
Set Similarity Join

Dong Deng

Similarity Query Processing: Re-cap

• String/Sequence, Edit Distance (first lecture) - Partition

• Set, Overlap (second lecture) - Subset Enumeration

• (Weighted) Set, Jaccard/Cosine Similarity and more (this lecture) - Prefix Filtering

• Real-value Vectors, Euclidian Distance and more (next lecture) - Approximation

Programming Assignment I

Near Duplicate Data
On one end, a winded Pete Sampras tried to summon

enough energy to give the New York fans another
memorable win to talk about it on the subway ride

home. On the other side, Roger Federer wore a sly
grin like he knew age was about to catch up to the

former world No. 1 - the man who owns the record of
14 Grand Slams he wants.

03/11/2008 | 11:28 AM By JAY COHEN, AP
Sports Writer
Mar 11, 4:23 am EDT

Fuzzy Matching: A use case :-)

• Find speeches similar to Melania Trump's RNC speech

from: https://chenli.ics.uci.edu/

Fuzz Matching: A use case :-)

from: https://chenli.ics.uci.edu/

• Set Similarity Function

– 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑋, 𝑌 = |,∩.|
|,∪.|

– 𝐶𝑜𝑠𝑖𝑛𝑒 𝑋,𝑌 = |,∩.|
, |.|

– 𝐷𝑖𝑐𝑒 𝑋, 𝑌 = 7|,∩.|
, 8|.|

Set Similarity Functions

X = {A,B,C,D,E}
Y = {B,C,D,E,F}

4/6 = 0.67

4/5 = 0.8

8/10 = 0.8

Problem Definition

• Input:

– A collection of sets R

– A set similarity function Sim

– A similarity threshold δ

• Output

– All pairs 𝑋, 𝑌 ∈ 𝑅×𝑅	such that 𝑆𝑖𝑚(𝑋, 𝑌) ≥ 𝛿

An Example

• Input:

– R

– Sim = Jaccard Similarity

– δ = 0.73

• Output

– Jaccard(X1, X5) = 0.82 ≥ δ

• For Web search engines:

– Perform focused crawling

– Increase the quality and diversity of query results

– Identify spams

• For Web mining:

– Perform document clustering

– Find replicate Web collections

– Detect plagiarism

SPAM TEMPLATE

Sir/Madam,
We happily announce to you the draw of the EURO
MILLIONS SPANISH LOTTERY INTERNATIONAL
WINNINGS PROGRAM PROMOTIONS held on the
27TH MARCH 2008 in SPAIN. Your company or your
personal e-mail address attached to ticket number 653-
908-321-675 with serial main number
<NUMBER> drew lucky star winning numbers
<NUMBER> which consequently won in the 2ND
category, you have therefore been approved for a lump
sum pay out of 960.000.00 Euros. (NINE HUNDRED
AND SIXTY THOUSAND EUROS).
CONGRATULATIONS!!!

Sincerely yours,
<NAME>
<AFFILIATION>

Applications

Q. What are the advantages of RAID5 over RAID4?
A. 1. Several write requests could be processed in
parallel, since the bottleneck of a unique check disk has
been eliminated. 2. Read requests have a higher level
of parallelism. Since the data is distributed over all
disks, read requests involve all disks, whereas in
systems with a dedicated check disk the check disk
never participates in read.

Q. What are the advantages of RAID5 over RAID4?
A. 1. Several write requests could be processed in
parallel, since the bottleneck of a single check disk has
been eliminated. 2. Read requests have a higher level
of parallelism on RAID5. Since the data is distributed
over all disks, read requests involve all disks, whereas
in systems with a check disk the check disk never
participates in read.

• The above similarity functions can be equivalently converted to overlap

• Overlap:

• Jaccard:

• We can only consider the overlap size, as others can be transformed to the
overlap similarity.

Set Similarity Functions

𝑂 𝑋, 𝑌 = |𝑋 ∩ 𝑌|

𝐽 𝑋, 𝑌 =
|𝑋 ∩ 𝑌|
|𝑋 ∪ 𝑌|

≥ 𝜃 ↔ 					𝑂 𝑋, 𝑌 ≥
𝜃

1 + 𝜃
𝑋 + 𝑌 = 𝑡

Example

• Overlap threshold t = 3

• Result (RID pairs): {(1,3), (3,4), (3,5)}

RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux

Naïve Solutions

• Enumerate all string pairs

• Verify whether the strings in the pair are similar

Naïve Algorithm

RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux

overlap of (i, j) i=1 2 3 4 5
j=1 2 3 2 2

2 2 2 2
3 3 5
4 2

t = 3

Result:
(3, 1)
(4, 3)
(5, 4)

need to compare all O(n2) pairs !!

