know

them, and even if you don't agree with them.

And Barack and | set out to build lives guided by
these values, and to pass them on to the next
generation. Because we want our children --

and all children in this nation -- to know that the
only limit to the height of your achievements is the
reach of your dreams and your willingness to work
for them.”

from: https://chenli.ics.uci.edu/

Set Similarity Functions

» Set Similarity Function X ={A,B,C,D,E}
Y={B,C,D,E,F}
_|xny|
- Jaccard(X,Y) = XOY] 4/6 = 0.67
: _ lxny| 4/5=10.8
— Cosine(X,Y) =
(X,Y) VIXIIY]
I 8/10=0.8
— Dice(X,Y) = X0v]

| X|+]Y]

Problem Definition

* Input:
— A collection of sets R
— A set similarity function Sim
— A similarity threshold o
* Output
— All pairs (X,Y) € RXR such that Sim(X,Y) = §

An Example

e Input: _
id The records
— R 1 | X1 | {x1,22,25,%6,%7,T10,T11,T13,L14}
2 | Xy | {x2,24,T5,%6, %9, T11, T13, T14, T15}
3 | Xs | {z1,z3, 6, 27,29, %10, T11, %13, L14}
4 | Xy | {x3,24,5,T7,28, %10, T12,L13,T14}
5 | Xs | {z1,x2,23,%4,%5,T6, L7, %10, L11,L13,T14}

— Sim = Jaccard Similarity
— 0 =0.73
e Output
— Jaccard(X,, X5)=0.82=> 6

Applications

* For Web search engines:

— Perform focused crawling

— Increase the quality and diversity

— Identify spams

* For Web mining:
— Perform document clustering
— Find replicate Web collections

— Detect plagiarism

Q. What are the advantages of RAID5 over RAID4?

A. 1. Several write requests could be processed in
parallel, since the bottleneck of a unique check disk has
been eliminated. 2. Read requests have a higher level
of parallelism. Since the data is distributed over all
disks, read requests involve all disks, whereas in
systems with a dedicated check disk the check disk
never participates in read.

<NUMBER> drew lucky star winning numbers
<NUMBER> which consequently won in the 2ND

Q. What are the advantages of RAID5 over RAID4?

A. 1. Several write requests could be processed in
parallel, since the bottleneck of a single check disk has
been eliminated. 2. Read requests have a higher level
of parallelism on RAIDS. Since the data is distributed
over all disks, read requests involve all disks, whereas
in systems with a check disk the check disk never
participates in read.

Set Similarity Functions

* The above similarity functions can be equivalently converted to overlap

 Overlap:
O(X, Y) =|XNY]|
e Jaccard:
x.y) =201, 0(X.Y) > —— (IX|+ |Y]) = t
— PAEN - —
J(&, XuyY|™ T 1+0

* We can only consider the overlap size, as others can be transformed to the
overlap similarity.

Example

e Overlap threshold =3
« Result (RID pairs): {(1,3),(3,4),(3,5)}

[RID [Name

Database Concepts Techniques

4 Database Programming Concepts lllustrated

System Programming Concepts Techniques Oracle Linux

Naive Solutions

* Enumerate all string pairs

 Verify whether the strings in the pair are similar

Naive Algorithm

need to compare all O(n?) pairs !!

RID | Name

1 Database System Concepts

2 Database Concepts Techniques

3 Database System Programming Concepts Oracle Linux

4 Database Programming Concepts lllustrated

5 System Programming Concepts Techniques Oracle Linux

t=3 overlap of (i, j) i=1 2 ‘ 3 \ 4 5
Result: =1 2 2 2
(3, 1) 2 2 2 2
4 Sl
(5, 4)

Framework

o VerifY(Xn {y19 y29 . })
@ for each Sj eS for each y;

* Candidates = ¢ 1f‘j)vue£§§(<xxyy)§t
* Candidates = getCandidates(S) |, 4 e
* Verify(S;, Candidates)

e Algorithms differ in getCandidates()

