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We will study a new structure called the R-tree, which can be thought of

as a multi-dimensional extension of the B-tree. The R-tree supports

e�ciently a variety of queries (as we will find out later in the course), and

is implemented in numerous database systems. Our discussion in this

lecture will focus on orthogonal range reporting.
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2D Orthogonal Range Reporting (Window Query)

Let S be a set of points in R2. Given an axis-parallel rectangle q, a range
query returns all the points of S that are covered by q, namely, S \ q.

The definition can be extended to any dimensionality in a straightforward
manner.

Example
a

b
c

d
e

f
g

hi
j

k
l

The result is {d , e, g} for the
shaded rectangle q.
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Applications

Find all restaurants in the Manhattan area.

Find all professors whose ages are in [20, 40] and their annual
salaries are in [200k , 300k].

...
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R-Tree

Each leaf node has between 0.4B and B data points, where B � 3
is a parameter. The only exception applies when the leaf is the root,
in which case it is allowed to have between 1 and B points. All the
leaf nodes are at the same level.

Each internal node has between 0.4B and B child nodes, except
when the node is the root, in which case it needs to have at least 2
child nodes.

In practice, for a disk-resident R-tree, the value of B depends on the

block size of the disk so that each node is stored in a block.

INFS4205/7205, Uni of Queensland The R-Tree



R-Tree

For any node u, denote by Su the set of points in the subtree of u.
Consider now u to be an internal node with child nodes v

1

, ..., vf
(f  B). For each vi (i  f ), u stores the minimum bounding rectangle
(MBR) of Svi , denoted as MBR(vi ).

The above is an MBR on 7 points.
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Example

Assume B = 3.
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Answering a Range Query

Let q be the search region of a range query. Below we give the
pseudo-code of the query algorithm, which is invoked as
range-query(root, q), where root is the root of the tree.

Algorithm range-query(u, r)

1. if u is a leaf then
2. report all points stored at u that are covered by r
3. else

4. for each child v of u do

5. if MBR(v) intersects r then

6. range-query(v , r)
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Example

Nodes u
1

, u
2

, u
3

, u
5

, u
6

are accessed to answer the query with the shaded
search region.
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R-Tree Construction Can Be “Arbitrary”

Have you wondered why the leaf nodes are created in this way? For
example, is it absolutely necessary to group i and l into a leaf node?

a
b c

d
e

fg
h

i j

k
l

The R-tree definition has no formal constraint whatsoever on the

grouping of data into nodes (unlike B-trees), but some R-trees have

poorer performance than others; see the next slide.
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R-Tree Construction Can Be “Arbitrary”

Is this a good R-tree?
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Implication?
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R-Tree Construction: A Common Principle

In general, the construction algorithm of the R-tree aims at minimizing
the perimeter sum of all the MBRs.

For example, the left tree has a smaller perimeter sum than the right one.
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R-Tree Construction: A Common Principle

Why not minimize the area?

A rectangle with a smaller perimeter usually has a smaller area, but not
the vice versa. Later in the course, we will see an analysis that formally
validates this intuition.

The above two rectangles have the same area.
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Insertion

Let p be the point being inserted. The pseudo-code below should is
invoked as insert(root, p), where root is the root of the tree.

Algorithm insert(u, p)

1. if u is a leaf node then

2. add p to u
3. if u overflows then

/* namely, u has B + 1 points */
4. handle-overflow(u)
5. else

6. v  choose-subtree(u, p)
/* which subtree under u should we insert p into? */

7. insert(v , p)
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Choose-Subtree

Which MBR would you insert p into?

p

Algorithm choose-subtree(u, p)

1. return the child whose MBR requires the
minimum increase in perimeter to cover p.
break ties by favoring the smallest MBR.
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Overflow Handling

Algorithm handle-overflow(u)

1. split(u) into u and u0

2. if u is the root then
3. create a new root with u and u0 as its child nodes
4. else

5. w  the parent of u
6. update MBR(u) in w
7. add u0 as a child of w
8. if w overflows then
9. handle-overflow(w)
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Splitting a Leaf

Essentially we are dealing with the following problem:

Let S be a set of B + 1 points. Divide S into two disjoint sets S
1

and S
2

to minimize the perimeter sum of MBR(S
1

) and MBR(S
2

),
subject to the condition that |S

1

| � 0.4B and |S
2

| � 0.4B .