Framework

l for each Sj ∈ S
• Candidates = φ
• Candidates = getCandidates(Sj)
• Verify(Sj, Candidates)

Verify(x, {y1, y2, …})
for each yi

if overlap(x, yi) ≥ t
output(<x, yi>)

end

l Algorithms differ in getCandidates()
• naïve alg: return {Si | i < j}

Not-so-naïve Algorithm

• Observation: (*, 6) should not been compared
– If x and y have no common token, they won’t be in the result

• Idea: Use inverted index to consider promising candidate pairs only

19/9/18

RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux
6 Harry Potter and the Sorcerer's Stone

Index-Based Algorithms

token record_id

A w x y
B x z …
C y z …

• Index-based Algorithm

Record Set Index Construction

Candidate Generation

Verification Result Pairs

<w,x>
<w,y>
<x,y>
<x,z>

…

inverted lists

Inverted Index

• Conceptually, an inverted index has an inverted list for each token
to be indexed from the document collection

– An inverted list is just an sorted array of document identifiers (in our case,
RIDs) such that the token appears in the corresponding document

database 1, 2, 3, 4,

stone 6
… …

RID Name
1 Database System Concepts
… … … …
6 Harry Potter and the Sorcerer's Stone

Probe Count

RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux

token Inverted list
Database {1, 2, 3, 4}
System {1, 3, 5}
Concepts {1, 2, 3, 4, 5}
Techniques {2, 5}
Programming {3, 4, 5}
Oracle {3, 5}
Linux {3, 5}
Illustrated {4}

Probe Count

1. Consider the terms in the current record and retrieve their inverted lists
through the index

2. Merge these RID-lists

3. Repeat step 1 & 2 for every record

RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux

term RID-list
Database {1, 2, 3, 4}
System {1, 3, 5}
Concepts {1, 2, 3, 4, 5}
Techniques {2, 5}
Programming {3, 4, 5}
Oracle {3, 5}
Linux {3, 5}
Illustrated {4}

è {1, 2, 3, 4, 5}

Note that RIDs in the inverted list are sorted

1 needs to be compared
with {2, 3, 4, 5}

Probe Count

1. Consider each term, t, in the current record and retrieve their inverted
lists through the index

2. Count Filtering: Merge and filter these RID-lists

l prune those whose count ≤ t
3. Repeat steps 1 & 2 for every record

RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux

term RID-list
Database {1, 2, 3, 4}
System {1, 3, 5}
Concepts {1, 2, 3, 4, 5}
Techniques {2, 5}
Programming {3, 4, 5}
Oracle {3, 5}
Linux {3, 5}
Illustrated {4}

{1/3, 2/2, 3/3, 4/2, 5/2}

RID / count. e.g., overlap(1,2)=2

Note that RIDs in the inverted list are sorted

Framework

l for each Sj ∈ S
• Candidates = φ
• Candidates = getCandidates(Si)
• Verify(Sj, Candidates)

l Algorithms differ in getCandidates()
• naïve alg: return {Si | i < j}
• index-based alg: return {Si | i < j ∧ Si ∩ Sj ≠ φ}

// use inverted indexes

Problems

• Still too many comparisons

– tokens that appears in many documents not only results in large inverted
lists, but also slow down the computation

19/9/18

DB Training - Similarity Join 23

RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux
6 Database of Respiratory Diseases

Prefix Filtering

• Establish an upper bound of the overlap between two sets by looking at only
part of them.

Player 1

Player 2

what’s the maximum possible number of cards held by both players
(denomination not considered) ?

sorted

sorted

Prefix Filtering

• Establish an upper bound of the overlap between two sets by looking at only
part of them.

