Quantization

- Quantization is a classical lossy data compression technique
- A quantizer, in the broadest sense, is something that reduces the number of possible values that a variable has.

• A good example would be building a lookup table to reduce the number of colors in an image. Find the most common 256 colors, and put them in a table mapping a 24-bit RGB color value down to an 8-bit integer.

Compress dataset (1)

- Why do we need to compress the dataset?
 - Memory access times are generally the limiting factor on processing speed
 - Sheer memory capacity can be a problem for big datasets
- YouTube-8M has 1.4 billion 1024 dimensional feature vectors extracted from 560,000 hours of video using the Inception-V3 model
- While each day 720,000 hours of new video are uploaded

Vector Quantization

- use centroids to represent vectors in clusters
- distance(query, vector) ~ distance(query, centroid)

Example

- Map the 50,000-vector dataset by a vector quantizer with *k* centroids using *k*-means
- Each code is an integer ranging from 1 to k
- Codebook: a map from code to the centroid (which is a vector)

Vector Quantization

- Vector Quantizer reduces the the cardinality of the representation space
 - The memory cost of storing the centroid index is $[log_2k]$ bits
 - Memory cost for whole dataset is reduced to $N \times [log_2 k] + k \times D \times 32$ (1 float = 32 bits)
 - In comparison, original space cost is $N \times D \times 32$

Drawback

- Needs a huge number of clusters to distinguish vectors
- A quantizer producing 64-bit codes contains $k=2^{64}$ centroids
 - The complexity of learning the quantizer are several times k
 - Impossible to store the $D \times k$ floating point values that represent the k centroids

Product Quantizer (PQ)

Compact code $[m \cdot \log_2 k \ bits]$

- Split x into m sub-vectors
 Typ. m = 8 or 16
- The input vector x is split into mdistinct sub-vectors $u_1 \dots u_m$
- Quantize each u_j with a distinct quantizer q_j . Each quantizer has k centroids.
- Each quantizer produces one logk bits integer

Compress dataset (2)

- Apply PQ in our problem
- Settings: m=8, k=256
- Chop up the vectors into 8 sub-vectors, each of length 128
 - This divides our dataset into 8 matrices that are [50K x 128] each

Compress dataset (3)

- Run k-means clustering separately on each of these 8 matrices with k = 256
- Get 256×8 centroids
- Each centroid has 128 dimensions

Compress dataset (4)

- Centroids are like "prototypes"
 - Represent the most commonly occurring patterns in the dataset sub-vectors
- Use these centroids to compress our vector dataset
 - Replace each sub-region of a vector with the closest matching centroid
 - New vectors are different from the original, but hopefully still close

Compress dataset (5)

- For each sub-vector, we find the closest centroid, and store the *id* of that centroid
- Each vector will be replaced by a sequence of 8 centroid ids

Example PQ codes

0							7	
01	03	02	05	06	09	04	8 0	
3f	11	21	00	01	f2	12	11	
04	0 c	0 e	1a	f 1	0f	a9	17	
f 6	ff	f 6	fO	23	0 b	b6	2f	
37	1a	21	00	32	8 b	e 9	03	
f 5	fc	ff	f 1	46	33	cf	2 c	
•								

Product Quantizer (PQ)

- A reproduction value of the product quantizer is identified by an element of the product index set $I = I_1 \times \cdots \times I_m$
- The codebook: $C = C_1 \times \cdots \times C_m$
- A centroid of *C* is the concatenation of centroids of *m* subquantizers
- Assuming each subquantizer has k^* centroids, the total number of centroids in *C* is $k = (k^*)^m$
- The learning complexity is *m* times the complexity of performing k-means clustering with *k** centroids of dimension *D**

Two cases of distance compute

- Symmetric: $d(x, y) \approx d(q(x), q(y))$
- Asymmetric: $d(x, y) \approx d(x, q(y))$

Nearest Neighbor Search

	Subspace 1	 Subspace M
1st centroid	0.45	 1.24
<i>k</i> -th centroid	0.88	 0.82

Step 1: given a query, build a distance lookup table (only $256 \times 8 = 2048$ entries)

Step 2: scan all PQ code, calculate the distances using lookup table, and return the top-k results

Nearest Neighbor Search

Nearest Neighbor Search

- Then, for each database vector, we use those centroid ids to lookup the partial distances in the table, and sum those up.
 - Database vector $v = \{cid_1, cid_2, \dots cid_M\}$

-
$$Dist(v, query) = \sum_{i=1}^{M} dist_{cid_i}^{i}$$

- *M* additions instead of *D* subtractions, *D* multiplications and *D* 1 additions
- Scan the whole database to find the nearest neighbors

PQ Fast Scan

PQ Scan and Cache Accesses

Lookup tables in L1 Cache PQ Scan 2 4 Concurrent accesses Cycles latency

- Each *dist* computation requires
 - m = 8 table lookups $(D_j[i_j])$
 - m-1=7 additions
- Lookup tables D₁ ... D₈ are stored in L1 cache (fastest cache)
- Cache accesses are still costly
- Bottleneck: Cache accesses

SIMD primer

SIMD add

- Single Instruction Multiple Data
- Process **multiple data elements** at once
- SIMD computing unit in each core
- Used for **high-performance** (e.g. linear algebra)

PQ Fast Scan Key Idea

Lookup tables in SIMD registers PQ Fast Scan 16 1 Concurrent accesses Latency

- Key Idea: Replace cache accesses by SIMD in register shuffles
- Bonus: Use SIMD additions to further increase performance
- Challenge: Lookup tables do not fit SIMD registers
 - Lookup table : 256 x 32 bits
 - SIMD register : 16 x 8 bits

PQ Fast Scan Overview

- Compute small tables S₁ ... S₈ that fit SIMD registers
- Use S₁ ... S₈ to compute lower bounds on distances
- Lower bounds are used to prune *dist* computations
- By design, same results as PQ Scan

Each small table S_i is built from the corresponding D_i table:

Code grouping

256 floats \rightarrow 16 floats Used for $D_1 \dots D_4$

- Split D_j (256 floats) into
 16 portions of 16 floats each
- **Group** inverted lists
- Load portions in SIMD registers (small table) to scan a group
- More tables \rightarrow smaller groups
- Too small groups detrimental for performance

Minimum tables

256 floats \rightarrow 16 floats Used for $D_5 \dots D_8$

- 1. Split *D_j* (256 floats) into 16 **portions** of 16 floats each
- 2. Take the minimum of each portion 16-element minimum table
- Table loaded only once in SIMD registers

Quantization of Distances

16 floats \rightarrow 16 8-bit ints

- Scalar quantizer Not a vector quantizer
- **Signed 8-bit int** SIMD limitation Positive range: 0-127
- Saturated quantization
 Saturated adds

Evaluation: Global Performance

Scan speed

Higher scan speed

Memory bandwidth

Typical Mem. bandwith Single-core

12-16 GB/s

Memory-bandwith bound on multicore CPUs