® naive alg: return {S; | i < j}

Not-so-naive Algorithm

* Observation: (*, 6) should not been compared
— If x and y have no common token, they won’t be in the result

e Idea: Use inverted index to consider promising candidate pairs only

RID | Name
Database System Concepts

Database Concepts Techniques

Database System Programming Concepts Oracle Linux

Database Programming Concepts lllustrated

System Programming Concepts Techniques Oracle Linux

OB~ IN|—

Harry Potter and the Sorcerer's Stone

Index-Based Algorithms

* Index-based Algorithm

Record Set H Index Construction] <:> inverted lists

token record_id
<w,x> v A w X
<w,y> <_> [Candidate Generation] B z
<x,y> C Yy 3

<X,Z> [Verification H Result Pairs

Inverted Index

* Conceptually, an inverted index has an inverted list for each token
to be indexed from the document collection

— An inverted list 1s just an sorted array of document identifiers (in our case,
RIDs) such that the token appears in the corresponding document

1,2,3.4

P

RID | Name
1 Database System Concepts

6 Harry Potter and the Sorcerer's Stone

Probe Count

RID

Name

Database System Concepts

Database Concepts Techniques

Database System Programming Concepts Oracle Linux

Database Programming Concepts lllustrated

OB

System Programming Concepts Techniques Oracle Linux

token Inverted list
Database {1,2,3, 4}
System {1, 3,5}
Concepts {1,2,3,4, 5}
Techniques {2, 5}
Programming {3, 4,5}
Oracle {3, 5}
Linux {3, 5}

{

lllustrated

4}

RID | Name

P

1 Database System Concepts
2 Database Concepts Techniques
3 term RID-list
4 | Database {1,2,3,4) b
5 (1, 3,5) = > {1,2,3,4,5)
(1,2,3,4,5) J N
Techniques 2 5 1 needs to be compared
Programming {3, 4,5} with {2’ 3’ 4’ 5}
Oracle {3, 5}
Linux {3, 5}
llustrated {4}
1. Consider the terms in the current record and retrieve their inverted lists

through the index

2. Merge these RID-lists
3. Repeat step 1 & 2 for every record

Note that RIDs in the inverted list are sorted

RID | Name

Database System Concepts

RID-list

1
2 Database Concepts Techniques
3 |term

=~

4 Database {1,2,3,4}
: {1,3,5) ~ {1/3,2/2,3/3,4/2,5/2}

{1,2,3,4,5)) \

Techniques {2, 5}
Programming (.45 RID / count. e.g., overlap(1,2)=2
Oracle {3, 5}
Linux {3, 5}
llustrated {4}
l. Consider each term, 7, in the current record and retrieve their inverted

lists through the index
2. Count Filtering: Merge and filter these RID-lists

e prune those whose count < ¢

3. Repeat steps 1 & 2 for every record

Note that RIDs in the inverted list are sorted

Framework

e for each S, ES

. *® Candidates = ¢
* Candidates = getCandidates(S))
* Verify(S;, Candidates)

e Algorithms differ in getCandidates()
* naive alg: return {S; | i < j}
* index-based alg: return {S; | i<j A §;N S; = ¢}
Il use inverted indexes

Problems

« Still too many comparisons

— tokens that appears in many documents not only results in large inverted
lists, but also slow down the computation

RID | Name
1 Database System Concepts

2 Database Concepts Techniques

| | Database System Programming Concepts Oracle Linux

3
4 Database Programming Concepts lllustrated
5 System Programming Concepts Techniques Oracle Linux

6 (| Databas@of Respiratory Diseases

DB Training - Similarity Join 23

sorted

»

sorted

»
>

| (e 0%
® o o

¢ & D

Mme MQ
e> Py
> -
> k |

<P <

(denomination not considered) ?

Player 1
Player 2

what s the maximum possible number of cards held by both players

Prefix Filtering

 Establish an upper bound of the overlap between two sets by looking at only

part of them.

Prefix Filtering

 Establish an upper bound of the overlap between two sets by looking at only

sorted

part of them.

»

sorted

»
>

Player 1

what s the maximum possible number of cards held by both players

(denomination not considered) ?

