
Quantization

• Quantization is a classical lossy data compression
technique

• A quantizer, in the broadest sense, is something that
reduces the number of possible values that a variable has.

• A good example would be building a lookup table to
reduce the number of colors in an image. Find the most
common 256 colors, and put them in a table mapping a
24-bit RGB color value down to an 8-bit integer.

Compress dataset (1)

• Why do we need to compress the dataset?

– Memory access times are generally the limiting factor
on processing speed

– Sheer memory capacity can be a problem for big
datasets

• YouTube-8M has 1.4 billion 1024 dimensional feature
vectors extracted from 560,000 hours of video using the
Inception-V3 model

• While each day 720,000 hours of new video are uploaded

Vector Quantization

• use centroids to represent vectors in clusters

• distance(query, vector) ~ distance(query, centroid)

Example

• Map the 50,000-vector dataset by a vector quantizer with k
centroids using k-means

• Each code is an integer ranging from 1 to k

• Codebook: a map from code to the centroid (which is a vector)

high dimensional vectors
… 50,000

Integers in [1, $]

codes

…

1

50,000

codebook

centroidsdistinct codes

encoding

…

2

k

1,024

k

Vector Quantization

• Vector Quantizer reduces the the cardinality of the
representation space

– The memory cost of storing the centroid index is
⌈'()*$⌉ bits

– Memory cost for whole dataset is reduced to
,× '()*$ + $×/×32 (1 float = 32 bits)

– In comparison, original space cost is ,×/×32

Drawback

• Needs a huge number of clusters to distinguish vectors

• A quantizer producing 64-bit codes contains k=223 centroids

– The complexity of learning the quantizer are several
times k

– Impossible to store the /×$ floating point values that
represent the k centroids

Product Quantizer (PQ)

• Split 4 into 5 sub-vectors
Typ. 5 = 8 (6 16

• The input vector 4 is split into 5
distinct sub-vectors 71 ... 75

• Quantize each 78 with a distinct
quantizer 98. Each quantizer has k
centroids.

• Each quantizer produces one log$:;<=
integer

Compress dataset (2)

• Apply PQ in our problem

• Settings: m=8, k=256

• Chop up the vectors into 8 sub-vectors, each of length 128

– This divides our dataset into 8 matrices that are [50K x 128] each

×8

Compress dataset (3)

• Run k-means clustering separately on each of these 8
matrices with k = 256

• Get 256×8 centroids

• Each centroid has 128

dimensions

Compress dataset (4)

• Centroids are like “prototypes”

– Represent the most commonly occurring patterns in
the dataset sub-vectors

• Use these centroids to compress our vector dataset

– Replace each sub-region of a vector with the closest
matching centroid

– New vectors are different from the original, but
hopefully still close

Compress dataset (5)

• For each sub-vector, we find the closest centroid, and
store the id of that centroid

• Each vector will be replaced by a sequence of 8 centroid
ids

512× smaller space

Example PQ codes

Product Quantizer (PQ)

• A reproduction value of the product quantizer is identified
by an element of the product index set ? = ?A×⋯×?C

• The codebook: D = DA×⋯×DC

• A centroid of D is the concatenation of centroids of 5
subquantizers

• Assuming each subquantizer has k* centroids, the total
number of centroids in D is $ = $∗ C

• The learning complexity is m times the complexity of
performing k-means clustering with k* centroids of
dimension D*

Two cases of distance compute

• Symmetric: d(x, y) ≈ d(q(x), q(y))

• Asymmetric: d(x, y) ≈ d(x, q(y))

Nearest Neighbor Search

Subspace 1 … Subspace M
1st centroid 0.45 … 1.24

… … … …
k-th centroid 0.88 … 0.82

Step 1: given a query, build a distance lookup table (only 256 x 8 = 2048 entries)

Step 2: scan all PQ code, calculate the distances using lookup table, and return the top-k results

(ff, 11, 04, … … … … ... , 00)

256th centroid, 0.88 1st centroid, 1.24

Nearest Neighbor Search

Nearest Neighbor Search

• Then, for each database vector, we use those centroid ids
to lookup the partial distances in the table, and sum those
up.