Player 1

Player 2

what’s the maximum possible number of cards held by both players
(denomination not considered) ?

sorted

sorted

Prefix Filter

A B

• Sort the tokens by a global ordering
– increasing order of frequency

• Index the first few tokens (prefix) for each record

• Example:
– suppose sim(x,y) = O(x, y) >= t = 4

– x =

– y =

• Must share at least one token in prefix to be a candidate pair

C D
uboundO(x,y) = 3 < 4

prefix

sorted

sorted

E F GC D E

E F G

C D E

A B EE F G

Prefix Filter

• For x (or y)

– O(x,y) >= t à prefix length = |x| - (t – 1)

– J(x,y) >= δ à O(x,y) >= δ |x| à prefix length = ⎣ (1- δ) |x| + 1⎦

• Example: suppose sim(x,y) = J(x,y) >= δ = 0.8

– w = {C, D, E, F}

– x = {B, C, D, E, F}

– y = {A, B, C, D, F}

– z = {G, A, B, E, F}

Candidate Pairs
<w,x>, <x,y>, <y,z>

Results
<w,x>

Prefix Filtering for Overlap

• Constraint: Overlap(S1, S2) ≥ t

• Pre-requisite
– All sets sorted in a global order

– Usually the increasing frequency order ç facilitates the join

• Preprocessing
– Set S à prefix(S), s.t., |prefix(S)| = |S| - (t – 1)

• Filter
– If prefix(S1) ∩ prefix(S2) = φ, then Overlap(S1, S2) < t

– i.e., (S1, S2) can be filtered

• Refine: verify the survived pairs

Framework

l for each Sj ∈ S
• Candidates = φ
• Candidates = getCandidates(Si)
• Verify(Sj, Candidates)

l Algorithms differ in getCandidates()
• naïve alg: return {Si | i < j}
• index-based alg: return {Si | i < j ∧ Si ∩ Sj ≠ φ} // use

inverted index
• prefix-filtering-base alg: return {Si | i < j ∧

prefix(Si) ∩ prefix(Sj) ≠ φ} using inverted index on
prefix set

Probe Count
RID Name
1 Database System Concepts
2 Database Concepts Techniques
3 Database System Programming Concepts Oracle Linux
4 Database Programming Concepts Illustrated
5 System Programming Concepts Techniques Oracle Linux

token Inverted list df idf Order
Database {1, 2, 3, 4} 4 1/4 7
System {1, 3, 5} 3 1/3 6
Concepts {1, 2, 3, 4, 5} 5 1/5 8
Techniques {2, 5} 2 1/2 4
Programming {3, 4, 5} 3 1/3 5
Oracle {3, 5} 2 1/2 3
Linux {3, 5} 2 1/2 2
Illustrated {4} 1 1/1 1

Probe Count

token Inverted list
System {1}

Order: Illustrated, Linux, Oracle, Techniques, Programming, System, Database, Concepts

t=3 è prefix-len = |S| - 2
token Inverted list
System {1}
Techniques {2}

j=1 j=2

token Inverted list
System {1,3}
Techniques {2}
Linux {3}
Oracle {3}
Programming {3}

j=3

RID Name
1 System Database Concepts
2 Techniques Database Concepts
3 Linux Oracle Programming System Database Concepts
4 Illustrated Programming Database Concepts
5 Linux Oracle Techniques Programming System Concepts

Probe Count
RID Name
1 System Database Concepts
2 Techniques Database Concepts
3 Linux Oracle Programming System Database Concepts
4 Illustrated Programming Database Concepts
5 Linux Oracle Techniques Programming System Concepts

t=3 è prefix-len = |S| - 2

token Inverted list
System {1,3}
Techniques {2}
Linux {3}
Oracle {3}
Programming {3, 4}
Illustrated {4}

j=4
token Inverted list
System {1,3}
Techniques {2, 5}
Linux {3, 5}
Oracle {3, 5}
Programming {3, 4}
Illustrated {4}

j=5

token Inverted list
System {1,3}
Techniques {2}
Linux {3}
Oracle {3}
Programming {3}

j=3

Framework

l for each Sj ∈ S
• Candidates = φ
• Candidates = getCandidates(Si)
• Verify(Sj, Candidates)

l getCandidates()
• prefix-filtering-base algorithm:

• Return {Si | i < j ∧ prefix(Si) ∩ prefix(Sj) ≠ φ}
• Using inverted lists

Supporting two datasets

l Join R, S
l Generate prefix sets for R and S
l Build inverted lists for prefix sets of R
l for each Sj ∈ S