Example

The left split is better:
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b
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d

e

f

g

h
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j

k a

b

c

d

e

f

g

h

i

j

k

S
1

= {a, b, c , d , e} S
1

= {a, d , e, g , j}
S
2

= {f , g , h, i , j , k} S
2

= {b, c , f , h, i , k}
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Splitting a Leaf Node

Let m = |S |. In 2D space, the leaf-split problem can be solved in O(m5)
time, noticing that each MBR is determined by 4 points.

This, however, is too expensive. In practice, heuristics are used to
accelerate the process, but there is no guarantee that we can find the
best split — typical “trading quality for e�ciency”.

The next slide explains how.
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Splitting a Leaf Node

Algorithm split(u)

1. m = the number of points in u
2. sort the points of u on x-dimension
3. for i = d0.4Be to m � d0.4Be
4. S

1

 the set of the first i points in the list
5. S

2

 the set of the other i points in the list
6. calculate the perimeter sum of MBR(S

1

) and MBR(S
2

); record it
if this is the best split so far

7. Repeat Lines 2-6 with respect to y-dimension
8. return the best split found
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Example
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There are 3 possible splits along the x-dimension. Remember that each

node must have at least 0.4B = 4 points (here B = 10).
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Think:
How to implement the algorithm in O(n log n) time?

Find a counter-example where the algorithm does not give
an optimal split.

We have discussed only the 2D case. How to extend the
algorithm to dimensionality d � 3?
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Splitting an Internal Node

Let S be a set of B+1 rectangles. Divide S into two disjoint sets S
1

and S
2

to minimize the perimeter sum of MBR(S
1

) and MBR(S
2

),
subject to the condition that |S

1

| � 0.4B and |S
2

| � 0.4B .

Once again, we will settle for an algorithm that is fast but does not

always return an optimal split.
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Splitting an Internal Node

Algorithm split(u)
/* u is an internal node */

1. m = the number of points in u
2. sort the rectangles in u by their left boundaries on the x-dimension
3. for i = d0.4Be to m � d0.4Be
4. S

1

 the set of the first i rectangles in the list
5. S

2

 the set of the other i rectangles in the list
6. calculate the perimeter sum of MBR(S

1

) and MBR(S
2

); record it
if this is the best split so far

7. Repeat Lines 2-6 with respect to the right boundaries on the x-dimension
8. Repeat Lines 2-7 w.r.t. the y-dimension
9. return the best split found
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Example
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There are 3 possible splits w.r.t. the left boundaries on the x-dimension.

Remember that each node must have at least 0.4B = 4 points (here

B = 10).
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Insertion Example

Assume that we want to insert the white point m. By applying
choose-subtree twice, we reach the leaf node u

6

that should
accommodate m. The node overflows after incorporating m (recall
B = 3).
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Insertion Example

Node u
6

splits, generating u
9

. Adding u
9

as a child of u
3

causes u
3

to
overflow.
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Insertion Example

Node u
3

splits, generating u
10

. The insertion finishes after adding u
10

as
a child of the root.
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In this lecture, we will study a new problem called nearest neighbor

search, which plays an important role in a great variety of applications.

Our discussion will also introduce two methods: the branch-and-bound

and the best first techniques, both of which are generic algorithmic

paradigms useful in many scenarios.
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Nearest Neighbor Search

Let P be a set of d-dimensional points in Rd . The (Euclidean)
nearest neighbor (NN) of a query point q 2 Rd is the point p 2 P
that has the smallest Euclidean distance to q.

Given a query point q, an NN query returns the NN(s) of q. Note
that multiple points can have the smallest distance to q, in which
case they are all nearest neighbors and should be reported.

Note:

The Euclidean distance between p and q is the length of the line
segment connecting p and q.