Prefix Filter

* Sort the tokens by a global ordering

— 1increasing order of frequency
* Index the first few tokens (prefix) for each record

« Example:

Sorted

— suppose sim(x,y)=0(x,y) >=t=4

G N
U.boundo(x,y) =3 <4 ><
e Eo
——
prefix sorted

» Must share at least one token in prefix to be a candidate pair

Prefix Filter

» Forx (ory)
— O(x,y) >=t =2 prefixlength=|x|-(r—1)
— Jxy)>=06 2> Ox,y)>=9|x| > prefix length=| (1-) x| + 1]

« Example: suppose sim(x,y) = J(x,y)>= 6= 0.8

- w={C,D, E, F}
_ x = {B C,D,E, F} Candidate Pairs Results

<w,X>, <x,y>, <y,z> <w,x>

o y: {AE,C,D,F}
~ 7= {G.A,B,E,F

Prefix Filtering for Overlap

 Constraint: Overlap(S;,S,) = t
 Pre-requisite
— All sets sorted in a global order
— Usually the increasing frequency order €= facilitates the join
* Preprocessing
— Set S 2 prefix(S), s.t., [prefix(S)|=[S| - (t— 1)
* Filter
— If prefix(S,) N prefix(S,) = ¢, then Overlap(S,, S,) <t
— 1.e.,(S;, S,) can be filtered

» Refine: verify the survived pairs

Framework

o foreach S, €S

. ® Candidates = ¢
* Candidates = getCandidates(S;)
* Verify(S;, Candidates)

e Algorithms differ in getCandidates()
* naive alg: return {S; | i < j}
* index-basedalg: return {S; | i< A SN S; =}/l use
inverted index
* prefix-filtering-base alg: return {S; | i <j A
prefix(S;) N prefix(S;) = ¢} using inverted index on
prefix set

RID | Name

1 Database System Concepts

2 Database Concepts Techniques

3 Database System Programming Concepts Oracle Linux

4 Database Programming Concepts lllustrated

5 System Programming Concepts Techniques Oracle Linux

token Inverted list df idf Order
Database {1,2,3, 4} 4 1/4 7
System {1, 3,5} 3 113 6
Concepts {1,2,3,4, 5} 5 115 8
Techniques {2, 5} 2 112 4
Programming {3, 4,5} 3 113 5
Oracle {3, 5} 2 112 3
Linux {3, 5} 2 112 2
llustrated {4} 1 1M 1

Pr

RID | Name

1 System Database
2 Techniques Database
3 Linux Oracle Programming System Database
4 lllustrated Programming Database
5 Linux Oracle Techniques Programming System

Order: Illustrated, Linux, Oracle, Techniques, Programming, System, Database, Concepts

t=3 =» prefix-len=|S| - 2

1=2

j:1 token Inverted list
System {1}

j:3 token Inverted list
System {1,3}
Techniques {2}

Linux {3}
Oracle {3}
Programming | {3}

token

System

{1}

Techniques {2}

Inverted list

RID | Name
Pri 1 System Database
2 Techniques Database
13 Linux Oracle Programming System Database
4 lllustrated Programming Database
5 Linux Oracle Techniques Programming System
t=3 =» prefix-len=|S| - 2
i=3 1=4 1=5
. token Inverted list token Inverted list
token Inverted list System (13} System 13}
Systerm {13} Techniques | {2) Techniques | {2, 5)
Techniques |) Linux 3) Linux 3, 5)
Linux 3} Oracle {3} Oracle {3, 5}
Oracle . 3} Programming | {3, 4} Programming | {3, 4}
Programming | {3} llustrated {4} llustrated {4}

Framework

o foreach S, €S

. ® Candidates = ¢
* Candidates = getCandidates(S))
* Verify(S;, Candidates)

o getCandldates()

* prefix-filtering-base algorithm:
® Return {§;|i<j A prefix(S;) N prefix(S;) = ¢}
* Using inverted lists

Supporting two datasets

e JonRS
‘e Generate prefix sets for R and S
e Build inverted lists for prefix sets of R
o foreach S, €S
. * Candidates = ¢
* Candidates = getCandidates(S)

* Verify(S;, Candidates)
e Algorithms differ in getCandidates()

* prefix-filtering-base algorithm:
* Return {S; | prefix(S;) N prefix(R;) = ¢}
* Using inverted lists

Pruning Techniques for Jaccard Similarity

Positional Filter within Prefix

 Index both tokens and their positions

Position

Ibound |, = 2+ max(4,3)=6

‘xﬂy‘ 4
=—<0=0.8
‘ny‘ 6< X

ubound J(x,y) =

¢ uboundO(x,y) = Px npy+ IIllIl(|X| - Ipx |9 b}| - |py |) px:B

¢ lbound ., = p, U p,+ max(|x|- | p, |, V|- | p, |) p,=4 B

Positional Filter within Suffix

 probe tokens in suffix, and compare their positions

* suppose sim(x,y)=J(x,y) >= 0=10.8

| = [y = 18, |prefix| =] (1- 8)*x+1]=[(1-0.8)*18+1| =4 why?