• Candidates = φ
• Candidates = getCandidates(Si)
• Verify(Sj, Candidates)

l Algorithms differ in getCandidates()
• prefix-filtering-base algorithm:

• Return {Si | prefix(Si) ∩ prefix(Rj) ≠ φ}
• Using inverted lists

Pruning Techniques for Jaccard Similarity

Positional Filter within Prefix

• Index both tokens and their positions

Position

– x =

– y =

• uboundO(x,y) = px∩ py + min(|x| - |px |, |y| - | py |) px=B

• lbound x∪y = px∪ py + max(|x| - | px |, |y| - | py |) py =A B

1 2 3 4 5

B C D E F

A B C D F

8.0
6
4 ubound),(=<=

∪

∩
= δ

yx
yx

yxJ

ubound O(x,y) = 1 + min(4, 3) = 4

1 2

lbound |x∪y| = 2 + max(4, 3) = 6

• probe tokens in suffix, and compare their positions
• suppose sim(x,y) = J(x,y) >= δ = 0.8
• |x| = |y| = 18, |prefix| =⎣ (1- δ)*x+1⎦ = ⎣(1-0.8)*18+1⎦= 4 why?
• O(x,y) >=⎡|x∪y|* δ⎤= ⎡ 19*0.8 ⎤= 16 why?

• x =

• y =

• uboundO(x,y) = 3 +4 +1 +7

= 15 < 16

Positional Filter within Suffix

A B D E

A C D E

Q

Q

prefix suffix

binary search

Positional Filter within Suffix

A B C D

• Divide and Conquer

– ubounddep=1 =

– ubounddep=2 =

– ubounddep=3 =

• probe suffix recursively, until either candidate pair is
pruned, or reach max-depth

A B C D

12 23 3 33

prefix suffix

4 + 6 + 1 + 7
4 + 3 + 1 + 1 + 1 + 3 + 1 + 3
4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= 18
= 17

= 15

Effect of Filters

• sim(x,y) = J(x,y) >= δ = 0.8

– u = {C, D, E, F}
– v = {B, C, D, E, F}
– w = {A, B, C, D, F}
– x = {G, A, B, E, F}
– y = {A, B, D, E, F}
– z = {G, A, C, D, E, F}

• after prefix filter:
– <u,v>, <v,w>, <v,y>, <w,x>, <w,y>, <w,z>, <x,y>, <x,z>, <y,z>

• after prefix position filter:
– <u,v>, <w,y>, <w,z>, <x,z>, <y,z>

• after suffix position + (max-depth = 1):
– <u,v>, <x,z>, <y,z>

• real result:
– <u,v>

Similarity Join for Jaccard

• Generate tokens

• Compute frequency of token

• Filter: Generate Candidate Pairs

– Using inverted lists

– Using prefix sets

– Using prefix sets with prefix-position pruning

– Using suffix pruning

• Verify Candidate Pairs

A Partition-based Method for Set Similarity Join

Prefix Filter Framework

RID

1

2

3

4

The list of all elements in order (universe)

Prefix Filter: Sim(X, Y) ≥ 𝛿	only	if	𝑃𝑟𝑒𝑓𝑖𝑥(𝑋) ∩ 𝑃𝑟𝑒𝑓𝑖𝑥(𝑌) ≠ ∅
Prefixes Suffixes

Prefix Filter Framework

the pruning power is limited!

two dissimilar sets are a candidate
if they share 1 element in their prefixes

Partition-based Framework

RID

1

2

3

4

The list of all elements in order (universe)

Sim(X, Y) ≥ 𝛿	only	if	𝑆𝑢𝑏𝑠𝑒𝑡𝑠(𝑋) ∩ 𝑆𝑢𝑏𝑠𝑒𝑡𝑠(𝑌) ≠ ∅
Subsets Subsets Subsets

Partition-based Framework

What is the minimum number of partitions
that can guarantee completeness?