We denote the Euclidean distance between p and q as kp, qk.
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Example

20 4 6 8 10
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p
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q

The NN of q is p
7

.

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Applications

“Find the McDonald that is nearest to me”.

“Find the customer profile in the database that is most similar to
the profile of the new customer”.

“Retrieve the image from the database that is most similar to the
one given by the user”.

...
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If no pre-processing is allowed on P , we must scan the entire P to answer
a NN query. Query e�ciency can be significantly improved by using an
R-tree on P .
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Mindist

Given a point q and an axis-parallel rectangle r , the mindist of q
and r , denoted as mindist(q, r), equals minp2r kq, pk.

r

p1

p2

p3

In the above example, with respect to r , the mindists of p
1

and p
2

are
equal to the lengths of the two segments shown, while that of p

3

is 0.

Think: how to compute mindist(q, r) in O(d) time?
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Algorithm 1: Branch-and-bound (BaB)

BaB performs a depth-first traversal of the R-tree but uses mindists to (i)
prioritize the nodes for accessing, and (ii) prune the nodes that cannot
contain the final answer.

Let us illustrate the algorithm from an example. To find the NN of q (as
shown in the figure), BaB starts from the root of the R-tree, where it
sees two MBRs r

6

and r
7

. The mindists from q to r
6

and r
7

are 0 and 1,
respectively. Since mindist(q, r

6

) is smaller, algorithm visits u
6

next.
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Branch-and-bound (BaB)

At node u
6

, BaB chooses to descend into MBR r
1

, because its mindist
from q is smaller than that of r

2

.
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Branch-and-bound (BaB)

Now the algorithm is at the leaf node u
1

. It simply computes the
distance from q to each data point in u

1

, and remembers the nearest
one, i.e., p

3

. This is the current NN of q found so far.
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Branch-and-bound (BaB)

Now the algorithm backtracks to node u
6

, where the subtree of MBR r
2

has not been explored yet. However, the fact that the mindist(q, r
2

) = 4
is greater than the distance 2

p
2 from q to the current NN p

3

rules out
the possibility that the NN of q can be inside r

2

. Therefore, the subtree
of r

2

can be pruned.
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Branch-and-bound (BaB)

Now we backtrack to the root, where MBR r
7

has not been processed
yet. The mindist 1 between q and r

7

is smaller than kq, p
3

k = 2
p
2.

Therefore, the child u
7

of r
7

must be visited.
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Branch-and-bound (BaB)

At node u
7

, the algorithm accesses the child node u
3

of MBR r
3

which
has the smallest mindist to q among r

3

, r
4

, r
5

.
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Branch-and-bound (BaB)

At node u
3

, BaB finds p
7

which replaces p
3

as its current NN.

Then, it backtracks to node u
7

and prunes r
4

and r
5

. After that, the
algorithm backtracks one more level to the root. As all the MBRs of the
root have been processed, it terminates with p

7

as the final result.
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Pseudocode of BaB

algorithm BaB(u, q)
/* u is the node being accessed, q is the query point;

pbest is a global variable that keeps the NN found so far;
the algorithm should be invoked by setting u to the root */

1. if u is a leaf node then

2. if the NN of q in u is closer to q than pbest then
3. pbest = the NN of q in u
4. else

5. sort the MBRs in u in ascending order of their mindists to q
/* let r

1

, ..., rf be the sorted order */
6. for i = 1 to f
7. if mindist(q, ri ) < kq, pbestk then

8. Bab(ui , q)
/* ui is child node of ri */

Note: the above description assumes that q has only one NN. It is easy

to extend it to the scenario where multiple points have the smallest

distance to q (think: how?)
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Algorithm 2: Best First (BF)

We have seen that BaB accessed u
8

, u
6

, u
1

, u
7

, u
3

. Next, we will learn a
better algorithm called best first (BF) that can avoid accessing u

1

.
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Algorithm 2: Best First (BF)

Again, we illustrate the BF algorithm with an example. As with BaB, BF
also starts from the root. At any moment, the algorithm keeps in
memory all the intermediate MBRs that have been seen but not yet
accessed in a sorted list H, using their mindists to q as the sorting keys.
In our example, so far we have seen only two MBRs r