– Database	vector	S	 = 	 {U;VA, U;V*, … U;VX}

– /;=< S, 97Z6[= 	∑ V;=<]^_`
^ X

^aA

• M additions instead of D subtractions, D multiplications
and / − 1 additions

• Scan the whole database to find the nearest neighbors

Our approach: PQ Fast Scan

dongdeng

13

• Each 𝑑𝑖𝑠𝑡 computation requires
• 𝑚 = 8 table lookups (𝐷𝑗[𝑖𝑗])
• 𝑚 − 1 = 7 additions

• Lookup tables 𝐷1 … 𝐷8 are
stored in L1 cache (fastest
cache)

• Cache accesses are still costly

• Bottleneck: Cache accesses

PQ Scan and Cache Accesses

CPU Core L1 Cache

Lookup tables in L1 Cache
PQ Scan

2 4
Concurrent
accesses

Cycles
latency

15

• Single Instruction Multiple
Data

• Process multiple data
elements at once

• SIMD computing unit in each
core

• Used for high-performance
(e.g. linear algebra)

SIMD primer

Scalar (regular) add

SIMD add

+ + + + + + + +

1 SIMD instruction

+ + + + + + + +

8 instructions

1 2 8…

16

• Key Idea: Replace cache
accesses by SIMD in register
shuffles

• Bonus: Use SIMD additions to
further increase performance

• Challenge: Lookup tables do
not fit SIMD registers

• Lookup table : 256 x 32 bits

• SIMD register : 16 x 8 bits

PQ Fast Scan Key Idea

CPU Core L1 Cache

Lookup tables in SIMD registers
PQ Fast Scan

16 1
Concurrent
accesses

Cycles
latency

17

• Compute small tables 𝑆1 … 𝑆8
that fit SIMD registers

• Use 𝑆1 … 𝑆8 to compute lower
bounds on distances

• Lower bounds are used to
prune 𝑑𝑖𝑠𝑡 computations

• By design, same results as PQ
Scan

PQ Fast Scan Overview

Compute lower bound (𝑙𝑏𝑜𝑢𝑛𝑑)
(SIMD in-register shuffles, fast)

𝑑𝑖𝑠𝑡 < min

Compute 𝑑𝑖𝑠𝑡
(L1 cache accesses, slow)

𝑙𝑏𝑜𝑢𝑛𝑑 < min

𝑐

𝑐 is the new NN

5 – 10 %

18

Small Tables Construction

𝐷𝑗

Code grouping / Minimum tables

Quantization of floats

𝑆𝑗

Each small table 𝑆𝑗 is built from the corresponding 𝐷𝑗 table:

256 x 32 bits (floats)

16 x 32 bits (floats)

16 x 8 bits (int)

19

• Split 𝐷𝑗 (256 floats) into
16 portions of 16 floats each

• Group inverted lists

• Load portions in SIMD registers
(small table) to scan a group

• More tables smaller groups

• Too small groups detrimental
for performance

Code grouping
256 floats 16 floats

Used for 𝐷1 …𝐷4

𝑐151 𝑐73 𝑐246 𝑐15 𝑐752 … 𝑐𝑙𝑎𝑠𝑡

…𝐷1
𝐷2

𝐷4

Portion 1 …

…

…

Group 1 Group 2

Portion 2 Portion 16

20

Minimum tables
256 floats 16 floats

Used for 𝐷5 …𝐷8

min(·) min(·)

𝑆5

1. Split 𝐷𝑗 (256 floats) into 16
portions of 16 floats each

2. Take the minimum of each
portion
16-element minimum table

• Table loaded only once in
SIMD registers

…𝐷5

Portion 1 …Portion 2 Portion 16

min(·)

21

Quantization of Distances
16 floats 16 8-bit ints

• Scalar quantizer
Not a vector quantizer

• Signed 8-bit int
SIMD limitation
Positive range: 0-127

• Saturated quantization
Saturated adds

0 1 2 … 126 127

qmin qmax

bin

326.3 [float]

2 [8-bit int]

22

Evaluation: Global Performance

0 500 1000 1500 2000 2500

Million code scanned per second

Single-core scan speed

PQ Fast Scan PQ Scan

0 5 10 15 20

GB / s

Single-core memory bandwidth

PQ Fast Scan PQ Scan

4-6x
Higher scan speed

Typical Speedup
vs. PQ Scan

12-16 GB/s

Typical Mem. bandwith
Single-core

Scan speed Memory bandwidth

Memory-bandwith bound on
multicore CPUs