The Number of Partitions

Intuition:
1: Deduce an overlap lower bound based on the
similarity function and the threshold

𝐒𝐢𝐦(𝑿,𝒀) ≥ 𝜹		 → 			 𝑿 ∩ 𝒀 ≥ 𝒎

2: Partition them into 𝑚+ 1	subsets

Then two similar sets must share at least 1 subset

Element Skew Problem

• Some subsets have limited number of elements
– The ‘empty’ subsets yield quadratic candidates

• Solution: Add some flexibility
– Skip the subsets with less elements

– Select more signatures from subsets with more elements to
guarantee completeness

Signatures: 1-deletion neighborhoods

• Given a non-empty set Z, its 1-deletion neighborhoods
are its subsets with size of |Z| − 1, denote as del(Z)

Z

del(Z)

Using 1-deletion neighborhood

U

V

𝑼 ≠ 𝑽, 𝑽 ∉ 𝒅𝒆𝒍 𝑼 , 𝑼 ∉ 𝒅𝒆𝒍(𝑽) → 𝑼	∆	𝑽 ≥ 𝟐

del(U)

del(V)
𝑼	∆	𝑽 = 𝟐

,

,

Skip x subsets & select 1-deletion neighborhoods from another x subsets

guaranteed completeness !!

0: skip the ith subset
1: only use the ith subset as signature
2: use both the ith subset and 1-deletions

Optimal Allocation Strategy

Constraint: ∑ 𝑣ij8k
ilk = 𝑚 + 1

Object: minimize ∑ 𝑐mi
ij8k

ilk

vi=

𝑐ni = 0														𝑐ki : 𝑡ℎ𝑒	#	𝑜𝑓	𝑠𝑒𝑡𝑠	𝑠ℎ𝑎𝑟𝑖𝑛𝑔	𝑡ℎ𝑒	𝑖𝑡ℎ	𝑠𝑢𝑏𝑠𝑒𝑡
𝑐7i : the # of sets sharing (subset or 1-deletion) signatures

Time Complexity

• Dynamic Programming

– Optimal: # of candidates

– O(s2) time complexity as m = O(s) where s is the set size

• Each set is partitioned 𝑠 − 𝛿𝑠 + 1 = 𝑂(𝑠) times

• Allocation time complexity is O(s3) for each set

• Next we reduce it to O(s log s)

Greedy Method for Allocation Selection

• Heap-based Method

• 2-approximation algorithm

• Time complexity: O(s2) à O(s log s)

Adaptive Grouping

s
s-1
s-2

𝜹 s+1

𝜹 s

. . .

Adaptive Grouping

• The k-th group includes all the sets with size within [vwxy
z{|}

, vwxy
z{
)

where 𝛼 ∈ [k
7
, 1]

• The size range becomes more and more ‘broader’

• The partition times is bounded by 𝑙𝑜𝑔z𝛿 + 1 = 𝑂(1) for any set

• The time complexity is 𝑂(𝑠	𝑙𝑜𝑔	𝑠	𝑙𝑜𝑔z𝛿) = 𝑂(𝑠	𝑙𝑜𝑔	𝑠)

Prefix Filtering for Edit Distance

q-gram Based Filtering

• Naïve algorithm

– compute edit distance: O(n2) time complexity, where n is string length

– do this for N2/2 pairs, where N is the number of strings

• q-gram based filtering

– q-gram is a substring of length q

– filter-and-refine

– length filtering

• | len(s)-len(t) | ≤ τ

Matching q-grams

• count filtering

– at least LB(s, t) common q-grams

– LB(s, t) = max(|s|, |t|) - q + 1 – q*τ

• Bottleneck: generating candidate pairs which
share at least LB(s ,t) matching q-grams

New_Zealand
New
ew_
w_Z
_Ze
Zea
eal
ala
lan
and

Prefix Length

• Edit distance:

Gx and Gy are the gram sets of x and y respectively

Prefix length = |x|+1-q-(O-1) =

τ≤),(yxed

qqyxGyGxO *1|)||,max(|),(τ−−+≥→

1* +qτ

Similarity-Join Algorithm for ED

Cand-1 Generation

Verification

Indexed Record Set

Result Pairs

Prefix Filter

Count Filter

Edit Distance

Cand-2 Generation

τ≤),(yxed qqyxGyGxO *1|)||,max(|),(τ−−+≥→

φ≠∩ GyGx

Prefix Filter

• Prefix Filter

– sort q-grams by global ordering, e.g., frequency

– Qs =

– Qt =

qa qb

qx qy

q* τ +1 |s|+1-q-q*τ-1

|t|+1-q-q*τ-1

Example – All-Pairs-Ed

• τ =1, q=2

– a=‘Austria’