6

, r
7

, so H has two
entries {(r

6

, 0), (r
7

, 1)}.
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Best First (BF)

Each iteration of BF removes from H the MBR with the smallest mindist,
and accesses its child node. Continuing the example, BF removes r

6

from
H, visits its child node u

6

, and adds to H the MBRs r
1

, r
2

there. At this
time, H = {(r

7

, 1), (r
1

, 2), (r
2

, 4)}.
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Best First (BF)

Similarly, as r
7

has the smallest key in H, BF accesses its child node u
7

,
after which H = {(r

3

, 1), (r
1

, 2), (r
2

, 4), (r
4

, 5), (r
5

,
p
53)}.
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Best First (BF)

Next, the algorithm visits leaf node u
3

, where p
7

is taken as the current
NN. Then, BF terminates because kq, p

7

k = 1 is smaller than the lowest
mindist of the MBRs in H = {(r

1

, 2), (r
2

, 4), (r
4

, 5), (r
5

,
p
53)}, implying

that p
7

must be the final NN.
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Pseudocode of BF

algorithm BF(q)
/* in the following H is a sorted list where each entry is an MBR

whose sorting key in H is its mindist to q;
pbest is a global variable that keeps the NN found so far. */

1. insert the MBR of the root in H
2. while kq, pbestk is greater than the smallest mindist in H

/* if pbest = ;, kq, pbestk = 1 */
3. remove from H the MBR r with the smallest mindist
4. access the child node u of r
5. if u is an intermediate node then

6. insert all the MBRs in u into H
7. else

8. if the NN of q in u is closer to q than pbest then
9. pbest = the NN of q in u

Note: the above description assumes that q has only one NN. It is easy

to extend it to the scenario where multiple points have the smallest

distance to q (think: how?)
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Think: what data structure would you use to manage H?
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We have seen from the above examples that BF accesses less nodes
than BaB. It is natural to wonder: can BF be further improved?
The answer turns out to be no. As will proved next, BF is optimal,
i.e., it is guaranteed to access the least number of nodes among all
the algorithms that use the same R-tree to solve a given NN query.
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Optimality of BF

Denote by C the circle that centers at q, and has radius kp⇤, qk, where
p⇤ is an arbitrary NN of q. Let S⇤ be all the nodes whose MBRs
intersect C .

It is important to observe that all algorithms must access all the nodes in
S⇤. Assume, for example, that the node with MBR r in the figure below
was not accessed. How could the algorithm assert that no point in r is
closer to q than p⇤?

r

q

p⇤

C
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Optimality of BF

It su�ces to prove that BF accesses only those nodes whose MBRs
intersect C . This can be shown in two steps:

1 BF accesses MBRs in non-descending order of their mindists to q.

Let r
1

and r
2

be two MBRs accessed consecutively. r
2

either
already existed in H when r

1

was visited, or r
2

is an MBR
inside r

1

. In either case, it must hold that
mindist(q, r

2

) � mindist(q, r
1

).

2 Let r be the MBR of a leaf node containing an arbitrary NN of q.
Let r 0 be an MBR that does not intersect C . By the first bullet, r is
visited before r 0. However, when r is found, BF must necessarily
discover p⇤, whose presence prevents the algorithm from accessing
r 0 (Line 2 in Slide 21).
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So far we have assumed that, if multiple data points have the
smallest mindist to q, all of them must be reported.

There is an alternative version of NN search where it su�ces to
report one arbitrary NN in the aforementioned scenario. The BF
algorithm (executed precisely as described in Slide 21) is not opti-
mal in such a case. Can you construct a counter-example?

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Extensions

BF can be adapted to solve more complicated forms of nearest neighbor
search:

Other distance metrics: So far we have assumed that the distance
between two points are computed by Euclidean distance, which is
known as the L

2

norm. In general, the distance between two points
p and q under Lt norm—where t is an arbitrary positive value—is
calculated as:

 
dX

i=1

���p[i ]� q[i ]
���
t
!