-
L d

+1

O(x,y) >=[[xUy|* 8]=[19*0.8 |= 16 why?
prefix ,
X = A|B|D|E i
1
y= |A|C|D|E
|
U.boundO(x,y) = 3 +4

=15<16

-

-

”

-

”

”

| : : suffix I

+«—l—1L binary search ———

+7

Positional Filter within Suffix

* Divide and Conquer
prefix : suffix

|
- uboundup= 4 46 +1+7 =18
— uboundgep,o= 4 +3 +1+1+1+3+1+3 =17
— uboundgps= 4 +1 +1+1+1+1+1+1+1+1+1+1 =15

» probe suffix recursively, until either candidate pair 1s
pruned, or reach max-depth

Effect of Filters

« sim(x,y)=J(x,y)>= 0= 0.8

- u={C, |D,E F}

—~ v={B.C, |D,E, F}

- w={A.B,|C,D, F}

~ x={G.A,| B,E, F}

- y={A.B,|D,E Fj

— z={G.A,|C,D,E,F
« after prefix filter:

- <u,v>, <V,wW>, <V,y>, <W,X>, <W,y>, <w,Z>, <X’y>, <X,Z>, <y)z>
« after prefix position filter:

— <u,V>, <W,y>, <W,Z>, <x,z>, <y,z>
« after suffix position+ (max-depth=1):

— <u,V>, <x,z>, <y,z>
* real result:

- <u,v>

Similarity Join for Jaccard

* Generate tokens
« Compute frequency of token
* Filter: Generate Candidate Pairs
— Using inverted lists
— Using prefix sets
— Using prefix sets with prefix-position pruning
— Using suffix pruning

. verity Candidate Pairs

A Partition-based Method for Set Similarity Join

Prefix Filter Framework

The list of all elements in order (universe)

B @k A

'@ K A
® A

Prefixes

Prefix Filter: Sim(X, Y) = 6 only if Prefix(X) N Prefix(Y) # @

4V

R e R P P P et
o S 4 S e
e e,
Lo e
e S M e,
o e
A
R iy
e,
o e
T
L e
e e,
0 0 L S e 4 O 8 5,
e e,
Lo e
e S M e,
EE R R P E R P LR L LR LR LR PR PP R R R PP LR PR PP
A
R iy
e,
o e
T
L e
e e,
0 0 L S e 4 O 5, 0
e e,
B
L B R e M P
B e e
0 0 0 0 0, 0,
e
L e
e e e,
o e
T
R L P T e e T P L T L L L PP P e R e P P e e T P L e L LRk
e L
0 L L T e 2 e e 2, 0
L
Lo L e
e L L M e,
0 0 0 0 0, 0,
e
L e
e e e,
o e
T
R L P T e e T P L T L L L PP P e R e P P e e T P L e L LRk
e L
0 L L T e 2 e e 2, 0
L
Lo L e
e L L M e,
B e e e
60 e 0 2 S e L A A A 2 2 S L A A A A A 2 2 2 S A A A a0 A A e e
B e e
B et
B e
e
B
e
b
L E L L L o T L L L Lo L EEEEE LR,
B L A A
ot 2 2 2 2 2 2 2 2 2 ety
L et T,
E ot L L L L L L L o+ L L
B L
B et
B e
e
B
e
bttt S,
L E L L L o T L L L Lo L EEEEE LR,
B L A A
ot 2 2 2 2 2 2 2 2 2 ety
B L, I
E ot L L L L L L L L L L
B L
B et e
+:+:":':tt"':":’:":':tt"':":’:":':tt"':":’:":':tt"':":’:":':tt"':":’:":':tt"':":’:":':tt"':":’:":ﬁ{{*:’:*:ﬁ{{*:’:ﬁﬁttﬁ":ﬁ*
o O N N N N R N RN R R,
R e e e e e e e e
B e e
e et
B B e e, B
ety
B e
B e
B S M
L e E LR PP L E PR EE e LR CE PP R e PP PP b PR PE Pt
e L
by
B e
o o
B
e et
bty e e A,
ety
B e
B e
B S M
L e E LR PP L E PR EE e LR CE PP R e PP PP b PR PE Pt
B A S
L
B e
o o
B
o
B B A e