– b=‘Australia’

– c=‘Australiana’

– d=‘New_Zealand’

– e=‘New_Sealand’

• after prefix filter: <a,b> <b,c> <d,e>

• after count filter: <b,c> <d,e>

• after edit distance verification: <d,e>

prefix_len = q*τ +1 = 3

Qa={ri, Au, us, …}
Qb={ra, li, Au, …}
Qc={na, ra, li, …}
Qd={_Z, Ze, Ne, …}
Qe={_S, Se, Ne, …}

Edit-Distance Join (Ed-Join)

• Idea

– mismatching q-grams provide useful information

Location-Based Filtering

• Idea: reduce prefix length

• Example, τ =1, q=2

– s=‘Austria’

– t=‘Australia’

– Qs=

– Qt=

ri Au us

ra li Au

5 1

5 7

pruned

location

location

Find Minimum Prefix Length

• Given a prefix set of q-grams, find the minimum prefix length that
needs at least τ + 1 edit operations to destroy them

• Qs =

• Example

– s=‘Austria’

– t=‘Australia’

– ps = ri Au us (5 1 2)

– Pt = ra li Au (5 7 1)

à ri Au

à ra li

qa qb

Minimum

Algorithms

• Find the minimum prefix length of p

• i ß τ + 1; end ß q · τ + 1;
• for i <= end do
• err ß MinEditErrors(p[1 . .i]);
• if err > τ then
• break;
• i ß i+1;

19/9/18

τ q · τ + 1

p

Algorithms

• Find Minimum Edit Errors of a set of q-grams

• Sort q-grams in Q in increasing order of locations;
• cnt ß 0; loc ß 0;
• for i = 1 to |Q| do
• if Q[i].loc > loc then
• cnt ß cnt + 1;
• loc ß Q[i].loc + q − 1;
• return cnt

– ps = ri Au us (5 1 2) à 1 2 5 à 2

– Pt = ra li Au (5 7 1) à 1 5 7 à 3

Improved Algorithms

• Find the minimum prefix length

• left ß τ + 1; right ß q · τ + 1;
• while left < right do
• mid ß (left + right)/2;
• err ß MinEditErrors(x[1 . .mid]);
• if err <= τ then left ß mid + 1;
• else right ß mid;
• return left

19/9/18

τ q · τ + 1

p

Pivotal Prefix Filter

q-gram

• q-gram is the substring of length q

yo
ouut

tb
beecco

om

youtbecom

2-grams

q-gram

yo
ouut

td
deecco

om

youtdecom
• 1 edit operation destroies at most q grams.

• τ edit operations destroy at most qτ q-grams.
• if r and s have more than qτ mismatch q-grams, ED(r, s)>τ

Prefix Filter

Sort all q-grams by global ordering, such as alphabetic order

Prefix(s)

The sorted q-grams

Prefix(r)

Prefix size: qτ+1

Prefix Filter:
If prefix(r) ∩ prefix(s) = ϕ, ED(r,s) > τ

d

d

Disjoint q-gram

• One edit operation destroies at most 1 disjoint gram.

• τ edit operations destroy at most τ disjoint q-grams.

• if r and s have more than τ mismatch disjoint q-
grams, ED(r, s)> τ

yout ecom

e
yo

ut
om

Pivotal Prefix Filter

Sort all q-grams by global ordering, such as alphabetical order

Prefix(s)

Prefix(r)

Pivot(•) is the pivotal prefix
|Pivot(•)|= τ+1 and the q-grams in Pivot(•) are disjoint

Pivot(r)
Pivot(s)

If Pivot(s) ∩ Prefix(r) = ϕ and
Pivot(r) ∩ Prefix(s) = ϕ, ED(r,s) > τ

Summary

• Prefix Filtering for Set Similarity Join

• Position Filter

• Suffix Filter

• Partition-based Framework

• 1-Deletion Neighborhood

• Optimal Allocation Algorithm

• 2-approximation Greedy Algorithm

• Adaptive Grouping Mechanism

• Prefix Filtering for Edit Distance

• Pivotal Prefix Filter