1/t

.

The NN problem extends in a straightforward manner to these
distance metrics (and many others).

k nearest neighbor search: Given a query point q, return the data
points with the smallest, 2nd smallest, ..., k-th smallest distances to
q.

Distance browsing: This operation outputs the points of the dataset
P in ascending order of their distances to q.
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Approximate Nearest Neighbor Search in High
Dimensional Space

Dong Deng

Rutgers University





Nearest Neighbor Search

Let P be a set of n d-dimensional points in Rd . Denote the Euclidean
distance between two points p, q 2 Rd by kp, qk.

Recall that:

Given a query point q, a nearest neighbor (NN) query returns all
the points p 2 P such that kp, qk  kp0, qk for 8p0 2 P .

In this class, the dimensionality d cannot be regarded as a constant. The
dependence on d in all the complexities must be made explicit.



The Curse of Dimensionality

Many e�cient nearest neighbor algorithms are known for the case when
the dimensionality d is “low”. However, for all the existing solutions, either
the space or query time is exponential in the dimensionality d .

This phenomenon is called the curse of dimensionality.

One approach to deflate the curse is to trade precision for e�ciency: specif-
ically, how to achieve polynomial (in both d and n) space and query cost
by accepting slightly worse neighbor points.



c-Approximate Nearest Neighbor Search

For c > 1, a c-approximate nearest neighbor (c-ANN) query spec-
ifies a point q. If p⇤ is the NN of q, the query returns an arbitrary
point p 2 P such that kp, qk  c · kp⇤, qk.

p
4

is the NN of q.

p
1

, . . . , p
4

are all 2-ANNs of q.

Any of p
1

, . . . , p
4

is a legal answer to the 2-ANN
query w.r.t. q.

q

p1

p2

p3

p4

2 · kp4, qk



(r , c)-Near Neighbor Search

Given a point q, define B(q, r) as the set of the points in P whose
distances to q are at most r .

For c > 1, the result of an (r , c)-near neighbor query with a point
q is defined as follows:

If there exists a point in B(q, r), the result must be a point
in B(q, c · r).
Otherwise, the result is either empty or a point in B(q, c · r).

For the (r , 2)-near neighbor query with q, the
result can be either empty or any one of p

1

and
p
2

.

The result must be one of p
1

, p
2

and p
3

for the
(2r , 3

2

)-near neighbor query with q.

r

2r

qp1
p2

3r

p3



Reduction from 4-ANN to (r , 2)-Near Neighbor Search

Next we show how to answer a 4-ANN query by solving a sequence of
(r , 2)-near neighbor queries with di↵erent r values.

Remark. Our technique can be extended to reduce a ((1+ ✏) · c)-
ANN query to a sequence of (r , c)-near neighbor queries, for any
value of c > 1 and an arbitrary constant ✏ > 0.

For simplicity, let us make a mild assumption:

All the point coordinates are in an integer domain of range [1,M].
In other words, the data space is [1,M]d .

Thus, the distance between any two distinct points in the data space is
in [1, d

max

], where d
max

=
p
d ·M.



Reduction from 4-ANN to (r , 2)-Near Neighbor Search

In the figure, the radii of the circles are
1, 2, 4, 8 and 16, respectively. Namely,
the radius grows by a factor of 2.

We perform (2i , 2)-near neighbor queries
in ascending order of i , until a query re-
turns a non-empty result.
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p4
p5

p6

p7

q

8

16

4



Reduction from 4-ANN to (r , 2)-Near Neighbor Search

The 4-ANN Query Algorithm

Set r = 1. Repeat the following steps:

Perform an (r , 2)-near neighbor query with q. If a point p is
returned from the query, then return p as a 4-ANN of q.

Otherwise, set r = 2 · r .

Clearly, there can be at most dlog
2

d
max

e iterations.



Lemma: The query algorithm correctly returns a 4-ANN of a query
point q.

Proof. Let p⇤ be the NN of q, p the point returned by the algorithm, and
r⇤ the value of r when the algorithm terminates.