..,
o+
+nuﬁ¢¢ﬁﬂ§?ﬂ¢:3{b L S S N

Prefix Filter Framework

the pruning power is limited!

two dissimilar sets are a candidate
if they share 1 element in their prefixes

Partition-based Framework

The list of all elements in order (universe)

RI
1

Subsets Subsets Subsets
Sim(X, Y) = 6 only if Subsets(X) N Subsets(Y) # @

Partition-based Framework

What 1s the minimum number of partitions
that can guarantee completeness?

The Number of Partitions

Intuition:

1: Deduce an overlap lower bound based on the
similarity function and the threshold

Sim(X,Y)>8 - | XnY|=>2m

2: Partition them into m + 1 subsets

Then two similar sets must share at least 1 subset

Element Skew Problem

 Some subsets have Iimited number of elements

— The ‘empty’ subsets yield quadratic candidates

* Solution: Add some flexibility

— Skip the subsets with less elements

— Select more signatures from subsets with more elements to

guarantee completeness

Signatures: 1-deletion neighborhoods

* Given a non-empty set Z, its 1-deletion neighborhoods
are 1ts subsets with size of |Z| — 1, denote as del(Z)

Zz 4= VX

del(z) 4§ X VX

Using 1-deletion neighborhood

UV, V&del(U),U&del(V)—- |[UAV| =2

U A® A. ® U
V ® : ® del(V)

Skip x subsets & select 1-deletion neighborhoods from another x subsets

guaranteed completeness !!

Optimal Allocation Strategy

0: skip the i" subset
V.= 1: only use the i" subset as signature
l
2: use both the i" subset and 1-deletions

Constraint: Y,i v, =m+ 1

b m+1 i
Object: minimize),i—1" Cy

k=0 ct:the # of sets sharing the ith subset
cL: the # of sets sharing (subset or 1-deletion) signatures

Time Complexity

* Dynamic Programming
— Optimal: # of candidates

— O(s?) time complexity as m = O(s) where s is the set size

 Each set is partitioned s — 6s + 1 = O(s) times

 Allocation time complexity is O(s?) for each set

* Next we reduce it to O(s log s)

Greedy Method for Allocation Selection

» Heap-based Method

7 Y =(0,0,0,0
vz _cv +1_CUZ /—\V(()

5 : (1,0,0,0)

/ \ v!:(20,0,0)

v Vs :(2,1,0,0)
/L / \ Vi (2,1, 1,0)

Vi=0 Vi=1 Vi=1 V5=3
Vi=0 V?2=2 Vi=1 Vi=1

 2-approximation algorithm

» Time complexity: O(s?) =2 O(s log s)

Adaptive Grouping

)

os+1

S-2
s-1

Adaptive Grouping

lmin lmin

» The k-th group includes all the sets with size within |
where a € [%, 1]
* The size range becomes more and more ‘broader’

» The partition times is bounded by l0g,0 + 1 = O (1) for any set
» The time complexity is O(s log s log,0) = O(s log s)

Prefix Filtering for Edit Distance

g-gram Based Filtering

 Nalve algorithm
— compute edit distance: O(n?) time complexity, where n is string length

— do this for N?/2 pairs, where N is the number of strings

 q-gram based filtering
— g-gram is a substring of length q
— filter-and-refine
— length filtering

* |len(s)-len(?) |= T

Matching g-grams

* count filtering

— at least LB(s,) common g-grams New_Zealand

New
R LB(S9 t) = maX(|S|a |t|) -q +1- q*T

 Bottleneck: generating candidate pairs which
share at least LB(s ,f) matching g-grams

Zea
eal
ala
lan
and

Prefix Length

- Edit distance: ed (X, y) <T

— O(Gx,Gy)zmax(|x|,| y)+1-qg-7%¢q

Gx and Gy are the gram sets of x and y respectively

Prefix length = [x|+1-q-(0-)= T * g +]

Similarity-Join Algorithm for ED

‘ Indexed Record Set |

Gx NGy = ¢
Cand-1 Generation Prefix Filter
ed(x,y) =t —O0(Gx,Gy)zmax(|x|,| y) +1-g-7%¢
Cand-2 Generation