On one hand, since r⇤ is the smallest value of r such that a point in P is
returned, we have r

⇤

2

< kp⇤, qk. Because otherwise, a point would have

been returned when r = r

⇤

2

, which contradicts with the definition of r⇤.
Thus, r⇤ < 2 · kp⇤, qk.
On the other hand, as p is returned from an (r⇤, 2)-near neighbor query,
kp, qk  2 · r⇤.
Combining the above two inequalities, kp, qk < 4 · kp⇤, qk. Therefore, p
is a 4-ANN of q.

⇤



Next we will focus on how to answer (r , 2)-near neighbor queries. In
particular, we will consider only r = 1 (this does not lose generality; why?).

We will learn a new technique called locality sensitive hashing (LSH).



Basic Idea

First, pick a random line `
1

passing through the origin. Then, chop the
line into intervals of width 32. Associate each interval with a unique ID.

Let h
1

: Rd ! N be the hash func-
tion that projects 8p 2 Rd into the
interval with ID h

1

(p) of `
1

. As a re-
sult, each interval essentially is a hash
bucket.

Observe that by h
1

, “nearby” points
are more likely to be hashed into the
same bucket than those “far apart”
points.

A hash function with such “locality
preserving” property is called locality
sensitive.
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(p
1

, p
2

)-Sensitive Family

For p
1

> p
2

, a function family H = {h : Rd ! U} is called
(p

1

, p
2

)-sensitive if for 8h 2 H and any two points u, v 2 Rd , we
have:

if ku, vk1, then the probability Pr [h(u) = h(v)]�p
1

,

if ku, vk>2, then the probability Pr [h(u) = h(v)]p
2

.

There exists a (p
1

, p
2

)-sensitive family such that ⇢ = log 1/p
1

log 1/p
2

 0.5.

For a query point q, the points in B(q, 1) are hashed into the bucket h(q)
with a relatively high probability. While those points that are not in B(q, 2)
are hashed into h(q) with a smaller probability.

Intuitively, the points in the bucket h(q) are more likely in B(q, 2).



False Positive

For a query point q, the points u in the
bucket h(q) with ku, qk > 2 are called
false positives.

Unfortunately, the expected number of
false positives can be as large as p

2

· n.
This seriously a↵ects the query time.
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We remedy this issue by “concatenating” multiple hash functions in H
together.



Concatenating Hash Functions

Continuing the previous example, let
us generate another hash function h

2

in the same way as h
1

.

Consider a hash function g : Rd !
N2 defined by concatenating h

1

and
h
2

, i.e., g(u) = (h
1

(u), h
2

(u)). Each
g(u) corresponds to a (concatenated)
bucket. g(u) = g(v) if and only if

h
1

(u) = h
1

(v) and h
2

(u) = h
2

(v).

As shown in the figure, the number
of false positives for q in the bucket
g(q) = (3, 0) (i.e., the gray region)
has been significantly reduced.
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Concatenating Hash Functions

For an integer k , we define a function family G = {g : Rd ! Uk}, where
each g(u) = (h

1

(u), h
2

(u), · · · , h
k

(u)) consists of k hash functions chosen
independently and uniformly from an (p

1

, p
2

)-sensitive family H.

For any two points u, v 2 Rd , g(u) = g(v) if and only if h
i

(u) = h
i

(v)

for all i = 1, · · · , k . Thus, Pr [g(u) = g(v)] =
Q

k

i=1

Pr [h
i

(u) = h
i

(v)].
Hence:

if ku, vk  1, then Pr [g(u) = g(v)] � pk
1

,

if ku, vk > 2, then Pr [g(u) = g(v)]  pk
2

.

Therefore, the function family G is (pk
1

, pk
2

)-sensitive.

Remark. By a hash function g 2 G, the expected number of
false positives is reduced to pk

2

· n. However, in the meanwhile,
the probability for a point in B(q, 1) being hashed into g(q) also
decreases to as small as pk

1

.



The Repeating Trick

To increase the probability for a near
neighbor being hashed into the same
bucket of q, we repeatedly use di↵er-
ent hash functions from G to construct
di↵erent hash tables.
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The LSH Technique

For an integer L, the LSH constructs L hash tables for P as follows:

Independently and uniformly choose L functions g
1

, g
2

, · · · , g
L

from
the (pk

1

, pk
2

)-sensitive function family G.
For each g

i

, construct a hash table for P by hashing each point
u 2 P into bucket g

i

(u).

The (1, 2)-Near Neighbor Query Algorithm

For a query point q, inspect the L hash buckets g
1

(q), · · · , g
L

(q) by check-
ing each point u therein:

If ku, qk  2, then return u.

Otherwise, if so far in total 3 · L or all the points in the L buckets
have been checked, then terminate and return nothing.



Query Examples

Theoretically speaking, we do need to
construct a su�ciently large number
of hash tables to ensure correctness.
However, in most cases, about 10 hash
tables are enough to answer queries. In
this example, we only need three.
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Correctness

For a fixed query point q, consider the following two events:

E
1

: If there exists a point u 2 B(q, 1), then g
i

(u) = g
i

(q) for some
i 2 {1, 2, · · · , L}.
E
2

: The total number of false positives in the L buckets
g
1

(q), g
2

(q), · · · , g
L

(q) is less than 3 · L.

Lemma: When both E
1

and E
2

hold at the same time, the query
algorithm correctly answers an (1, 2)-near neighbor query with q.



Correctness

Proof. Let |g
i

(q)| be the number points in the bucket g
i

(q). Observe
that the query algorithm examines at most min{P

i

|g
i

(q)|, 3 · L} points.

When
P

i

|g
i

(q)| < 3 · L, by the fact that E
1

holds, if there exists u 2
B(q, 1), then u is in at least one of the L buckets. Thus, u must have
been checked. Hence, a point in B(q, 2) must be returned. On the other
hand, if B(q, 1) = ;, then either reporting a point in B(q, 2) or not is
correct.

When the algorithm has checked 3 · L points, since E
2

holds, there must
be at least one point in B(q, 2). Hence, one such point will be returned.

⇤



Next, we show that:

By setting the values of k and L carefully, both the two events E
1

and E
2

hold at the same time with at least constant probability.

In other words, the query algorithm correctly answers an (1, 2)-near neigh-
bor query with q with at least constant probability.



Before we jump into the technical details, let us first get an idea of the
basic direction to set k and L.

On one hand, as the expected number of false positives in g
i

(q) is pk
2

· n,
its total expected number over all the L buckets is L · pk

2

· n. If we can
make this total expectation  L, then its actual value is not likely to be
much larger than L. As a result, L · pk

2

· n  L ) k � log
1/p

2

n.

On the other hand, since Pr [g
i

(u) = g
i

(q)] � pk
1

for a point u 2 B(q, 1),
the probability of g

i

(u) 6= g
i

(q) for all the L buckets is  (1 � pk
1

)L. We
will show that this probability is no more than a constant when L � 1/pk

1

.
As a result, the probability of at least one g

i

(u) = g
i

(q) among all the L
buckets is � 1� (1� pk

1

)L which is greater than a constant.

Thus, we set k = dlog
1/p

2

ne and L = d
p
n

p

1

e � d n

⇢

p

1

e � d 1

p

k

1

e for ⇢ =
log 1/p

1

log 1/p
2

 0.5.

In what follows, we will prove that both Pr [E
1

] and Pr [E
2

] are greater than
a constant under the above values of k and L.



Preliminary 1: Markov’s Inequality

For a nonnegative random integer variable X and t > 0, we have:

Pr [X � t]  E [x ]

t
.

Proof.

E [X ] =
X

x

x · Pr [X = x ]

�
X

x�t

x · Pr [X = x ]

� t
X

x�t

Pr [X = x ]

= t · Pr [X � t]

⇤



Preliminary 2:

For x � 1, (1� 1

x

)x  1

e

holds.

Proof. By the well-known inequality 1 + y  ey for |y |  1, we have:

(1� 1

x
)x  e�

1

x

·x =
1

e

for x � 1.