I}

b

[Verification]

‘ Result Pairs |

Prefix Filter

 Prefix Filter
— sort g-grams by global ordering, e.g., frequency
g*r+1 |s|+1-g-g*r-1

da | db

T

|t|+1-g-g* -1

Example — All-Pairs-Ed

* 7=1,9=2 » prefix_len = g*z+1 = 3

Qa=Ari, Au, us, ...}
Qb={ra, li, Au, ...}
Qc={na, ra, li, ...}
— c¢=‘Australiana’ Qd={_Z, Ze, Ne, ...}

— d=‘New_Zealand’ Qe={_5, Se, Ne, ...}

— a=‘Austria’

— b=‘Australia’

— e=‘New_Sealand’
* after prefix filter: <a,b> <b,c> <d,e>
o after count filter: <b,c> <d.e>

o after edit distance verification: <d,e>

Edit-Distance Join (Ed-Join)

* Idea

— mismatching g-grams provide useful information

Location-Based Filtering

* Idea: reduce prefix length
» Example, t=1, g=2

— s=‘Austria

>

— r=“Australia’

location

location

5 1
ri | Au
ra | i
5 7

>

pruned

Find Minimum Prefix Length

* (Given a prefix set of g-grams, find the minimum prefix length that
needs at least T+ 1 edit operations to destroy them

Minlimum

o= {9 o, [N

* Example

— s=‘Austria’

— =‘Australia’

— p,=riAuus(512) - 11 Au
— P,=raliAu (571) 2> rali

Algorithms

 Find the minimum prefix length of p
1< T+l end €q- 17 +1;

» for 1 <=end do

* err € MinEditErrors(p[1 . .i]);
 1ferr > 7 then

. break;

e 1€ 1t T

P

Algorithms

Find Minimum Edit Errors of a set of g-grams
Sort q-grams 1n Q 1n increasing order of locations;

cnt < 0;loc < O;
for1=11to|Q| do
1f Q[1].loc > loc then

cnt < cnt + 1;

loc € Q[i].loc+q—1;
return cnt
— p,=11Auus(512) 2125->2
— P,=raliAu (571) 2157 =23

Improved Algorithms

 Find the minimum prefix length
o left & 7+ 1;right € q-7+1;

» while left <right do

mid € (left + right)/2;

« err € MinEditErrors(x[1 . .mid]);
 1ferr <=1 then left < mid+ 1;

* else right € mid;

* return left
}7 g T+1

\ A
' |
p I

Pivotal Prefix Filter

g-gram

 g-gram is the substring of length ¢

youtbecom

(YO
ou

ut
2-grams< ﬂl;e

ec
CO
_ om

g-gram

* 1 edit operation destroies at most g grams.

youtdecom

Y0
ou
ut

td
de

ec
CO
om

* T edit operations destroy at most gt q-grams.
* if r and s have more than gt mismatch g-grams, ED(r, s)>1

Prefix Filter

Sort all g-grams by global ordering, such as alphabetic order

Prefix(r)
N
N
Prefix size: qt+1 The sorted g-grams
Y -
Prefix Filter:
Prefix(s) /

If prefix(r) N prefix(s) = ¢, ED(1s) > t

Disjoint g-gram

* One edit operation destroies at most / disjoint gram.

yout decom
Vo
ut

de
om

* 1 edit operations destroy at most t disjoint q-grams.

 if r and s have more than T mismatch disjoint g-
grams, ED(r, s)> 1

Pivotal Prefix Filter

Sort all g-grams by global ordering, such as alphabetical order

Prefix(r)
A

~Jl\

Pivot(r) Pivot(+) is the pivotal prefix
Pivot(s) |Pivot(*)|= t+1 and the g-grams in Pivot(*) are disjoint

e

\),
Y
Prefix(s)

If Pivot(s) N Prefix(r) = ¢ and
Pivot(r) N Prefix(s) = ¢, ED(,s) > 1

Summary

* Prefix Filtering for Set Similarity Join

Position Filter

Suffix Filter

Partition-based Framework

1-Deletion Neighborhood

Optimal Allocation Algorithm

2-approximation Greedy Algorithm

Adaptive Grouping Mechanism

Prefix Filtering for Edit Distance

Pivotal Prefix Filter