⇤



Preliminary 3: Union Bound

For two events A and B , we have:

Pr [A [ B] = Pr [A] + Pr [B]� Pr [A \ B]  Pr [A] + Pr [B].



The event
E
1

: If there exists a point u 2 B(q, r), then g
i

(u) = g
i

(q)
for some i 2 {1, 2, · · · , L}.

holds with at least probability of 1 � 1

e

, for k = dlog
1/p

2

ne and

L = d
p
n

p

1

e.

Proof. Since for a point u 2 B(q, 1), we have Pr [g
i

(u) = g
i

(q)] � pk
1

for

8i = 1, . . . , L. Thus, Pr [
V

L

i=1

g
i

(u) 6= g
i

(q)]  (1� pk
1

)L.

As k = dlog
1/p

2

ne, we have pk
1

� p

1

n

⇢ � p

1p
n

� 1

L

. Thus,

Pr [
V

L

i=1

g
i

(u) 6= g
i

(q)]  (1� pk
1

)L  (1� 1

L

)L  1

e

.

Therefore, Pr [E
1

] = 1� Pr [
V

L

i=1

g
i

(u) 6= g
i

(q)] � 1� 1

e

.

⇤



The event
E
2

: The total number of false positives in the L buckets
g
1

(q), g
2

(q), . . . , g
L

(q) is less than 3 · L.
holds with at least probability of 2

3

, for k = dlog
1/p

2

ne and L =

d
p
n

p

1

e.

Proof. The expected number of false positive in g
i

(q) is at most pk
2

·n  1.
Denote by X the random variable of the total number of false positives
over all g

i

(q)’s. Thus, E [X ]  L.

By Markov’s inequality, we have Pr [X � 3 · L]  E [X ]

3·L  1

3

. Therefore,
Pr [E

2

] = 1� Pr [X � 3 · L] � 2

3

.

⇤



Finally, by the Union Bound, Pr [Ē
1

[ Ē
2

]  Pr [Ē
1

] + Pr [Ē
2

]  1

e

+ 1

3

.
Hence, Pr [E

1

\ E
2

] � 1� 1

e

� 1

3

= 2

3

� 1

e

.

Therefore,

There exists a (p
1

, p
2

)-sensitive family such that by setting k =

dlog
1/p

2

ne and L = d
p
n

p

1

e, the LSH correctly answers an (1, 2)-

near neighbor query with probability at least 2

3

� 1

e

.



Query Time

For a query point q, the time for computing g
1

(q), · · · , g
L

(q) is O(d ·k ·L),
and the time for checking at most 3 · L points is O(d · L). Thus, the total
query time is bounded by O(d · k · L) = O(d ·pn · log n).

Space

The space consumption consists of two parts: (i) the space O(d · n) for
storing P , and (ii) the space O(n · L) = O(n1.5) for the L hash tables.
Hence, the total space consumption is O(d · n + n1.5).



Remark. The value L = d
p
n

p

1

e is only valid for ⇢ = log 1/p
1

log 1/p
2

 0.5

for some specific (p
1

, p
2

)-sensitive families. In fact, for any such
family this bound does not always hold, in which case, we can only
bound L = d n

⇢

p

1

e.

Nevertheless, all our previous analysis applies to any (p
1

, p
2

)-
sensitive family H (and hence, G) by using L = d n

⇢

p

1

e. In other
words, both query time and space consumption essentially depend
on the value of ⇢.

Di↵erent families H have various ⇢ values, and hence would re-
sult in di↵erent performance. The smaller value of ⇢ the better
performance can be achieved.



A (p
1

, p
2

)-Sensitive Family

A well-known (p
1

, p
2

)-sensitive family H = {h : Rd ! N} with ⇢  0.5
for the Euclidean distance has the following form:

h(u) = b~a · ~u + b

w
c,

where:

~a is a d-dimensional vector, whose each coordinate is chosen
independently from the standard Gaussian Distribution N(0, 1);

w is an appropriate integer (e.g., w = 32); and

b is a real value uniformly drawn from the range [0,w).


